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Abstract. Geometric Constraint Solving Problems (GCSP) are nowa-
days routinely investigated in geometric modeling. The 3D Pentahedron
problem is a GCSP defined by the lengths of its edges and the pla-
narity of its quadrilateral faces, yielding to an under-constrained system
of twelve equations in eighteen unknowns. In this work, we focus on
solving the 3D Pentahedron problem in a more robust and efficient way,
through a new formulation that reduces the underlying algebraic formu-
lation to a well-constrained system of three equations in three unknowns,
and avoids at the same time the use of placement rules that resolve the
under-constrained original formulation. We show that geometric con-
straints can be specified in many ways and that some formulations are
much better than others, because they are much smaller and they avoid
spurious degenerate solutions. Several experimentations showing a con-
siderable performance enhancement (×42) are reported in this paper to
consolidate our theoretical findings.

Keywords: Geometric Constraint Solving Problems, Parametrization,
3D Pentahedron.

1 Introduction

GCSPs have retained much of the researchers attention since several decades
[6,5,13]. This attention may be justified by the advances in computing systems,
in terms of both hardware capabilities and software facilities, which translated
into a growing need for new CAD/CAM techniques and opened new perspectives
for the implementation of researchers ideas. Despite the large number of existing
works, expressing and solving geometric constraint systems is still an active
research topic and much more effort has to be done in this direction.

This paper considers a particular GCSP problem: the 3D pentahedron. In this
work, we focus on the convex pentahedron, so the term pentahedron implicitly
refers to the convex version. To the best of our knowledge, no work has been done
in the literature to study this problem and this is the first work that deals with
the pentahedron problem. A resembling geometric problem is the octahedron
one, also called the Stewart platform. This problem is similar to the pentahedron
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in the fact that both of them are composed of six vertices in E
3. In a pioneering

work, Michelucci et al. [12] proposed a method that reduces the octahedron
problem into a non-linear system in two unknowns and two equations, through
the use of Cayley-Menger determinants.

In this work, we show that naive formulations of geometric constraint systems
result in spurious and degenerate solutions. Such irrelevant and parasite solutions
hinder the solving process, as they may form manifolds that slow down interval
solvers [4]. These solvers handle the spurious manifolds with small residual boxes.
However, in such boxes, it is not possible to prove the uniqueness of one regular
root, say for example with Newton-Kantorovich theorem [7].

The main contribution of our work consists in a new formulation of the 3D
pentahedron GCSP, that yields to a considerable reduction in the underlying
algebraic system complexity, and discards spurious roots inherent to the classical
formulation of the problem. This formulation does not only improve the solving
performance as our experimentations prove, but it also broadens the range of
interval solvers that can be used to solve the reduced system, compared to the
impossible usage cases of many solvers when it comes to solve the more complex
classical system formulation.

The rest of this paper is organized as follows: we first discuss the classical pen-
tahedron problem in section 2. Then, we present in detail our new formulation in
section 3. In section 4, we expose some relevant hints about our implementation,
provide a performance benchmark, and a comparative study of the results of
solving the pentahedron problem with the two formulations. Finally, we discuss
our future work directions.

2 The Classical 3D Pentahedron GCSP

A GCSP is composed of a set of geometric objects, whose placement must fulfill
a set of geometric constraints. The 3D pentahedron problem is composed of six
points: p1, p2, p3, q1, q2, and q3. Triples of points (p1, p2, p3) and (q1, q2, q3)
constitute the vertices of the two triangular facets of the pentahedron, while the
remaining three quadrilateral facets denoted as F1, F2, and F3 have respective
vertices (p2, p3, q3, q2), (p3, p1, q1, q3), and (p1, p2, q2, q1), cf. Fig. 1(a).

The classical formulation of the pentahedron problem defines twelve con-
straints: nine distances between all the pairs of adjacent points: d1 = d(p1, p2),
d2 = d(p1, p3), d3 = d(p2, p3), d4 = d(q1, q2), d5 = d(q1, q3), d6 = d(q2, q3),
d7 = d(p1, q1), d8 = d(p2, q2), d9 = d(p3, q3) and three coplanarities of the
quadrilateral facets: copl(F1), copl(F2), and copl(F3).

In the Euclidean three-dimensional space E3, if we put p1(x1, x2, x3), p2(x4, x5

, x6), p3(x7, x8, x9), q1(x10, x11, x12), q2(x13, x14, x15), and q3(x16, x17, x18), then
even if the classical formulation leads to a structurally well-defined system, at
the algebraic level, it implies an under-constrained system of twelve equations
(constraints) in eighteen unknowns (the points Cartesian coordinates), with an
infinite number of solutions. In GCSP literature, a common way to deal with
this situation (whenever possible) is to use placement rules that constraint the
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Fig. 1. (a) The general 3D pentahedron GCSP. (b) Adopted placement rules for a
well-constrained pentahedron system.

placement of a particular subset of the original system and transform it into a
well-constrained algebraic system without affecting the set of possible solutions,
thus guaranteeing that the later system is consistent [3]. The finitely many solu-
tions of the reduced system allow to obtain the infinitely many solutions of the
original under-constrained system, up to isometries (composition of rotations,
translations, and symmetries).

For the pentahedron, we adopt the three points placement rule illustrated
in Fig. 1(b) for fixing the coordinates of the three points p1, p2, and p3. Point
p1(0, 0, 0) is placed at the coordinates origin, point p2(x4, 0, 0) is placed at the
positive x-axis at a distance d1 from p1, and point p3(x7, x8, 0) is placed in the
xy-plane with positive y coordinate (x8 > 0), at respective distances d2 and
d3 from point p1, thus implying that x1 = x2 = x3 = x5 = x6 = x9 = 0.
If we denote by C1 to C12 the well-constrained pentahedron problem of twelve
equations in twelve unknowns is algebraically expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 : x4 − d1 = 0

C2 : x2
7 + x2

8 − d22 = 0

C3 : (x4 − x7)
2 + x2

8 − d23 = 0

C4 : (x10 − x13)
2 + (x11 − x14)

2 + (x12 − x15)
2 − d24 = 0

C5 : (x10 − x16)
2 + (x11 − x17)

2 + (x12 − x18)
2 − d25 = 0

C6 : (x13 − x16)
2 + (x14 − x17)

2 + (x15 − x18)
2 − d26 = 0

C7 : x2
10 + x2

11 + x2
12 − d27 = 0

C8 : (x4 − x13)
2 + x2

14 + x2
15 − d28 = 0

C9 : (x7 − x16)
2 + (x8 − x17)

2 + x2
18 − d29 = 0

C10 : x4(x8(x18 − x15) + x15x17 − x14x18)

− x7(x15x17 − x14x18) + x8(x15x16 − x13x18) = 0

C11 : x7(x11x18 − x12x17)− x8(x10x18 − x12x16) = 0

C12 : − x4(x12x14 − x11x15) = 0

(1)
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where the coplanarity constraints C10 to C12 are computed as 4×4 determinants,
which translate into null volumes of the tetrahedra corresponding to the four
vertices of each planar facet.

C10 :

∣
∣
∣
∣
∣
∣
∣
∣

x4 0 0 1
x7 x8 0 1
x16 x17 x18 1
x13 x14 x15 1

∣
∣
∣
∣
∣
∣
∣
∣

= 0, C11 :

∣
∣
∣
∣
∣
∣
∣
∣

x7 x8 0 1
0 0 0 1
x10 x11 x12 1
x16 x17 x18 1

∣
∣
∣
∣
∣
∣
∣
∣

= 0, C12 :

∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 1
x4 0 0 1
x13 x14 x15 1
x10 x11 x12 1

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (2)

The obtained system is well-constrained and has a finite number of solutions –
under mild assumptions. Though correct, the reduced system is awkward. First,
it may have spurious roots, where all vertices are coplanar. Indeed, consider
this problem in 2D (planar pentahedron). In this case, the planarity constraints
disappear and only nine 2D point-point distance constraints remain. It turns
out that this system is well-constrained: it is well known from rigidity theory
and Laman’s theorem that n 2D vertices are well-constrained by c = 2n − 3
distances [9], and no sub-system is over-constrained (e.g., no four vertices are
involved in more than 3 constraints). In our case, n = 6 and c = 2n − 3 = 9.
In consequence, this 2D problem is well-constrained: spurious roots are of finite
number. To get rid of such spurious system roots and even considerably reduce
the system complexity, we propose in the next section a new formulation for the
pentahedron problem.

3 New Formulation of the 3D Pentahedron Problem

One main observation about the well-constrained pentahedron system of twelve
unknowns given by the classical formulation is that it misses an essential prop-
erty, which is specific to non-degenerate solutions. This property consists in the
fact that the three supporting lines of the pentahedron edges [pjqj ], j = 1, 2, 3
must be either concurrent or parallel. Indeed, the supporting planes P1, P2, and
P3 of the respective three quadrilateral facets F1, F2, and F3 meet at a common
point named i, which may be located at infinity if the three intersection lines of
these supporting planes are parallel. Clearly, these intersection lines l1 = P2∩P3,
l2 = P3 ∩ P1, and l3 = P1 ∩ P2 pass through point i = P1 ∩ P2 ∩ P3 (Fig. 2(a)).

The aforementioned property of lines l1, l2, and l3 inspires our new formula-
tion, and suggests another way of expressing the constraints of the pentahedron
problem. Let us suppose that lines l1, l2, and l3 are concurrent in point i. The
“theorem of Al-Kashi”, also known as the “law of cosines”, states that given a
triangle (a, b, c) in E

2, if we denote by α, β, and γ the angles corresponding to
its respective vertices a, b, and c, and by A, B, and C the lengths of the sides
respectively opposite to these angles (cf. Fig. 2(b)), then the length of any side
of the triangle, say A, can be given in terms of the lengths of the two other
triangle sides and the cosine of the opposite angle as follows:

A2 = B2 + C2 − 2BC cosα. (3)
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Fig. 2. New formulation of the pentahedron problem. (a) Concurrent lines l1, l2, and
l3 intersect in point i. (b) Illustration of Al-Kashi theorem for triangles. (c) A 2D
view illustrating the application of Al-Kashi theorem for the new formulation of the
pentahedron.

The theorem of Al-Kashi generalizes the Pythagorean theorem for non-right
triangles. By considering the quadrangular facet F1 of the pentahedron, and
applying the Al-Kashi theorem in its supporting plane P1 on triangles (i, p2, p3)
and (i, q2, q3), cf. Fig. 2(c), we obtain:

d23 = y2
2 + y2

3 − 2y2y3cosα1 (4)

d26 = (y2 + d8)
2 + (y3 + d9)

2 − 2(y2 + d8)(y3 + d9)cosα1 (5)

where y2 = d(i, p2) and y3 = d(i, p3) represent the lengths of the two sides of
triangle (i, p2, p3) that are incident to point i, and α1 denotes the angle formed
by these sides in the plane P1. α1 also corresponds to the angle formed by the
two sides of triangle (i, q2, q3) that are incident to point i. In consequence, by
substituting the expression of cosα23 from Eq. 4 into Eq. 5, we get a nonlinear
equation in two unknowns y2, and y3, where d3 and d6 are constants. By pro-
ceeding analogously for the pairs of triangles (i, p3, p1) and (i, q3, q1) in the
plane P2 of facet F2, and (i, p1, p2) and (i, q1, q2) in the plane P3 of facet F3,
we finally obtain our new formulation of the pentahedron, as a system of only
three equations in three unknowns y1, y2, y3 as follows:

⎧
⎪⎪⎨

⎪⎪⎩

C′
1 : (y2

1 + y2
2 − d21)(y1 + d7)(y2 + d8)− y1y2((y1 + d7)

2 + (y2 + d8)
2 − d24) = 0

C′
2 : (y2

1 + y2
3 − d22)(y1 + d7)(y3 + d9)− y1y3((y1 + d7)

2 + (y3 + d9)
2 − d25) = 0

C′
3 : (y2

2 + y2
3 − d23)(y2 + d8)(y3 + d9)− y2y3((y2 + d8)

2 + (y3 + d9)
2 − d26) = 0

(6)

where y1 = d(i, p1). It is clear that the new formulation, by means of the the-
orem of Al-Kashi, led to a new system that is much simpler than the classical
one. Moreover, this new system has no spurious root. Another advantage of our
formulation consists in the avoidance of placement rules which are necessary in
the original formulation to make the system well-constrained.

Finally, the solutions of the original system, i.e., coordinates xk, k = 10, . . . , 18
of points q1, q2, and q3 (coordinates of points p1, p2, p3 are determined in the
classical formulation by placement rules) can be easily computed from the so-
lutions yj , j = 1, 2, 3 of the new formulation as follows: (1) the three distance
constraints yj = d(i, pj) constitute a system of three quadratic equations whose
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solution gives the coordinates of point i, and (2) the three proportionality for-
mulas �iqj = tj �ipj, j = 1, 2, 3 imply that �ipj �iqj = ‖ �ipj‖2tj , the later three equa-
tions give the values of the three parameters tj , which when substituted back
in the proportionality equations, give the coordinates of points qj , j = 1, 2, 3 as
qj = i+ tj(pj+ i). The detailed developments are omitted for the sake of brevity.

4 Experiments and Results

We implemented the two pentahedron formulations in C++. We used ALIAS-
C++ interval analysis library [11] for solving the underlying algebraic systems
of non-linear equations. Due to space limitations, we present only a subset of
our experimentations, by providing a summary of our performance comparisons,
without detailing other aspects. For the same reason, we also omit the presen-
tation of other benchmarks performed with other interval solvers. Our results
have been obtained on a 2.4 GHz Intel Core i7 computer, equipped with 16 GB
of RAM, and running a 32 bits linux version, with g++ 4.8.1.

In the current experiments, we used the general purpose interval solver of
ALIAS-C++, which is implemented in the function Solve General int(). Other
solving techniques that make use of the Jacobi and Hessian of the equations sys-
tem are provided by ALIAS-C++ [1].

First of all, we shall note that on a sample of randomly generated 3D pentahe-
dra systems, the general purpose solver of ALIAS-C++ failed to solve the twelve
equations of the classical formulation, because of the high memory requirements
of the default full bisection strategy combined with the number of unknowns
that exceeds ten. When using a single bisection strategy, the average running
time is 353.32 seconds. With the same systems sample and considering our new
formulation of three equations, the general solver successfully computed all the
solutions in an average time of 11.44 seconds with the full bisection method,
which shows an advantage of our formulation that makes it more practical be-
cause it is smaller. When using single bisection, the running time dropped to 8.43
seconds, which represents a performance gain of ×41.91 over classical formula-
tion. Several experiments revealed that when decreasing the number of maximal
boxes or nD intervals to be used with ALIAS-C++, our formulation is still solv-
able until a reasonable number, while the classical formulation becomes quickly
unfeasible for the same number of boxes, thus revealing the memory footprint
improvements of our formulation.

Our new formulation is limited in two aspects. First, it does not handle pen-
tahedra for which the lines l1, l2, and l3 are parallel. In such a case, the in-
tersection point i is located at infinity and such a system cannot be solved by
ALIAS-C++. Second, our current formulation supposes that intersection point
i of concurrent lines l1, l2, and l3 is reached towards the positive direction of
vector �qjpj (Fig. 2(c)). However, the opposite case may happen, as point i may
be located when moving along the negative direction of vector �qjpj . In such a
case, the correct formulation can be derived from the current one just by swap-
ping d4 and d1, d5 and d2, and d6 and d3 in Eq. 6. When using ALIAS-C++
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with the formulation of Eq. 6, the opposite formulation can be easily detected
as ALIAS-C++ computed negative values for distances y1, y2, and y3, which
implies to recompute them using the opposite formulation to get correct values.
Potential solutions for such concerns are given in the next section, in addition
to some ongoing and future work directions.

5 Conclusion and Future Work

In this work, we have presented a new formulation, based on the “theorem
of Al-Kashi”, for the reduction of the classical under-constrained 3D pentahe-
dron problem of twelve equations in eighteen unknowns, to an equivalent well-
constrained problem of only three equations in three unknowns. Our new for-
mulation has the advantage that it is more robust since the underlying system
of equations has no spurious roots, compared to the classical formulation of the
pentahedron. It also avoids the use of placement rules that reduce the classi-
cal problem into a well-constrained system. Our experimentations revealed that
the new formulation is more efficiently handled by some interval solvers. In ad-
dition, the classical formulation was impractical with some implementations of
interval solvers, due to the imposed limit on the maximum number of unknowns,
which reduces the range of usable solvers, contrary to our formulation which can
be handled by practically any solver, thanks to the drastically reduced number
of unknowns. The later statement implies that more efficient solvers can even
improve our running times.

As future work, we are addressing the two aforementioned limitations of our
work. Concerning the parallel lines configuration, we are investigating a tech-
nique whose principle consists in solving this problem in two steps: solving a
3D triangle problem, and then using the result for solving a pyramid problem
having a quadrilateral base. The later result gives the solution of the parallel
lines configuration through simple translations. We are also working to find a
unified formulation of the relative position of intersection point i w.r.t. penta-
hedron vertices pi and qi. We started investigating the use of Cayley-Manger
determinants [10,14] to develop a unique formulation that is independent from
the relative position of point i.

A second direction concerns the use of another property that may lead to an
interesting formulation of the pentahedron problem. This property states that
the supporting lines of the opposite edges [pjpk] and [qjqk] of each quadrilateral
facet, where j, k = 1, 2, 3, j �= k, meet in three points i1, i2, and i3 which are
necessarily collinear, because each of the aforementioned points is the intersec-
tion of a line lying on the supporting plane of points p1, p2, and p3, with a line
lying in the supporting plane of q1, q2, and q3, i.e., points i1, i2, and i3 lie on
the intersection line between the aforementioned two planes. This property is
known as the “Desargues’ theorem” [8,2], which holds both in 2D and in 3D.
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