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Abstract. The mashup paradigm allows end users to build custom web
applications by combining data-exchanging components in order to ful-
fill specific needs. Since such building blocks typically originate from dif-
ferent third party vendors, compatibility issues at component interface
level are inevitable. This decreases re-usability and requires skilled users
or automatisms to provide the necessary mediation to solve such issues.
However, current mashup proposals are very limited in this regard.

We present techniques for data mediation that leverage semantically
annotated interface descriptions to overcome a high degree of interface
mismatch. We equipped the EDYRA mashup platform for end user de-
velopment with automatic support for these techniques to increase the
re-usability of components and to foster the long tail of user needs. In or-
der to show the practicability of our approach, we describe the platform
implementation and present benchmark results.
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1 Introduction

Recently, universal composition approaches like CRUISe [1] allow for platform-
independent modeling of mashups and a uniform description of components
spanning all application layers. Since components are typically developed by
different third party providers, combining component interfaces in a meaning-
ful way is far from trivial. Data exchanged between components may differ in
various aspects leading to incompatibilities: providers use different vocabularies,
schemata, units or abstraction levels when designing interface signatures. This
complicates end user development (EUD) further, and connecting components
in ways not anticipated becomes a cumbersome task. Semantic technologies are a
potent solution to provide data mediation, i. e., automatic resolving of hetero-
geneous data structures. Although proposals in the semantic web service (SWS)
domain exist, most mashup platforms neglect data mediation so far.

Within the EDYRA project, we adhere to universal composition and strive for
enabling domain experts without programming skills to build and reuse compos-
ite web application (CWA). We utilize semantic annotations to refer to ontology
concepts of component interfaces. Based on this, semantic data mediation tech-
niques are applied by our platform and hidden from end users.
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Fig. 1. Reference scenario: conference planning

To highlight arising challenges, let us consider the following use case which
we use as a reference scenario throughout this paper.

Non-programmer Bob from the USA builds a CWA (Fig. 1) to organize a
conference participation in Toulouse, France. He selects the conference, which
he noted previously as an appointment, in the calendar. Then Bob wants to see
the appointment location on a map. However, syntactically there is no pos-
sibility to combine the calendar and the map component’s interface. While
the calendar offers a data object of type Appointment, the map consumes a
Location. Therefore, semantically it would be possible to take the appoint-
ment’s AppointmentLocation and “cast” it to a general Location (1). Next, he
wants to search for flights to Toulouse (2). In this case, he adds a flight search
service and uses his current location as well as the appointment’s location and
time as search criteria. Besides the semantic problem of querying time and loca-
tion of the appointment, it is necessary to put all three parameters together in
compliance with the signature required by the flight service. Furthermore, Bob
wants to visualize the distance between the airport and the conference location,
which is calculated by the flight service (3). Because the flight service is located
in Europe, the distance is provided in kilometers. To use the showRadius func-
tionality of the map (from an American provider) this value has to be converted
to miles. Finally, Bob wants to see the weather forecast for the appointment’s
time and location. He utilizes a French weather service which uses an ontology
for annotating the interface that differs from the calendar’s (4). But semantically
the same concepts are described and the components can be coupled.

Current mashup proposals lack capabilities to implement this scenario. Thus,
as our main contribution, we introduce data mediation techniques for CWAs
and show their practicability within our EUD platform. These concepts help to
combine components in more flexible ways than pure syntactic interfaces would
allow, increasing re-usability and fostering the long tail of user needs.



452 C. Radeck et al.

The remaining paper is structured as follows. Sect. 2 presents mediation tech-
niques for CWA. In Sect. 3, we describe our mashup platform with mediation
support and show the practicability of our concepts. In Sect. 4, we discuss related
work. Sect. 5 concludes the paper and outlines future work.

2 Semantic Data Mediation Techniques for CWA

Data mediation serves to resolve interface incompatibilities, of course within
certain boundaries. In this section, incorporating results from the SWS domain
like WSMO Mediators [6], we introduce a set of generic mediation techniques
for CWA. We apply semantic data mediation and thereby leverage the domain
knowledge defined in OWL-DL ontologies and annotated to component interfaces
[1]. Essentially, annotations refer to classes, datatype and object properties or
individuals in ontologies modeling the application/component domain. Since it
is possible to model the same domain in various ways, we assume a certain
modeling and annotation style.

In general, ontology classes can be annotated directly, e.g. Location, or via
an OWL object property whose range the class is, if it is necessary to highlight a
more specific meaning, e.g. hasCenter. Additionally, OWL datatype properties
can be used, e.g. hasLatitude. However, there are circumstances where it is
more appropriate to model individuals rather than subclasses. Units, currencies,
and quantities, i.e., convertible concepts, may be mentioned as examples, or
classes that refer to such convertibles on OWL property level (see Distance in
Fig. 1). In this case, concrete individuals should be annotated, e.g. milesDist,
a Distance individual where hasUnit points to mile.

In general, data transfer is realized through interface elements, which are prop-
erties, operations and events in our case. Interface elements can have one (e.g.
properties) or more (e. g. operations and events) parameters, which have an iden-
tifier and a semantic type annotation. Channels combine one interface element
of a source component SC with one of a target component T'C'. Therefore, an
assignment assi has to exist, that maps n parameters P,,; of the SC bijectively
to all n parameters P, of the TC. A perfect match exists if assi only includes
mappings between parameters that are semantically identical (both refer to the
identical concept). As an example, the mapping (latitude, longitude) —
(latitude, longitude) is a perfect match.

Due to the usage of third-party components, a perfect match is unlikely. P,
and Py, can be semantically compatible if a Semantic Connector SeCo can
be defined, which is a set of channels and mediation techniques. It ensures that
all parameters P;, of one interface element of a T'C' are connected and of the
required semantic type. This may include that several channels from one or more
SC can exist. In case of multiple inbound channels, the SeCo takes care of an
appropriate synchronization between them.

Upcast. As proposed earlier [1], the upcast mediation technique serves for solv-
ing different generalization levels of concepts annotated at parameters. In case
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of classes this means, that a more specific class is cast into a more generic one as
long as they are in subClassOf relationship. Assume that a component outputs
an AppointmentLocation but the target component requires a more generic
Location. Then a upcast can be applied.

In principle, upcasts may additionally be used for OWL object properties if
there is a subProperty0f relation, by dealing with it as if the range would have
been annotated. In case of datatype properties we presume that the underlying
range stays the same, rendering upcasts simple. Upcasts are one way, i.e., only
casts upwards the inheritance hierarchy are valid along the data flow.

Conversion. The conversion mediation technique has two main application
areas. First, it resolves incompatibilities between two parameters annotated by
convertible concepts, like units, quantities and data types. Please consider the
example kilometer — mile from Fig. 1. The specific knowledge required can,
e.g., be formalized in dedicated ontologies like the QUDT (http://qudt.org).
In the latter, a base type is assigned to each unit for conversion purposes. For
example, meter is the base type for LengthUnit, to which all other length units
have a conversion factor to. Another use case are scale adjustments requiring
more domain-specific transformations, e. g., mapping a five star rating to a ten
point rating. Typically, these conversions require domain-specific knowledge and
cannot be covered by generic algorithms or reasoners.

Second, conversion is used on class level in case of equivalentClass relation-
ships, e. g. Location and Localité in Fig. 1 or Location and Place. For sake of
simplicity, we pose a rather strict definition of equivalence: There have to exist
equivialentProperty relations for all declared properties of those classes.

Semantic Split. A semantic split queries multiple OWL properties of an in-
dividual, which is represented as a parameter or property, and distributes them
on one or more parameters of a target interface element. Fundamentally, only
individuals can be “split” within the restrictions of their ontology class. This me-
diation technique is applicable if the following OWL constructs are annotated:

e (Class: OWL data and object properties can be assigned to target parameters
that reference a semantically compatible class, data or object property, e. g.
connection (1) in Fig. 1 (Appointment.hasLocation — Location).

e OWL object property: This case is handled as if the range class of the object
property is annotated, e. g. hasLocation — {hasLatitude, hasLongitude}

Semantic Join. A semantic join creates an individual, representing a tar-
get parameter, by joining of multiple parameters of one source interface ele-
ment. Assume, that a map publishes an event with parameters {hasLatitude,
hasLongitude} and there is a point of interest finder that offers an operation
consuming a parameter of type Location. Then, a semantic join is possible.

It has to be guaranteed, that the generated individual fulfills all constraints
on OWL properties defined by the target class (and thus all superclasses).
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Partial Substitution. Using a partial substitution, an OWL property of an
individual represented as parameter can be updated with an individual or literal
given by another parameter. With regard to Fig. 1, a partial substitution is
possible between Location and Event, since the object of the OWL property
hasLocation of an Event can be substituted by a Location individual. Partial
substitutions are exclusively applicable for properties as target interface element.
This is caused by the fact, that in our component model only properties expose
and allow to change a partition of the component’s data layer directly.

Using partial substitution increases the possibility to connect properties bidi-
rectionally. As an example, consider that the calender has a property for its
currently selected appointment and the map has a property for the currently
selected location. Beside the possibility to semantically split the event to display
its location, it is even feasible to connect the map to the calendar, to substitute
the appointment’s location with that of the map by dragging the map’s marker.

Partial substitutions are not suitable for connections between events and op-
erations for two reasons: First, it is not guaranteed that an event is correlated to
an input interface element which can update the individual represented by the
event. Second, events and operations in general hide the data layer.

Syntactic Join. A syntactic join is intended to synchronize m parameters pub-
lished by n source interface elements of several SC and feeds them together in
1 target interface element. Several synchronization modes are supported.

e tolerant: The joiner waits until all sources have published at least once. Only
the latest parameters are cached per source (the old value is overridden), and
the cache is cleared after data transfer to the target.

e repeating: Here, the cache is not cleared, i. e., once all sources have sent data,
each following publication causes the joiner to transfer data to the target.

e queuing: There is a queue per parameter. When all queues have at least one
entry, the data is transferred to the target and the first element is removed.

3 Mediation-Equipped Platform for Mashups

3.1 Architecture

Our platform builds up on the CRUISe and EDYRA infrastructure we intro-
duced earlier [1,2]. An overview is shown in Fig. 2. Universal composition is
applied to create and execute presentation-oriented CWA, where components of
the data, business logic and user interface (UI) layer share a generic component
model. The latter characterizes components by means of several abstractions:
parametrized events and operations, properties, and capabilities. The Seman-
tic Mashup Component Description Language (SMCDL) serves as a declarative
language implementing the component model. It features semantic annotations
to clarify the meaning of component interfaces and capabilities [2]. Based on the
component model, the declarative Mashup Composition Model (MCM) describes
all aspects of a CWA, e. g. included components and event-based communication.
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Fig. 2. Architectural overview of our mediation-equipped mashup platform

A repository is in charge of managing components and compositions. Further-
more it provides services for querying those artifacts.

Ontologies play an important role in our approach as they serve for annotating
components and provide the schema knowledge most mediation techniques are
based on. Besides domain-specific ontologies there can be (1) upper ontologies,
e.g., for units, (2) ontologies defining how to transform concepts, and (3) map-
ping ontologies pointing out similarity relations of concepts in different know-
ledge representations. For the provision of mapping ontologies we assume that
a state-of-the-art ontology alignment process takes place. Only confirmed map-
pings result in an ontology, linking concepts via predicates like equivalentClass
and sameAs, e.g. Location equivalentClass Localité. A component can in-
troduce new ontologies by using them for semantic annotation.

To enable recommendations, there are facilities for discovery and ranking of
composition fragments, which represent composition knowledge, best matching
user requirements and the current context. Within those modules, algorithms for
recommendations utilize amongst others the semantic component annotations
and ontology mappings. An essential task during discovery is the calculation
of semantic connectors between components. Thereby, mapping definitions are
derived utilizing the mediator or reused if already calculated.

A mapping definition specifies the mediation techniques required to align in-
terface elements in a semantic connector. It is a data structure consisting of: an
ID, P;, and P,,; for more efficient matching and reuse, and one or more map-
pings including the composition and configuration mediation techniques, like the
synchronization mode of a syntactic join.

A mashup runtime environment (MRE) interprets composition models in or-
der to run mashups. With regard to data mediation, an MRE provides automatic
support for the proposed mediation techniques, see Sect. 3.2 for details.

The mediator is responsible for mainly two tasks. First, it provides means for
looking up mappings, which involve mediation techniques. To this end, the me-
diator takes two signatures, i. e., the URIs of concepts annotated at a source and
a target interface element. In order to detect mappings e. g. between milesDist
and kilometerDist in our scenario, algorithms have to inspect concepts on
OWL property level, whereby we restrict the depth to one level. This task may
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result in multiple valid mappings, which have to be ranked further. Second, the
mediator serves for the execution of mediation techniques defined in mapping
definitions as requested by an MRE.

As illustrated in Fig. 2, there are generic and ontology-specific algorithms to
accomplish these tasks. Generic algorithms utilize standard modeling constructs
and reasoning rules of RDF/S and OWL. Mainly, relations like subsumption,
property ranges and domains, sameAs and equivalentClass are leveraged.

The mediator can be extended with ontology-specific modules by implement-
ing the required interface. They use dedicated modeling constructs and reasoning
rules to derive and apply mappings and are consulted if generic algorithms cannot
provide a mapping. Knowledge is encapsulated in modules for the algorithmic
part and the corresponding ontologies for the terminology. Although in principle
generically applicable, such modules are especially useful for conversions. There
are modules per transformation ontology, responsible for interpreting and apply-
ing transformations on the payload delivered by events/properties. To identify
suitable modules, each one provides a method to state if it supports the given
signatures during discovery as well as execution of mappings.

Within the EDYRA project!, we implemented a client-side thin-server MRE
completely written in JavaScript. The mediator is distributed over the MRE
and the SOAP-based mediation service. The latter is implemented in Java and
uses the Jena framework for working with semantic models, including validat-
ing, reasoning and querying via SPARQL. The mapping discovery is located
at the Java-based repository. We implemented the DataSemanticsMatcher as a
generic algorithm that builds up on a QUDT-specific and a generic conversion
module. The QUDT module supports annotated parameter types which refer to
QUDT concepts. It queries the QUDT ontologies to check if both concepts are
convertible, i. e., if they belong to the same unit domain. At execution time, the
conversion multiplier is looked up and applied. The generic conversion module
utilizes OWL constructs like equivalentClass and equivalentProperty to de-
cide if two given classes are equal according to our definition in Sect. 2. To add
new ontologies in our prototype, they have to be used for semantic annotation
in SMCDL and registered manually at the repository and mediation service.

3.2 Runtime Support

Semantic connectors are implemented by associating the mapping definitions of
semantic mediation techniques with a communication channel, and providing
syntactic joins as built-in mediation components. The latter comply to the com-
ponent model and can consequently be connected with other components. The
MRE has templates for the SMCDL and the implementation of joiners and con-
figures those as stated in the mapping definition to seamlessly instantiate and
manage joiners like application components. With syntactic joins as components,
single channels connect one SC with one T'C.

! http://mmt.inf.tu-dresden.de/edyra (also links to our live demonstrator).
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Fig. 3. Implementation of an exemplified semantic connector from the scenario

Fig. 3 shows an example (dashed area) of a semantic connector present in
the mashup from our scenario. The semantic split is realized through a mapping
definition which is directly attached to the channel between the calendar and
a syntactic join. The latter aligns the split Location and Date as well as the
Location from the map and transfers them combined to the flight search.

As described in our previous work [1], our components predominantly ex-
change data serialized in XML. There is a predefined grounding per ontology
concept specifying the XML schema for individuals and literals. In case com-
ponent developers utilize their own schemata or even other formats, like JSON,
they have to ensure that data are transformed to the grounding, either as part of
the component implementation or by transformation instructions in the SMCDL.
In order to apply semantic mediation, data has to be available in RDF. Thus,
we assume lifting and lowering transformations per predefined grounding.

When a SC publishes data according to the grounding, the channel dele-
gates the execution of mediation techniques to the mediator by handing over the
transported payload, the mapping definition, and in case of partial substitutions
the target property’s value. Per parameter, the mediator applies the lifting to
get triples, which are then put in separate semantic models together with the
terminological knowledge of ontologies. Using Jena in our prototype, validation
and reasoning takes place automatically. Then the mediation techniques are ex-
ecuted as configured by the mapping definition. We utilize Jena’s OWL API,
e.g., to add OWL property values to individuals, and invoke conversion modules
if required. Next, lowering takes place. Thereby, per target parameter, the model
is queried with SPARQL, the results are serialized in the XML results format
on which an XSLT transformation is applied. Finally, the mediated payload is
forwarded to the T'C'. For simple datatypes as grounding, e. g. as input for con-
versions or result of a split, there is no dedicated lifting and lowering required.
We programmatically map primitive data types to Literals and vice versa.

Syntactic joiners are connected to n inbound and one outbound channels. To
achieve that, there are n operations in the joiner’s generated SMCDL, whose
parameter count and names correspond to those of the source interface element.
Occurring event on an inbound channel are handled by the connected operation.
The joiner extracts the parameter payload, handles it (e. g., adds it to a queue)
and decides whether to fire its event according to its synchronization mode.

We conducted a benchmark where we measured the average response time of
the mediation service’s operations implementing the mediation techniques.
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Table 1. Average response time of the mediation service in 100 runs per technique on
a local server. The setup includes an Intel Core i7 2.8 GHz and 32 GB RAM.

Mediation technique Avg. response time
Upcast (AppointmentLocation — Location) ~15ms
Conversion (kilometers — miles) ~14ms
Conversion (two equivalent classes) ~40 ms
Semantic split (Location — {hasLat, hasLng} ) ~23 ms
Semantic join (reversed split) ~13ms
Partial substitution (Location — Event.hasLocation) ~23 ms

The results show a decent performance considering that lifting and lowering
takes place in most cases. Network overhead of SOAP over HTTP may result in
noticeable delays on slow connections, so that user experience may suffer in com-
parison to perfect match channels. That can be lowered by using WebSockets,
and by integrating the mapping execution in a client-server MRE. Other crucial
factors are ontology size and complexity, especially when a reasoner is attached.

4 Related Work

Proposals for semantically annotated services mostly use lifting and lowering
to transfer data to the semantic layer [4,5]. While we use this, because our
components do not exchange semantic data, our concept is not limited to upcasts.

Research shows that semantic web service descriptions are suited for media-
tion. There are different mediators in the conceptual framework of WSMO [6],
which are provided as web services too and completely operate at a seman-
tic layer. There are similar techniques involved, but due to the lack of a UI,
execution performance is not that critical as for CWA. In addition, only a 1:1
communication is supported, while we can handle n:m semantic connectors.

For mashups, automated data mediation has been neglected so far [7]. Simple
constructs exist that support, e.g., filtering, assignment and sorting of data,
for example in Yahoo Pipes. But those rather belong to application logic than
generic mediation techniques, and data semantics is not taken into consideration.
Few approaches use semantically annotated component interfaces for matching
at all, like [8,1]. Our previous work [1] can solve syntactical issues like different
parameter naming with the help of wrappers. As a semantic issue only upcasts
can be handled. Therefore, we largely extend this work.

5 Conclusion and Future Work

Since components of a CWA typically originate from different vendors, connect-
ing them in meaningful way is challenging. Incompatibilities of signatures and
exchanged data may, for instance, result from varying vocabularies or units.
This complicates EUD, especially for non-programmers. In addition, connecting
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components in unforeseen ways becomes far from trivial. Thus, platforms for
mashup EUD should feature means to automatically provide the required glue
code.

We describe a set of data mediation techniques that use semantic component
annotations to resolve interface mismatches. Those techniques reflect knowledge
captured by ontologies, can be combined and are essential for establishing se-
mantic connectors between components. The higher flexibility for combining
components fosters re-usability and unforeseen coupling. This way, more niche
requirements can be meet without the need for new components. Utilizing our
implemented core platform, we show the practicability. However, due to the in-
creased possibility of combinations, it is challenging to identify useful connectors.
In addition, our approach depends on semantic annotations of OWL concepts,
and we limit the depth to 1 when analyzing concepts during mapping discovery.
Tough this may restrict the solution space, it lowers the algorithmic complexity.

Currently, we utilize mediation techniques for deriving and visualizing recom-
mendations, in the CapView [2] and for synchronization of mediable components
during collaboration. Future research will focus on the mediation of collections.
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