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Abstract. Road detection is a significant task for the development of
intelligent vehicles as well as advanced driver assistance systems (ADAS).
For the past decade, many methods have been proposed. Among these
approaches, one of them uses log-chromaticity space based illumination
invariant grayscale image. However, errors in road detection could occur
due to over saturation or under saturation, especially in weak lighting sit-
uations. In this paper, a new approach is proposed. It combines fisheye
image information (in log-chromaticity space and in Lab color space)
and laser range finder (LRF) measurements. Firstly, road is coarsely
detected by a classifier based on the histogram of the illumination in-
variant grayscale image and a predefined road area. This fisheye image
based coarse road detection is then faced to LRF measurements in or-
der to detect eventual conflicts. Possible errors in coarse road detection
can then be highlighted. Finally, in case of detected conflicts, a refined
process based on Lab color space is carried out to rule out the errors.
Experimental results based on real road scenes show the effectiveness of
the proposed method.
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1 Introduction

For autonomous vehicles and Advanced Driver Assistance Systems (ADAS), an
important task is to keep the vehicle traveling in a safe region and prevent colli-
sions. To meet that requirement, the vehicle has to perceive the structure of the
environment around itself. The free road surface ahead of the vehicle has then
to be detected. In addition, a robust effective road detection system also plays
an important role in higher other tasks such as vehicle and pedestrian detection.
The derived free road space can effectively provide a significant contextual infor-
mation to reduce the region-of-interest for searching targets (cars,pedestians,...).

Road detection has been widely studied for past several years and many ap-
proaches have been proposed. According to the used equipments, methods can be
categorized into three types:1)Approaches based on LRF, 2)Approaches based
on camera, 3)Approaches based on both LRF and camera. In papers [1] and [2],
the authors proposed approaches based on 3D LRF data. The road information
is segmented from points cloud. The advantage of LRF is that it can provide
reliable range measurements that are not likely affected by the illumination.
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However, a limitation of this device is that it can’t offer visual information, for
example, traffic signals and object appearance. Yet, in many applications, such
as object recognition and tracking, visual information is crucial for autonomous
vehicle.

Compared to LRF, camera can offer substantive visual information in favor to
the recognition of on-road objects and traffic signals. Generally, road detection
based on vision is a challenging work for autonomous vehicle in outdoor scenario
due to the background changement with vehicle traveling and the presence of
many moving objects on the road whose movements are hard to predict. There-
fore, a variety of vision-based approaches have been developed by researchers. In
papers [3] and [4], stereo vision permits to compute the disparity map used to
acquire the road information. Both two methods need to find features correspon-
dence to calculate disparity map. False matching will lead to false detection. In
paper [5], a mixture of Gaussians in RGB color space and a Gaussian distribu-
tion are used for road modeling. But it is hard to decide the proper number of
Gaussians to use.

In our work, we aim at performing road detection using a monocular camera
with fisheye lens and a 2D LRF. Compared to classic lens, fisheye lens has greater
FOV providing more information about the scene. But the disadvantage is the
great distortion appearing in the images. Therefore, we propose to use color
space as feature space. In paper [6], the authors prove that the log-chromaticity
based illumination invariant grayscale image is more suitable than HSI (hue,
saturation, and intensity) (as done in paper [7]) for road detection. However, in
our research, we notice that using only illumination invariant image can cause
over saturation problem or under saturation problem in some cases such as
cloudy situation. So, in this paper, a novel approach combining log-chromaticity
space (as in paper [6]), Lab space [8] and LRF information is proposed. Firstly,
the road is coarsely detected by a classifier. Then a validation step using LRF
measurements is applied to the coarse road detection results to check if errors
seem to occur. A refined processing based on lab color space information is
applied to correct such possible errors. Otherwise, the coarse road detection
results output directly.

The rest of the paper is organized as follows: Section 2 describes the coarse
road detection based on illumination invariant image. Section 3 introduces how
Lab color feature and LRF are used to refine the coarse road detection results.
Section 4 shows real data experimental results and compares results of the pro-
posed approach against illumination invariant based algorithm [6]. Conclusions
are given in section 5.

2 Coarse Road Detection Based on Illumination Invariant
Image

Our approach is based on fisheye image whose middle part is the context of the
captured traffic scene and the remaining part is useless black area (see Fig.1(a)).
The useless area, having side effect on solving illumination invariant grayscale im-
age, is firstly removed (see Fig.1(b)). Then, the illumination invariant grayscale
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Fig. 1. (a) Fisheye image (b) The context part of fisheye image (c) The illumination
invariant grayscale image of the context part of fisheye image (d) The classification
result. To simplify computation, a fixed rectangle area containing the front part of the
vehicle is treated as non-road by default (d) The coarse road detection result

image (see Fig.1(c)) is computed by mapping the context part from RGB to
log-chromaticity space introduced by Finlayson et al.[9]. The ”road” pixels are
identified by a classifier based on the normalized histogram of the illumination
invariant grayscale image and a predefined road area in this image. As in paper
[10], the predefined road area is a fixed small region in front of vehicle in each
illumination invariant grayscale image. Sr indicates the fixed road area (repre-
sented as a blue rectangle in Fig.1(c)). Grmin and Grmax are respectively the
minimum and maximum gray level of illumination invariant image in Sr area.
Let denote Gi the gray level of i-th pixel in illumination invariant image and
λi the probability of this i-th pixel in the normalized histogram of illumination
invariant image. The classifier categorizing the illumination invariant grayscale
image into two classes ”road” and ”non-road” is built on the following rules:{

Grmin < Gi < Grmax(i = 1, 2, ..., N)
λi > λf (λf > 0)

(1)

where λf is a threshold which is set to 0.25 and N is the number of pixels in the
image. If the above two conditions are satisfied, the pixel is identified as road
and its value is set to 1. Otherwise, the i-th pixel is identified as non-road and
its value is set to 0. However, many scattered pieces of road pixels are produced
by the classification operation (see Fig.1(d)). To form a complete road binary
image, a flood-fill operation and connected-component algorithm are applied to
the binary image obtained by the classification algorithm. The flood-fill operation
is based on morphology and is used to fill holes in the image. The connected-
component algorithm is used to rule out the pixels which are not connected to
the region including the predefined road area Sr in 8-connected neighborhood.
An example of obtained coarse road binary image is given in Fig.1(e).

3 Refined Road Detection

3.1 Coherence Checking between Coarse Road Detection and LRF
Measurements

After the previous described steps, there may exist some errors in the coarse
road binary image (some pixels are falsely classified as road or non-road). To de-
tect and correct such errors, a validation procedure based on LRF scan and two
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consecutive coarse road binary images is proposed. A LRF is mounted horizon-
tally on the front of the vehicle (see Fig.4(a)), and we suppose that the extrinsic
parameters between the LRF and the fisheye camera are known. The laser scan
plane is almost parallel to the road surface. So if an object is detected in the
laser scan and the corresponding pixels are labeled as road in the coarse road
binary image, the validation step considers that an error occurs. However, this
condition is not sufficient if we consider the case corresponding to pixels that are
falsely classified as non-road. To deal with this case, two consecutive coarse road
binary frames are used. Suppose Fk is the current coarse road binary image,
and Fk−1 was the previous one. By experimentation, we find that the amount of
road pixels should remain relatively stable between two consecutive frames. So
if there exists dramatic change in the amount of road pixels between two consec-
utive frames, the validation step judges that there is an error in the computed
coarse road binary image. In summary about the above two cases, if one of the
following conditions is satisfied, an error is suspected, and the refined procedure
based on Lab space image will be applied:

⎧⎨
⎩

PLRF ∈ Pr

MFk
> (1 + β)MFk−1

MFk
< (1− β)MFk−1

(2)

where PLRF denotes a pixel in the coarse road binary image which corresponds
to a detected point in the LRF scan, Pr represents the set of road pixels in the
coarse road binary image, MFk

and MFk−1
are the amounts of the road pixels

in Fk and Fk−1 respectively. β is a threshold set manually. In experiments, it is
set to 0.1.

3.2 Refined Road Detection Procedure

The refined procedure uses two consecutive coarse road binary images as inputs
to compute the ”common image ” and the ”difference image”. Common image
and difference image are the images that contain respectively the overlapping
road parts and the different road parts of the two consecutive coarse road binary
images. The pixels classified falsely in the current coarse road binary image
are included in the difference image. So, our objective is to correct the false
pixels using the difference image. Firstly, the difference image and the road area
Sr are combined to extract the regions of interest (ROI) in the fisheye image
which contains the Sr area and the pixels that are classified differently in the
two consecutive coarse road binary images. The ROI in the fisheye image is then
converted from RGB space to Lab space to form the distance image. The distance
image will permit to correct the falsely classified pixels. At last, a combination
operation is implemented to form a refined road binary image. The framework
of the refined procedure is shown in Fig.2.

Distance Image Computation: The distance image is based on Euclidean
metric adopted in Lab space. In Lab color space, the average value of a chosen
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Fig. 2. Framework of refined procedure

Fig. 3. (a) Original fisheye image (b) The ROI extracted from fisheye image (c) The
distance image of the ROI (d) The image Is (e) The image In divided in 17 equal
intervals

reference area is computed and the distance between the pixels and this average is
calculated. Choosing the reference area is one of the key aspect when applying the
metric. In this paper, the road area Sr (already defined in coarse road detection
step) is adopted as reference area. The distance image is computed only for ROI
of the fisheye image. So, firstly, it is needed to filter the fisheye image to extract
these ROI. Let Pi represents the i-th pixel of the fisheye image, Ssr denote the set
of the pixels of area Sr and VPi denotes the value of Pi in the binary difference
image. The pixel of the fisheye image that satisfies any one of following the two
conditions are considered to be pixel of the ROI:

{
VPi = 1
Pi ∈ Ssr

i = (1, 2, ..., N) (3)

As illustrated in Fig.3(b), through this step, most of irrelevant pixels in the
original image are discarded. Then, the ROI image is converted from RGB space
to Lab space. Let (Ils, Ias, Ibs) denote the average value of Sr region in L,a,b
channels respectively. The distance image (see Fig.3(c)) is defined as follows:

dlab =
√
(Il − Ils)2 + (Ia − Ias)2 + (Ib − Ibs)2 (4)

where Il, Ia and Ib are the pixel Lab values. The pixel value in the distance
image represents the difference between itself and the average value of the road
area in Lab color space. It will help us to correct the falsely classified pixels
easily.

Correcting Falsely Classified Pixels: In the distance image, a classification
operation depending of the Sr area is implemented. Firstly, a pixel is checked
if its location is in the range of the road profile of the previous coarse road
binary image. The road profile is the outboard edge of the road area in the
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coarse road binary image. It seems it is not very exact to employ the road
profile of the previous coarse road binary image to represent the current one.
However, we actually find that there is no drastic change of road profile between
two consecutive frames. The side effect caused by the difference of road profile
of two consecutive frames can be reduced by extending the road profile of the
previous frame to both sides in horizontal direction. The width of the extension
is configured as 10 pixels (experimental data) which can reduce the side effect
well. If a pixel is located in the range of road profile and its value is less than a
predetermined upper limit threshold T1, it is reserved as road. Similarly, if the
pixel is outside the range and its value is less than a predetermined upper limit
threshold T2, it is also reserved as road. In other cases, the pixel is abandoned.
The thresholds T 1 and T2 are based on the average value Msr and standard
deviation stdsr of Sr area in the distance image. Then we have:

T = Msr + α ∗ stdsr (5)

where α is a parameter whose physical meaning is: how much difference is tol-
erated between the pixel and the reference area in the distance image. For T1,
α is set to 6.5, and for T2, α is set to 1. Finally, a new image denoted as Is (see
Fig.3(d)) is obtained.

Combination: After Is is computed, it is added to common image to form a
new image In. In is then divided into K equal intervals according to the height
of road area (see Fig.3(e)), and the first interval is scanned. Let h1 (green line in
Fig.3(e)) be the row which corresponds to the lower limit of road area in the first
interval, V1 and V2 (blue lines in Fig.3(e)) are the columns which correspond to
the left and right limits of road area in the first interval respectively. Let Lri and
Lci represent the row and column of i-th pixel of the current coarse road binary
image respectively. In the coarse road binary image, a road pixel is added to In
if its location satisfies the following two conditions: .{

V1 < Lci < V2

Lri < h1
(i = 1, 2...N) (6)

At last, the connect-component algorithm is applied again to remove the pixels
which are not connected to road and forms the current refined road binary image.

4 Experimentation

4.1 Set Up

In the experiment, the image sequence is captured by a fisheye camera. The
used Fujinon fisheye lens provides up to 185 degrees wide angle. The PL-B742
camera provides 1.3 megapixel (1280×1024) RGB image. The fish-eye camera is
mounted on the top of the laboratory vehicle to collect and record experimental
data in real road scenarios. The frame rate of the video is 15 fps. The used LRF
is a LMS211 providing up to 80 meters measurement range. The layout of these
devices is shown in Fig.4(a).
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4.2 Experiment Results

(a) (b)

Fig. 4. (a) The configuration of the used experimental platform (b) Experimental re-
sults. The images of the first row are original images, the second row are results ob-
tained using the approach proposed in paper [6], the third are the results obtained by
the proposed method in this paper.

Table 1. Performance of road detection considering method of [6] and proposed ap-
proach under three indicators: average accuracy of road detection (Acc), average of
type I error rate (Type I) and average of type II error rate (Type II)

Approach proposed Approach proposed
in this paper in paper [6]

Sequence Acc Type I Type II Nimage Acc Type I Type II
(number of images)

1 (56) 0.9309 0.0038 0.0254 12 0.9083 0.0055 0.0281

2 (128) 0.9028 0.0036 0.0532 87 0.8398 0.0062 0.0831

3 (111) 0.9013 0.0067 0.0247 20 0.8943 0.0073 0.0250

4 (41) 0.8594 0.0063 0.0593 13 0.8447 0.0072 0.0611

The experimental data are composed of 336 images from four different sequences,
considering different road environments. To reduce the computational time, all
images are down sampled to 640 × 512 pixels resolution. The ground truth is
labelled manually. The proposed algorithm is compared with the approach pro-
posed in [6] based only on illumination invariant. For quantitative evaluation,
three indicators are calculated: 1) Accuracy 2) Type I error rate 3) Type II error
rate. The type I error evaluates the cases: when ”true road” pixels are incorrectly
rejected. The type II error evaluates the cases: when ”non-road” pixel is failed
to be rejected. The results are shown in Table I. Nimage denotes the number of
images refined in the sequence. We notice that the most significant improvement
is obtained for the sequence 2, for which the percentage of refined images is the
greater. Meanwhile, it is remarkable that the proposed approach outperforms
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the only illuminant-invariant based algorithm for each indicator. Fig.4(b) shows
some experimental results obtained by the approach proposed in this paper and
approach proposed in paper [6]. For the first example (first column of fig.4(b)),
we can note that the pixels falsely classify as road with approach of paper [6]
are well classified as non-road with our approach. For the second image (column
2 of fig.4(b)), we remark that the error that the pixels are classified falsely as
non-road with method in paper [6] doesn’t appear in our outcome. All above
results prove that the combination of various information of image can permit
to improve road detection.

5 Conclusion

We proposed an efficient algorithm for road detection in outdoor scenarios. The
approach combines Lab color space information, illumination invariant image
and LRF scan to extract road area. The experimental results show that the
combination of various color space information in image and LRF measurements
can permit to achieve some improvements for road detection. For further study,
we are trying to integrate other color spaces into the algorithm to reach higher
accuracy result for road detection.
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