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Abstract. We propose an efficient solution for preserving the motion
boundaries in variational optical flow methods. This is a key problem
of recent TV-L1 methods, which typically create rounded effects at flow
edges. A simple strategy to overcome this problem consists in inhibit-
ing the smoothing at high image gradients. However, depending on the
strength of the mitigating function, this solution may derive in an ill-
posed formulation. Therefore, this type of approaches is prone to produce
instabilities in the estimation of the flow fields. In this work, we modify
this strategy to avoid this inconvenience. Then, we show that it provides
very good results with the advantage that it yields an unconditionally
stable scheme. In the experimental results, we present a detailed study
and comparison between the different alternatives.

Keywords: Optical Flow, Motion Estimation, TV-L1, Variational
Method, Discontinuity-preserving.

1 Introduction

One of the main problems in variational optical flow methods is the preservation
of flow discontinuities. Typically, the solution in these methods is obtained as
the minimization of a continuous functional, which makes it difficult to separate
different moving regions. In particular, TV-L1 methods are successful in creating
piecewise-smooth motion fields. However, these approaches generate rounded
shapes near the borders of the objects. In order to avoid these problems, some
methods have introduced decreasing functions in order to stop the diffusion at
image boundaries. This idea originally comes from [1] and is often used in many
recent methods, such as in [13] or [14].

The most important problem of these inhomogeneous diffusion schemes is that
they easily produce instabilities in the computed flow fields. Depending on the
value of the parameters, the method may turn ill-posed. We can observe this sit-
uation in Fig. 1: depending on the parameters, we may obtain smooth solutions,
similar to the Brox et al. method [5], or solutions with well-preserved discon-
tinuities. In the last image, instabilities appear in the form of blobs with large
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Fig. 1. Instability problem. Top row: the Yosemite with clouds sequence; the ground
truth; and the solution obtained with the method of Brox et al. Bottom row: the color
scheme used to represent the motion fields; example of well-preserved discontinuities
in the optical flow; and instabilities due to wrong parameter setting.

flow values. Therefore, the problem is to determine the value of the parameter
that yields accurate results without introducing instabilities.

The decreasing function normally depends on the gradient of the image and
a parameter that determines its decay rate. This parameter should be chosen
carefully in order to avoid instabilities. Many state-of-the-art methods use a
default value, which is typically very conservative in practice. In [9], the authors
analyse this strategy and show that it provides promising results, but it is difficult
to guess the correct configuration.

The aim of this work is to overcome these drawbacks. We propose a simple and
efficient mechanism to avoid the ill-posed problem. We attain this by introducing
a small constant that assures a minimum isotropic diffusion. This simple strategy
turns the method very stable at the same time that it preserves the good features
of the former approach.

In the experimental results, we analyse and compare both strategies. We show
that this strategy outperforms the basic scheme. It provides similar results when
the parameter is correctly chosen and still remains stable for a large range of
values. Thus, we obtain a more reliable method that also allows preserving the
flow discontinuities.

Related Work: Since the seminal work of Horn and Schunck [7], many works
have dealt with the problem of discontinuities in the flow field. This method
hardly preserves the motion boundaries, as shown in the online work [8]. One
of the former approaches is due to Nagel and Enkelman [10]. In this case, the
regularization process is steered by a diffusion tensor that depends on the im-
age gradient. It diffuses anisotropically at image contours and isotropically in
homogeneous regions. Black and Anandan [4] introduced robust functionals in
the regularization term, which showed to produce piecewise motion fields. In a



Efficient Mechanism for Discontinuity Preserving in Optical Flow Methods 427

similar way, Cohen [6] proposed to use a TV scheme in the regularization strat-
egy, producing similar results. The method by Alvarez et al. [1] introduced a
decreasing function to inhibit the smoothing at image contours. The generaliza-
tion in the use of L1 functionals was proposed in [5] and [15]. These two methods
have been analysed in [11] and [12], respectively. The idea of using decreasing
functions in TV-L1 approaches is simple and is often used in many recent works,
like in [13] or [14].

In Sect. 2, we explain our optical flow model. Then, in Sect. 3, we minimize the
energy functional and explain the numerical details for its implementation. The
experimental results, in Sect. 4, show the performance of the different methods
and the benefits of the new proposal. Finally, the conclusions in Sect. 5.

2 Optical Flow Model

Given two images in a sequence, I1, I2 : Ω ⊂ R
2 → R, the optical flow, w =

(u(x), v(x))T , establishes the correspondences between the pixels of both images,
with x = (x, y)T ∈ Ω. Our energy model relies on the Brox et al. model [5] and
reads as:

E(w) =

∫
Ω

Ψ
(
(I2(x+w)− I1(x))

2
)
dx

+ γ

∫

Ω

Ψ
(
|∇I2(x+w)−∇I1(x)|2

)
dx

+ α

∫

Ω

Φ (∇I1,∇w) dx, (1)

with Ψ(s2) =
√
s2 + ε2 and ε := 0.001 a small constant. The behavior of the

smoothing strategy depends on Φ(·). Some typical examples are the follow-

ing: Horn and Schunck [7], Φ (∇I1,∇w) = |∇u|2 + |∇v|2; Alvarez et al. [1],

Φ (∇I1,∇w) = f(∇I1)
(
|∇u|2 + |∇v|2

)
; Brox et al., Φ (∇I1,∇w) = Ψ(|∇u|2 +

|∇v|2); or Xu et al. [14], Φ (∇I1,∇w) = f(∇I1) (|∇u|+ |∇v|).
f(·) is a decreasing function that inhibits the regularization at object contours.

Some alternatives are

f (∇I1) = e−λ|∇I1|κ , f (∇I1) =
1

1 + λ |∇I1|2
. (2)

We will be using the exponential function in our experiments. In [9], the
authors analyse its behavior with respect to λ and κ. After their experimental
results, we may conclude that κ := 1 is a good compromise between stability
and accuracy.

Using the continuous L1 functional, our smoothing function can be expressed

as Φ (∇I1,∇w) = Ψ
(
f(∇I1)

(
|∇u|2 + |∇v|2

)
+ ε2

)
. The problem with this

functional is that it easily produces instabilities. This problem arises because
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f(·) vanishes for large values of the gradient of the image, cancelling the regu-
larization term. A simple and efficient mechanism, to overcome this problem, is
to introduce a small constant, β, in order to avoid this cancellation. This can be
easily achieved with f(∇I1) = e−λ|∇I1| + β, as

Φ (∇I1,∇w) = Ψ
((

e−λ|∇I1| + β
)(

|∇u|2 + |∇v|2
))

, (3)

with β := 0.0001. A similar strategy has been used in [2], but the authors use
separate derivatives for each component of the optical flow.

3 Minimizing the Energy Functional

The minimum of the energy functional (1) can be found by solving the associated
Euler-Lagrange equations, which are given by

0 =Ψ ′
D · (I2(x+w)− I1(x)) · I2,x(x+w)

+ γ Ψ ′
G · ((I2,x(x+w)− I1,x(x)) · I2,xx(x+w)

+ (I2,y(x+w)− I1,y(x)) · I2,xy(x+w))

− α div (Φ′ · f(∇I1)∇u) ,

0 =Ψ ′
D · (I2(x+w)− I1(x)) · I2,y(x+w)

+ γ Ψ ′
G · ((I2,x(x+w)− I1,x(x)) · I2,xy(x +w)

+ (I2,y(x+w)− I1,y(x)) · I2,yy(x+w))

− α div(Ψ ′
S · f(∇I1)∇v), (4)

with Ψ ′
D := Ψ ′

(
(I2(x+w)− I1(x))

2
)
, Ψ ′

G := Ψ ′
(
|∇I2(x+w)−∇I1(x)|2

)
and

Ψ ′
S := Ψ ′

(
f(∇I1)

(
|∇u|2 + |∇v|2

))
. The partial derivatives of the images are

denoted by subscripts.
In order to solve this system, we discretize the equations using centered finite

differences. Then, the system of equations is solved by means of an iterative
approximation, such as the SOR method. Due to the nonlinear nature of these
formulas, the resolution of these equations requires two fixed point iterations,
in order to converge to a steady state. The warping of I2 is approximated using
Taylor series and bicubic interpolation.

These equations are embedded in a multiscale strategy that allows recovering
large displacements. Starting from the coarsest scale, we obtain a solution to the
above system, and then this solution is progressively refined in the finer scales.
Details on the discretization of this scheme are given in [5] or, more extensively,
in [12].

4 Experimental Results

In this section we compare the results of the Brox et al. method, f (∇I1) = 1, the
basic exponential function, f (∇I1) = e−λ|∇I1|, and the new proposal, f (∇I1) =
e−λ|∇I1| + β. The parameters of these experiments are set according to [12].
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Fig. 2. Star sequence. First row: the original image, the ground truth and the optical
flow obtained with the Brox et al. method. Second row: results for f (∇I1) = e−λ|∇I1|

and f (∇I1) = e−λ|∇I1| + β, with β := 0.00001 and β := 0.001, respectively.

Fig. 3. Hydrangea sequence. First row: the original image, the ground truth and the
solution of the Brox et al. method. Second row: results for f (∇I1) = e−λ|∇I1| and
f (∇I1) = e−λ|∇I1| + β, with β := 0.00001 and β := 0.0001.

Figure 2 shows an example of a black star that moves fifteen pixels horizon-
tally. The Brox et al. method cannot completely stop the diffusion at disconti-
nuities. In fact, we can see that it has many difficulties to deal with this type of
geometric shapes. The solution of the exponential method is much better, espe-
cially at motion boundaries. However, if the parameter is not correctly chosen,
some instabilities appear at the star contours. This problem disappears when we
use f (∇I1) = e−λ|∇I1| + β. The small constant avoids instabilities at the same
time that it preserves discontinuities.

In Figs. 3 and 4, we show the results for Hydrangea and Grove2 sequences,
from the Middlebury benchmark database [3]. We can observe that the results
of the basic exponential method are promising, since the preservation of discon-
tinuities is accurate. Nevertheless, the number of outliers is important. These
are removed using the β constant.
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Fig. 4. Grove2 sequence. First row: the original image, the ground truth and the
solution of the Brox et al. method. Second row: results for f (∇I1) = e−λ|∇I1| and
f (∇I1) = e−λ|∇I1| + β, with β := 0.00001 and β := 0.0001.
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Fig. 5. AAE evolution for the Star and Yosemite sequences (top row), and Grove2
and Hydrangea (bottom row)

The decreasing function allows segmenting the shape of the geometric se-
quence from the background motion. It provides very good results for both
convex and concave shapes in general. However, we appreciate instabilities at
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Table 1. AAE results for the Star, Yosemite with clouds and Middlebury sequences

Sequence Brox et al. f (∇I1) = e−λ|∇I1| f (∇I1) = e−λ|∇I1| + β

Star 2.919o 0.271o 0.222o

Yosemite with clouds 2.367o 1.977o 1.976o

Hydrangea 2.076o 2.035o 2.027o

Grove2 2.198o 2.109o 2.111o

the contour of the geometric images and in many small places of the Middlebury
dataset. In this method, it is difficult to find an optimal value for λ. Using the
new proposal effectively eliminates the instabilities.

In Fig. 5, we compare the Average Angular Error (AAE) evolution for both
approaches. The two variants significantly improve the outcome of the Brox et al.
method (λ := 0). The evolution is very similar at the beginning in both methods.
However, when λ increases, the pure exponential method becomes unstable.
In contrast, the other approach have a smoother evolution, yielding very good
results for larger values of λ. We even observe that using the small isotropic
constant provides slightly better results for the Star and Grove2 sequences.

Table 1 shows the best AAE results for the Star, Yosemite with clouds and
Middlebury sequences. We observe an important improvement in the Star and
Yosemite sequences with respect to the Brox et al. method. The results for the
Middlebury sequences also improve. The solutions of both exponential methods
are similar because the minimum error is usually given for the same configura-
tion (see the graphics). Nevertheless, the second alternative does not produce
instabilities and is more stable for a large range of λ values.

5 Conclusion

We proposed an efficient strategy for preserving the motion boundaries in varia-
tional optical flow methods. The use of decreasing functions with TV approaches
allows mitigating the diffusion at contours. We have shown that the instability
problems are effectively removed with our proposal at the same time that we
obtain very good accuracy at motion boundaries. Another advantage of these
strategies is that they are very easy to implement from the basic Brox et al.
method. Furthermore, they provide much better results for simple sequences,
such as the geometric test images, where the dominant gradient clearly separates
the different motions. Eliminating the instability problems turns this method
very interesting for real applications.
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