
Analysis and Evaluation of Web Application

Performance Enhancement Techniques

Igor Jugo1, Dragutin Kermek2, and Ana Meštrović1

1 Department of Informatics, University of Rijeka,
Radmile Matejčić 2, 51000 Rijeka, Croatia

{ijugo,amestrovic}@inf.uniri.hr

http://www.inf.uniri.hr
2 Faculty of Organization and Informatics, University of Zagreb,

Pavlinska 2, 42000 Varazdin, Croatia
dkermek@foi.hr

http://www.foi.unizg.hr

Abstract. Performance is one of the key factors of web application suc-
cess. Nowadays, users expect constant availability and immediate re-
sponse following their actions. To meet those expectations, many new
performance enhancement techniques have been created. We have identi-
fied almost twenty such techniques with various levels of implementation
complexity. Each technique enhances one or more tiers of the applica-
tion. Our goal was to measure the efficiency and effectiveness of such
techniques when applied to finished products (we used three popular
open source applications). We argue that it is possible to significantly
enhance the performance of web applications by using even a small set
of performance enhancement techniques. In this paper we analyse these
techniques, describe our approach to testing and measuring their perfor-
mance and present our results. Finally, we calculate the overall efficiency
of each technique using weights given to each of the measured perfor-
mance indicators, including the technique implementation time.

Keywords: Web application, performance, enhancement, techniques.

1 Introduction

Web applications (WAs) have become ubiquitous allowing anyone, even with only
basic IT knowledge, to start an online business using a free and open sourced
WA or a commercial one. There are three basic factors that have led to great
importance of their performance today. First, the spread of broadband Internet
connections has changed visitors expectations and tolerance to waiting for the
application to respond, lowering the expected time to 1 or 2 seconds. The second
factor is the increasing workload generated by the constantly growing number of
Internet users. The third factor is the new usage paradigm (user content creation
= write-intensive applications) that has been put forth by Web 2.0. All this has
increased the pressure on performance of web applications. Our research had
the following objectives: a) make a systematic overview of various techniques

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 40–56, 2014.
c© Springer International Publishing Switzerland 2014

http://www.inf.uniri.hr
http://www.foi.unizg.hr


Analysis and Evaluation of Web Application Performance 41

for enhancing WA performance, b) experimentally test, measure and evaluate
the effectiveness of each technique, and c) measure the effect of these techniques
on WA quality characteristics. The hypotheses we set were: a) it is possible to
significantly increase application performance on the same hardware basis, in-
dependently of its category (type), by using even a small subset of performance
enhancement techniques and b) implementation of performance enhancement
techniques has a positive effect on the quality characteristics of such applica-
tions (efficiency, availability, reliability). The first hypothesis will be confirmed
by achieving a 30% or more increase in throughput, while keeping the 90% of
response times under 2 seconds and the average CPU usage under 70%. The
second hypothesis will be confirmed by achieving a 10% or more decrease in
average CPU usage, while still enhancing the throughput for at least 30%. In
order to confirm our hypotheses experimentally, we selected three well known
open source applications of different categories. The applications that we selected
were: a) Joomla content management system (marked APP1 in this paper), b)
PhpBB online community system (APP2) and c) OsCommerce e-commerce sys-
tem (APP3). We have selected these applications because they have been under
development for a long period of time; they are the solution of choice for many
successful web companies and are used by millions of users every day.

The paper is organized into six sections. Section Two describes the theoretical
foundation of this research and situates the work in the area. Section Three
presents some motivations for performance enhancement of web applications,
possible approaches and an overview of our analysis of performance enhancement
techniques. In Section Four we present our experiment and discuss the results.
In Section Five we calculate the effectiveness of each technique which suggest
implications for the problem of performance enhancement technique selection in
relation to the type and workload of WA whose performance we are trying to
enhance. Finally, Section Six draws conclusions and suggests further work.

2 Background

There are three basic approaches to enhancing performance of WAs. While
caching and prefetching are well known from other areas of computing, response
time and size minimization is a relatively new approach developed by some of
the most visited applications on the World Wide Web (Web) today. In this sec-
tion we will point out some of the most important work within these approaches.
Caching is one of the oldest methods of performance enhancement used in various
information systems. In the area of web application development, caching has
been analyzed in [18], [14], [5], [2] and [24], while various caching strategies have
been analyzed in [25]. Another expanding area of performance enhancement is
prefetching, i.e. preparing and/or sending data that is most likely to be requested
after the last request. Domenech analyzed the performance of various prefetch-
ing algorithms in [8] and created prefetching algorithms with better prediction
results in [7]. One of the crucial elements of prefetching is the prediction on
which content will be requested next. Prediction is usually based on the analysis



42 I. Jugo, D. Kermek, and A. Meštrović

and modeling of user behavior as described [9], or by extracting usage patterns
from web server logs, which has been done in [16] and in [11]. Adding a time
component to better determine the optimal time for prefetching web objects was
suggested in [15]. The latest approach is response time and size minimization.
This approach is based on the experiences and methods developed by profes-
sionals that constructed some of the most popular applications on the Internet
today, such as like Yahoo.com [26] and Flickr.com [10]. As said earlier Web 2.0
and AJAX have caused a paradigm shift in WA usage, which also brought on
a change in the nature of WA workload. This was analyzed in [21],[20] and in
[19]. Throughout 2009 and 2010, authors have studied the possibilities for the
overall application performance enhancement [22], [6]. In this paper we analyze
techniques based on all the mentioned approaches and measure their effect on
the performance of WAs.

3 Performance of Web Applications

The quality, and with that, the performance of WAs is primarily defined by
the quality of its architecture. Badly planned elements of application architec-
ture can limit or completely block (by becoming a bottleneck) the expected or
needed levels of performance. With the new focus on the importance of appli-
cation performance, production teams have begun to implement performance
risk management in all phases of its lifecycle. According to the Aberdeen group
research [1], companies that have adopted performance management in the form
of the ”Pressures, Actions, Capabilities, Enablers” (PACE) model have seen a
106% increase in availability, 11.4 times better response times and 85% problem
solving rate before the problem becomes obvious to their users. However, there
are already many WAs used worldwide, and with the rise in the number of users,
their performance has to be enhanced to meet the desired service levels. The mo-
tivation for performance enhancement usually comes from three main directions:
a) the desire to increase the number of users or profit, b) expected and planned
peak workload periods and c) performance enhancement based on a business
plan, or inspired by a real or expected (projected) performance problem with
a goal of ensuring availability and efficiency under increased workload. Perfor-
mance enhancement is always a tradeoff between the number of opposing factors
like hardware and working hours investment limits, desired response times and
throughput values, etc. In our research we had to balance between two limiting
factors (response time and CPU usage) while trying to maximize a third one
(throughput).

These factors can be visualized as given in Figure 1. The X axis shows the
response time, with a maximum value of eight seconds, which was considered by
some authors to be the limit of tolerable waiting time a few years ago. We believe
that today, this limit for an average user is much lower so we have set the average
response time for 90% of requests to 2 seconds. The Z axis displays the average
CPU usage during load tests. The usage limit here has been set to 70% accord-
ing to some best practices in the hardware industry (constant usage over 70%



Analysis and Evaluation of Web Application Performance 43

Fig. 1. Performance enhancement area

significantly raises malfunction probability and shortens the Mean Time Between
Failure (MTBF), along with the Total Cost of Ownership (TCO)). In this way,
we have set the margins of an area within which we can try to achieve the highest
possible throughput (Y axis) by implementing various performance enhancement
techniques.

Performance enhancement requires a complete team of experts from all fields
of WA development - from front-end (HTML, CSS, JavaScript) to back-end
(database design, SQL queries, DBMS configuration and administration) in or-
der to plan and implement performance enhancement techniques, as well as verify
changes through benchmarking. Such teams must also check the performance of
application architecture at each level, as some techniques may have hidden ef-
fects that can propagate throughout the application and even cause a decrease
in the performance at another level. Some techniques require additional services
that must be installed on the server. This increases the complexity of applica-
tion architecture and increases CPU and memory usage (if additional services
are running on the same server), which has to be taken into account when doing
post-implementation load testing. When trying to enhance the performance of
a WA, a starting approach can be general systems theory that considers the
application to be a black box with a large number of requests per second as
input, and a large number of responses per second as output. When we start to
decompose the black box into subsystems, we identify the ones that spend most
of the time needed to generate responses. If one subsystem takes 80% of this
time, then our choice is to try to enhance the performance of that subsystem,
instead of another subsystem that spends just 5% of the time. After enhancing
performance of one subsystem, another becomes the primary bottleneck. It is an
iterative process of defining quantitative parameters that define the acceptable
behavior of the system, benchmarking, identifying of bottlenecks, modifying, and



44 I. Jugo, D. Kermek, and A. Meštrović

benchmarking again. Performance measuring is a process of developing measur-
able indicators that can be systematically tracked for supervising advances in
service level goal fulfillment. With WAs, there is usually a discrepancy between
the required or expected, and real performance results. Performance levels can
address quality, quantity, time or service price. There are two basic approaches
to performance measuring: benchmarking and profiling. While benchmarking an-
swers the question how well the application works, profiling answers the question
why does the application have such performance. In this research we have used
both approaches to measure the overall performance, as well as to profile the
response time structure of individual requests. There are dozens of parameters
that can be measured while benchmarking a production or a staging version
of an application, which are selected based on identified bottleneck or perfor-
mance enhancement goals. It is usually not possible to test the application in
production environment, so we use test versions, or test part(s) of a cluster, and
use an artificial workload. Workload modeling is a very important part of the
performance benchmarking process. To achieve the correct measurements, the
artificial workload must mirror the sample of the real workload, i.e., live users
of the application. This can be achieved using different data sources: real time
user observations, planned interactions or log file analysis. Test workload im-
plementation must be as realistic as possible; otherwise, incorrect data may be
collected and wrong decisions could be made.

Peformance Enhancement Techniques. Over the years of Web development
and research, many different performance enhancement techniques (some more,
some less complex to implement) have been proposed and used in practice. As the
nature and complexity of the content offered online have changed [23], so have
the techniques for performance enhancement. During our preliminary research
of this subject we have identified many different techniques aimed at enhancing
the performance of multi-tier web application architecture. Some of them are
now obsolete; some are effective only with highly distributed systems; others are
effective only at most extreme workloads where even 1kB makes a difference;
etc. In our research we have analyzed those techniques that are currently most
widely used and can be implemented on most WAs in use today - 19 techniques
in total (as shown in Table 1). These techniques have been analyzed in the fol-
lowing manner: we defined the objective of each technique and the way in which
it tries to achieve its objective, described the implementation process and gave
an estimate of duration. Selected techniques have been sorted by the tier of WA
architecture that they affect. As expected, the lowest number of techniques affect
the business logic tier of application architecture. Although the business logic
of an application can cause the bottleneck effect, it is by far the most expen-
sive and complex problem to resolve which cannot be done by any enhancement
technique. If the business logic of the application appears to be the causing the
bottleneck, that is an indication of bad architecture decisions or implementation.
When functioning normally, code execution takes from 5-15% of total response



Analysis and Evaluation of Web Application Performance 45

Table 1. List of analyzed techniques

No code changes required Code changes required

T1 Caching objects using HTTP expires T2 Reducing number of HTTP requests
Compressing textual content Positioning of HTML content objects
JavaScript minification and obfuscation Reducing number of DNS requests
Reducing size of graphical objects Managing redirects
RDBMS conguration tuning Delayed content download

T3 Caching of interpreted PHP scripts Enhancing performance of core logic
Standalone PHP application server T4 Caching query results (Memcache)
Choice of web server Query and database optimization

T5 Web server conguration tuning Using stored procedures
T6 Caching pages using a proxy server

(round trip) time and as such it is not a particularly fruitful subsystem for
performance enhancement. According to [26], most of the response time is spent
on content delivery (up to 80%) and query execution (database lag), so most of
the analyzed techniques try to enhance the performance of these subsystems.

All the techniques displayed in Table 1 have been analyzed in detail. Due to
the limited scope of this paper, we omit a detailed analysis which can be found
in [13]. The analysis consists of 6 properties: 1) Tier - of the WA architecture
affected by the technique, 2) Idea - basic explanation of how the technique in-
creases performance, 3) Implementation - how is the technique implemented, 4)
Time - how long it took us (on average if not stated differently) to implement
this technique in the three applications used in this research. Implementation
time for these techniques will vary with respect to the size and complexity of
the application (e.g. amount of code, number of servers), 5) Expected results
- performance characteristics the technique affects and 6) Verification - how is
the performance gain measured. For the experimental part of our research we
have selected six techniques with various degrees of complexity and implemen-
tation time. Those techniques have been selected based on the assumption that
they will have the highest impact on the overall performance of WAs that have
been used in this research. A list of analyzed techniques, as well as those that
have been selected for experimental testing, can be seen in Table 1. Techniques
selected for the experimental part of our research are labeled with T1-T6.

4 Performance Testing and Analysis

In the experimental part of our research we used three open-source WAs of dif-
ferent types/categories: portal (Joomla), community (PhpBB), and e-commerce
(OsCommerce) to implement and test the effectiveness of performance enhance-
ment techniques.



46 I. Jugo, D. Kermek, and A. Meštrović

Fig. 2. Workload model for APP2 (Forum)

4.1 Preparation Phase

The first step of the research was to develop a realistic workload model (for
all three applications) that will be used in all performance tests. Test work-
loads were modeled using various approaches: server log analysis (requires shell
scripting to extract usage patterns), planned interactions (set by probability or



Analysis and Evaluation of Web Application Performance 47

importance, e.g. product browsing in an e-commerce application has the highest
probability) and real user auditing. More about these approaches can be found
in [17]. Figure 2 displays the workload model developed for load testing APP2.
All actions (HTTP requests) on the baseline will be executed each time the test
is performed, while others have a probability indicated on the connecting lines.
The test can be described in the following way: all users start at the home page,
most of them log on to the system, while some register and some (10%) will
remain as guests. About 40% of users will use the search option. Visitors then
look at one of the three popular pages (members list, who’s online and a users
profile). Then they look at three forums (two of them are most popular while
the third one is randomly selected) and look at one topic inside those forums.
When accessing the topic page some users start at the first post, others go di-
rectly to the last page and some select one of the pages of the topic. A third
of the visitors will post a message to the forum. Finally, they will go back to
the home page (check that there are no more new posts) and leave the page.
Workload models for other applications were developed in a similar fashion (ie.
most popular articles on the portal, featured products in the webshop). To im-
plement workload models and perform load tests the JMeter [3] tool was used.
With complex test models we simulated many requests from the individual user
which were randomized by timers (simulating pauses for reading, thinking and
form submissions) and random branching (between sets of actions). To ensure
randomization of URL requests, test data sources (TXT files) were prepared
from the real WA databases. These TXT files are constructed by selecting a
subset of primary key identifiers from the real application database and written
in a tab delimited format. JMeter then reads one line from the TXT file for test
run and adds identifiers to the generated HTTP requests (links). In this way we
can simulate the behavior of real users (reading about products, commenting

Fig. 3. JMeter aggregate graph



48 I. Jugo, D. Kermek, and A. Meštrović

products, adding products to cart, making purchases, etc.). After the workload
models were designed and implemented we tested them and verified that they
executed correctly (reading identifiers from TXT files, adding them to HTTP
requests, all response codes 200, database inserts correct, etc.). After the work-
load models were developed and implemented as load tests in JMeter we had to
find a way to log data about hardware utilization during the tests. We decided
to use Linux command line tool vmstat which proved to provide enough data
on a fine enough time scale with a small enough footprint on server CPU us-
age. The next step was preparing data visualizations for the analysis phase. The
first visualization was done by JMeter. After performing a test, JMeter displays
data about each performed request, such as response time and server response,
and calculates throughput and average response times. JMeter then offers to
generate various visualizations based on this data. In relation to our first mea-
suring constraint (90% of all requests under 2 seconds) we chose to generate an
aggregate graph (shown in Figure 3) that displays average response times for
each HTTP request (link) defined in the workload model. We have also used
Httpload [12] and ab [4] for fast tests and to verify the results recorded by
JMeter. The second visualization was done after the collected hardware utiliza-
tion data was processed using an awk script (to remove unnecessary columns
and calculate column averages) and handed over to a gnuplot script we devel-
oped for this research. Figure 4 demonstrates the output of our gnuplot script.
Duration of the test is shown on the X axis in each chart. This visualization

Fig. 4. Hardware utilization visualization (vmstat >awk >gnuplot)



Analysis and Evaluation of Web Application Performance 49

consists of six charts representing various hardware utilization metrics received
from vmstat. Some charts contain two data series. The top most graph on the
left hand side displays the number of processes waiting during the test (lower
number of processes waiting means lower response time), middle-left displays the
amount of free memory, and bottom-left the amount of memory used for cache
(more data in the cache means lower response time and higher throughput).
The top right hand side graph displays the number of writes on the disc (the
more files are cached, the less time is spent fetching data from the hard drive,
resulting in lower response time, higher throughput and lower CPU usage). The
middle-right graph contains two data sets: the number of interrupts and the
number of context switches (the higher these values are, the higher CPU usage
is, which results in higher response time and lower throughput). The bottom-
right graph displays CPU usage during the test and 2 lines: one is the 70% limit
set as one of the two main constraints, and the other is the calculated average
of CPU usage during the test. The calculated average for the duration of the
test had to be less than or equal to 70%. We increased the load on the test
server by increasing the number of simulated users in JMeter test plans, until
we came as close as possible to one or both limiting factors. Then we performed
the three official tests (following the procedure described the following section).
All tests were performed in an isolated LAN consisting of a load generator PC,
a 100Mbit passive switch and the testbed PC. The testbed PC had the following
hardware configuration: Asus IntelG43 Chipset, CPU: Intel Core2Duo 2.5Ghz,
1MB Cache, RAM 4GB DDR2, HDD WD 250GB SATA, OS Debian Linux.
Network bandwidth was not a bottleneck in any of the preparation tests so we
did not measure network usage.

4.2 Testing Phase

Before starting load tests we analyzed each application (file structure, number
of files included per request, number of graphical objects, measured individual
request response time). An important measure was the number of SQL queries
performed per request. While the first two applications performed 28 and 27
queries, the third one did 83, which was a probable bottleneck. The testing phase
consisted of 3 stages. First, we measured the initial performance of all three ap-
plications (after installation, using a test data set). Second, we implemented one
of the selected performance enhancement techniques and repeated the measure-
ment to determine the effect of the technique on performance (we performed this
test 3 times). Then the application was restored to its initial state. This pro-
cess was repeated for each technique. Third, we implemented all of the selected
techniques to all three WAs and made the final performance measurement to
determine final performance enhancement achieved using these techniques. In
total we performed over 200 load tests. When doing performance testing, ensur-
ing equal conditions in order to achieve the correctness of the acquired data is
obligatory and was integrated in our testing procedure:



50 I. Jugo, D. Kermek, and A. Meštrović

For APP1, APP2, APP3

For Technique T1 - Tn

Implement technique Tn

Run multiple tests until as close as possible to two

limiting factors // increment number of simulated users

Reset()

Restart server (clear memory, cache, etc.)

Run a warm-up test (prime caches)

Repeat 3 times

Run test and gather data (JMeter, vmstat)

Reset()

Remove implementation of technique Tn

Reset()

Reset database to initial state (remove inserts from the

previous test)

Reset server logs

We have performed each test three times for each implemented technique in order
to get a more robust measurement and reduce the possibility of errors. Aver-
age values have been calculated from these measurements and are displayed in
Table 2. Before starting our measurements, we set the throughput as the key
performance indicator. Our goal was to enhance it using various performance
enhancement techniques. The limiting factors were: a) average response
time for the 90% of requests had to be less than 2 seconds and b)
average CPU utilization had to be kept below 70%. First, we present
the results obtained from the initial testing, then the results for each technique,
and, lastly, the final testing results. These results display only the values of the
aforementioned key performance characteristics. During each benchmark we col-
lected data for 10 performance indicators which will be taken into consideration
later. Second, we display the overall results that confirm our hypotheses. Third,
we take into consideration all the data obtained from benchmarking and add
weights to each performance indicator in order to define the effectiveness of each
technique.

4.3 Results

The summary of our measurements is presented in Table 2. Let us first explain
the structure of the Table. The markings in the first column are: B (for Be-
ginning) - this row displays data about the initial performance of un-altered
applications (after installation); T1-T6 (for Technique) - these rows display data
about performance after each of the techniques was implemented individually; F
(for Final) displays data about the performance of applications after all six tech-
niques were implemented and finally C (for Comparison) displays data about the
performance of applications under the same workload used in the B row. For each
application there are three columns: The Response time (in miliseconds) is given



Analysis and Evaluation of Web Application Performance 51

Table 2. Overall load testing results

- APP1 Portal - APP2 Forum - APP3 Webshop

RT T U RT T U RT T U
(ms) (R/s) (%) (ms) (R/s) (%) (ms) (R/s) (%)

B 834 8,3 69 791 15,2 66 794 24 66
T1 1025 8,3 68 661 16,8 67 794 24 66
T2 816 8,4 67 789 16,4 67 857 27 67
T3 793 14,4 68 815 32,3 69 1218 35 67
T4 858 13,5 68 958 16,8 69 993 25 67
T5 823 8,6 67 527 15,8 66 726 25 69
T6 958 8,4 69 954 17 70 1670 25 66
F 614 24,9 68 671 38,5 68 1740 35 64
C 91 8,5 21 58 16 23 442 24,1 48

LEGEND: RT= Response time, T = Throughput, U = Utilization, ms =
miliseconds, R/s = Requests per second, CPU = average percent of CPU
utilisation (measured by vmstat).

in the first column, the Throughput (in requests/second) in the second, and the
CPU utilization (average, in %) in the third column. Although some techniques
appear to increase the average response time and do not increase the overall
throughput, they have a positive effect on other performance indicators that
were measured and will be discussed later on. Furthermore, the first technique
reduces individual response time which is not visible here, but can be observed
in individual response profiling using YSlow (a Firefox profiling add-on). It can
be seen that PHP script caching using APC (T3) clearly has the biggest im-
pact on the performance of all tested applications. Storing SQL query data in
memory cache using Memcache (T4) follows closely being the second most ef-
fective with two of three applications. We can also see that different techniques
have different effects on each application. The comparison row (C) demonstrates
the performance of applications under the same beginning workload, which was
the highest possible before the implementation of all performance enhancement
techniques. This data shows how the application would perform under normal
daily workload, after its performance has been enhanced using the 6 mentioned
techniques. In this row we can see that the throughput value has decreased sig-
nificantly. This is caused by the fact that JMeter uses the number of simulated
users/second (which is one of the arguments used when starting the load test)
to calculate throughput. To make the comparison we had to use the load that
was used to make the initial performance measurement for the WAs in their
original (un-enhanced) state. Therefore, the number of simulated users/second
was much smaller than it was for the final versions of WAs with all 6 techniques
implemented. The result of final load testing also demonstrates that combining
all of the techniques has a cumulative effect, because the maximum throughput
for APP1 and APP2 is higher than the contribution of any individual technique.
This was expected based on the effect of performance enhancement techniques



52 I. Jugo, D. Kermek, and A. Meštrović

Fig. 5. Final performance enhancement results

on other performance indicators we observed (which will be described in the fol-
lowing section). This was not the case with APP3, whose maximum throughput
was limited by database lag (due to the large number of database queries per
request (an architectural problem)). To visualize the performance improvements
we chose three key indicators - response time, throughput measured by num-
ber of requests/second (displayed in Column ”T” in Table 2) and throughput
measured by the number of users/second (not displayed in Table 2, but mea-
sured along with other indicators listed in Table 3). The differences between the
values of these indicators in the first(B) and final (F) measurements are given
in Figure 5 (a), (b) and c) respectively. The average response time for APP1
and APP2 was reduced even with a much higher workload while the throughput
was increased by almost three times. For APP3, our hypothesis was confirmed
(we achieved a 30% increase in throughput) but due to the very large number
of database queries performed for each request, the increase in throughput was
almost 2 times smaller than with APP1 and APP2. The increase in response
time is caused by the same problem but within the limit of 2 seconds average
for 90% of requests.

5 Calculating Technique Effectiveness

Although the results obtained show that it is possible to significantly enhance the
performance of various types of WAs by using just a small subset of performance
enhancement techniques, we were interested in defining an overall ”quality indi-
cator” of used techniques for each application type, and checking whether they
appear in the same order with all WAs. This would mean that there is a uniform
top list of techniques that can be implemented on any web application. To pre-
cisely determine the efficiency and effectiveness of a technique, we took all the
recorded indicators into consideration. The full list of indicators whose values
have been recorded during testing is displayed in Table 3. The most important
indicator (after the three previously mentioned) is the time needed to implement
the technique, which we recorded for each technique. Each indicator is given a



Analysis and Evaluation of Web Application Performance 53

Table 3. List of indicators with appointed weights

No Name Weight Proportional Acquired from

1 Response time 5 Inversely JMeter
2 Throughput (requests/sec) 5 Directly JMeter
3 Throughput (users/sec) 5 Directly JMeter
4 Utilization (cpu) 2 Inversely vmstat
5 Processes waiting 4 Inversely vmstat
6 RAM usage 2 Directly vmstat
7 Cache mem. usage 3 Directly vmstat
8 Disc usage (writes) 3 Inversely vmstat
9 Context switches 4 Inversely vmstat
10 Implementation time 5 Inversely Measured / Estimated

weight (range 1-5), marking its importance in the overall performance gains. The
weights were given according to our perception of each indicators importance in
the overall performance enhancement. The column titled ”Proportional” indi-
cates whether the measured indicator is directly or inversely proportional to the
technique effectiveness. Directly proportional means the higher the measured
value, the better, while inversely proportional means the lower the value, the
better, e.g. an increase of requests per second is directly proportional while the
implementation time is inversely proportional. We measured the time needed for
one developer to implement the technique (change server configuration, change
application configuration, change code of the application) in each application. To
determine the ”quality indicator” of a technique we used the following procedure
and equations.

For each WA (APP1, APP2, APP3)

For each technique (T1-T6)

For each of 10 performance indicators

Calculate the effect E of indicator n using the value of

indicator Vn in relation to the indicators maximum value change

(Cnmax) and minimum indicators value change (Cnmin). Depending on

whether the indicator is inversely proportional or directly

proportional formulas (1) or (2) are used (respectively)

En = Cnmax − Vn/Cnmax − Cnmin . (1)

En = Vn − Cnmin/Cnmax − Cnmin . (2)

Calculate indicator weight using (3)

Wi = Wn/Wmax . (3)



54 I. Jugo, D. Kermek, and A. Meštrović

Sum up to get the technique efficiency using (4)

∑
Ti =

10∑

i=1

Wi ∗ Ei . (4)

In this way, we calculated the top list of performance enhancement techniques
with respect to type/category of the WA. The results are displayed in Table
4. Technique 1 (Reducing number of HTTP requests) was not implemented on
APP 3 (marked ”N/A” in Table 4.) because there were not enough graphical
objects that could have been merged into a single larger one. It is clear that
the order (ranking) of techniques is different for each type of application. A few
important conclusions can be made from these calculations and will be used as
problem guidelines in our future work. First, we don’t have a framework that
defines which techniques to use for each type of WA. It is clear that the subset
of techniques to be used for performance enhancement must be tailored to the
specific application. Secondly, there are a number of factors that influence the
decisions about the techniques to be used such as: the goals of performance
enhancement (what aspect of performance are we trying to enhance), the type
of content the WA delivers (e.g. text, graphic objects, large files, video, etc.) and
the specific workload. In our future work we will repeat these measurements on
a larger number of (various types of) WAs and try to develop and verify such
a framework for identifying a subset of techniques that yields the best results
based on these factors.

Table 4. Overall ranking of performance enhancement techniques effectiveness

No Technque APP1 APP2 APP3

1 Reducing number of HTTP requests 5 3 N/A
2 Caching objects using HTTP Expires 3 1 3
3 Caching of interpreted PHP scripts (APC) 2 2 1
4 Caching query results (memcache) 1 6 4
5 Web server conguration tuning 6 5 4
6 Caching objects using proxy server (Squid) 4 6 2

6 Conclusion

Static websites are rapidly being replaced by web applications, and the ever in-
creasing number of Internet users demands more and more functionality while
expecting lower and lower response time. Web 2.0 has brought about a paradigm
shift which changed the structure of workload, moving it from read-intensive to
write-intensive. Therefore, the performance of WAs has become one of the focal
points of interest of both scientists and professionals in this field. The goal of
performance enhancement has to be set before any of the techniques are im-
plemented or tests performed. This goal depends on the problem perceived in



Analysis and Evaluation of Web Application Performance 55

the performance of an application and can be aimed at any aspect of its perfor-
mance (e.g. minimizing CPU or memory usage). In this research, our goal was
to maximize throughput and lower response time of different finished systems
(web applications) on the same hardware basis. Performance measurement itself
is a complex process that requires careful monitoring of the real workload, iden-
tification of bottlenecks, planning and modelling test workloads, identifying key
characteristics, goals, technical knowledge on all elements of the content creation
and delivery system, etc. We have proved that it is possible, in a controlled en-
vironment at least, to significantly enhance the performance of WAs using just
a small set of performance enhancement techniques with a total implementa-
tion time ranging from 10 to 50 working hours for applications running on one
multiple-role (e.g. web, proxy, application) server. We found that the results of
each technique vary from application to application and that further research is
needed to develop a generalised framework that would take into consideration
all the factors mentioned above (goals, content type, system architecture, etc.)
and suggest what techniques would be best suitable for a selected application.

References

1. Aberdeen Group: Application Performance Management,
http://www.aberdeen.com/Aberdeen-Library/5807/

RA-application-performance-management.aspx

2. Amza, C., Soundararajan, G., Cecchet, E.: Transparent Caching with strong con-
sistency in dynamic content web sites. ICS Boston (2005)

3. Apache JMeter, http://jakarta.apache.org/jmeter

4. ApacheBenchmarkTool,http://httpd.apache.org/docs/2.0/programs/ab.html
5. Bahn, H.: Web cache management based on the expected cost of web objects.

Information and Software Technology 47, 609–621 (2005)

6. Bogardi-Meszoly, A., Levendovszky, T.: A novel algorithm for performance predic-
tion of web-based software system. Performance Evaluation 68, 45–57 (2011)

7. Domenech, J., Pont, A., Sahuquillo, J., Gil, J.A.: A user-focused evaluation of
web prefetching algorithms. Journal of Computer Communications 30, 2213–2224
(2007)

8. Domenech, J., Pont, A., Sahuquillo, J., Gil, J.A.: Web prefetching performance
metrics: a survey. Performance Evaluation 63, 988–1004 (2006)

9. Georgakis, H.: User behavior modeling and content based speculative web page
prefetching. Data and Knowledge Engineering 59, 770–788 (2006)

10. Henderson, C.: Building Scalable Web Sites. OReilly, Sebastopol (2006)
11. Huang, Y., Hsu, J.: Mining web logs to improve hit ratios of prefetching and

caching. Knowledge-Based Systems 21, 149–169 (2008)

12. Http Load Tool, http://www.acme.com/software/httpload/

13. Jugo, I.: Analysis and evaluation of techniques for web application performance
enhancement, Master of Science Thesis, in Croatian (2010)

14. Khayari, R.: Design and evaluation of web proxies by leveraging self- similarity of
web traffic. Computer Networks 50, 1952–1973 (2006)

15. Lam, K., Ngan, C.: Temporal prefetching of dynamic web pages. Information Sys-
tems 31, 149–169 (2006)

http://www.aberdeen.com/Aberdeen-Library/5807/RA-application-performance-management.aspx
http://www.aberdeen.com/Aberdeen-Library/5807/RA-application-performance-management.aspx
http://jakarta.apache.org/jmeter
http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.acme.com/software/httpload/


56 I. Jugo, D. Kermek, and A. Meštrović

16. Liu, H., Keelj, V.: Combined mining of Web server logs and web contents for
classifying user navigation patterns and predicting users future requests. Data and
Knowledge Engineering 61, 304–330 (2007)

17. Meier, J.D., Farre, C., Banside, P., Barber, S., Rea, D.: Performance Testing Guid-
ance for Web Applications. Microsoft Press, Redmond (2007)

18. Na, Y.J., Leem, C.S., Ko, I.S.: ACASH: an adaptive web caching method based
on the heterogenity of web object and reference characteristics. Information Sci-
ences 176, 1695–1711 (2006)

19. Nagpurkar, P., et al.: Workload characterization of selected J2EE-based Web 2.0
applications. In: 4th International Symposium on Workload Characterization, pp.
109–118. IEEE Press, Seattle (2008)

20. Ohara, M., Nagpurkar, P., Ueda, Y., Ishizaki, K.: The Data-centricity of Web 2.0
Workloads and its impact on server performance. In: IEEE International Sympo-
sium on Performance Analysis of Systems and Software, pp. 133–142. IEEE Press,
Bostin (2009)

21. Pea-Ortiz, R., Sahuquillo, J., Pont, A., Gil, J.A.: Dweb model: Representing Web
2.0 dynamism. Computer Communications 32, 1118–1128 (2009)

22. Ravi, J., Yu, Z., Shi, W.: A survey on dynamic Web content generation and delivery
techniques. Network and Computer Applications 32, 943–960 (2009)

23. Sadre, R., Haverkort, B.R.: Changes in the web from 2000 to 2007. In: De Turck,
F., Kellerer, W., Kormentzas, G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 136–148.
Springer, Heidelberg (2008)

24. Sajeev, G., Sebastian, M.: Analyzing the Long Range Dependence and Object
Popularity in Evaluating the Performance of Web Caching. Information Technology
and Web Engineering 4(3), 25–37 (2009)

25. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: Analysis of Caching
and Replication Strategies for Web Applications. Internet Computing 11(1), 60–66
(2007)

26. Souders, S.: High Performance Web Sites. O’Reilly, Sebastopol (2007)


	Analysis and Evaluation of Web Application
Performance Enhancement Techniques

	1 Introduction
	2 Background
	3 Performance of Web Applications
	4 Performance Testing and Analysis
	4.1 Preparation Phase
	4.2 Testing Phase
	4.3 Results

	5 Calculating Technique Effectiveness
	6 Conclusion
	References




