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Abstract. A new framework to cluster images based on Genetic Algorithms
(GAs) is proposed. The image database is represented as a weighted graph where
nodes correspond to images and an edge between two images exists if they are
sufficiently similar. The edge weight expresses the level of similarity of the fea-
ture vectors, describing color and texture content, associated with images. The
image graph is then clustered by applying a genetic algorithm that divides it in
groups of nodes connected by many edges with high weight, by employing as fit-
ness function the concept of weighted modularity. Results on a well-known image
database show that the genetic approach is able to find a partitioning in groups of
effectively similar images.

Keywords: Genetic Algorithms, image clustering, graph partitioning, content
based image retrieval, database summarization.

1 Introduction

Content-based image retrieval (CBIR) is an active research field whose aim is to search
for digital images in large image databases. The term content means that a CBIR system
analyzes an image with respect to an abstract representation derived from the image,
such as color, texture, shape. Initial CBIR systems were based on a search-by-query
strategy, i.e. a user gives a query image and the system exhaustively compares this
image with those contained in the database to obtain the most similar. In the last few
years, however, image repositories have dramatically increased in size and contain a
huge number of images, thus approaches to speed up retrieval are necessary and de-
sirable. Grouping images into categories and extracting salient characteristics for each
group to define a cluster representative, is a methodology proposed by many researchers
to reduce computing time requirements. In fact, since the query image is compared with
the cluster representatives, and generally, the number of obtained clusters is much lower
than the number of images contained in the database, the response times can dramati-
cally decrease.

Several methods have been proposed for clustering images. Approaches can roughly
be classified into three main categories [3] : paire-wise-distance-based, optimization of
a quality measure that assesses clustering result, and statistical modeling. Hierarchical
clustering and spectral graph partitioning are representatives of the former category.
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These methods can represent images with complex formulations, however they need
to compute the distance between each pair of images. The very popular K-means clus-
tering method and its variations belong to the second category since they optimize the
distance of an image to a centroid vector, deemed the cluster representative. To deter-
mine the best centroid is not an easy task, furthermore the number of clusters must be
given as input parameter. Statistical approaches model a cluster as a distribution and the
database of images as mixture of these distributions.

In this paper, a new approch to cluster images, based on graph partitioning through
Genetic Algorithms (GAs) [6], named GA-IC (Genetic Algorithms Image Clustering),
is proposed. The image database is represented as a weighted graph where nodes cor-
respond to images and an edge between two images exists if they are similar. The edge
weight expresses the level of similarity of the feature vectors associated with images. A
feature vector characterizes an image by capturing color and texture content. The graph
of images is then clustered by applying a genetic algorithm that divides the graph in
groups of nodes connected by many edges with high weight, by employing as fitness
function the concept of weighted modularity [5]. It is worth to note that, although many
evolutionary-based clustering approaches have been proposed, here we introduce a ge-
netic algorithm to deal with the image database clustering problem, which is not always
well solvable by traditional clustering techniques.

The paper is organized as follows. In the next section the problem of image clus-
tering is defined, together with a description of the adopted feature selection method
and similarity measure. Section 3 describes the algorithm, the employed fitness func-
tion, the genetic representation and operators. Section 4 presents the experiments, along
with the evaluation measure used to assess the quality of the results. Finally, section 5
summarizes the approach and discusses future extensions.

2 Graph-Based Image Clustering

An image database D B can be represented as a weighted graph G = (V, E, w), where
V' is the set of the nodes, E' is the set of edges in the graph, and w : F — Ris a
function that assigns a value to graph edges. Each node corresponds to an image in the
image database, and an edge (¢, j) connects two images ¢ and j, provided that these
two images are sufficiently similar. The weight w(i, j) associated with an edge (i, j)
expresses the similarity value between images ¢ and j. Let W be the adjacency weight
matrix of the graph G. Thus W;; contains the weight w(3, j) if the nodes ¢ and j are
similar, zero otherwise. Image clustering can thus be realized by partitioning the graph
G in groups of densely connected nodes where edges have high weights. As pointed
out in [3], any CBIR method has to deal with two crucial problems: the mathematical
description of an image and the similarity measure used to compute how much similar
two images are. In the next section we describe which features have been adopted to
represent an image, and the similarity measure we employed to compute how much
alike two images are.
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2.1 Feature Description

The extraction and choice of which features represent at best an image is a long de-
bated problem. In this paper we used features based on co-occurrence matrices and
color centiles proposed in [7] and experimentally validated by Bianconi et al. [2] on
a test suite of images. This is adopted to consider not only the grayscale textural but
also the color channel content of the images. Each image is represented by a feature
vector of numerical values describing both color and texture image content. The feature
vector consists of fourteen different values: five are monochrome rotationally-invariant
co-occurrence features, and nine are RGB centiles features. The five co-occurrence fea-
tures represent the texture image content and the nine RGB centiles features codify the
color image content [2]. The co-occurrence matrix P is created from the gray scale
version of the image. It is composed of 256 rows and columns, which is the number of
gray levels. Given an offset vector d = (d,d,), a single element P(¢, j) of P corre-
sponds to the number of occurrences of the gray level values ¢ and j, whose distance
to each other is d inside the image plan. To guarantee a co-occurrence matrix which
is invariant to rotation, the average of the number of occurrences computed at differ-
ent offset vectors for each position P(i, j) is considered. After that, the co-occurrence
matrix P is normalized such that the overall sum of its elements is 1. Starting from
the normalized P, a set of five features is computed: energy (E), contrast (Con), cor-
relation (Cor), homogeneity (Hom) and entropy (H). The energy E is the sum of the
squared elements in P: B = 37, P(i, 4)2. The contrast Con measures the intensity
difference between a pixel and its neighbor in the image: Con = 37, . |i — il PG, 7).
The correlation C'or expresses how a pixel is correlated to its neighbor in the image:
Cor =3, (F“”(Z;?)P(i‘j), where (p;, 0;) are respectively the average and the stan-
dard deviation in the 7 (row) direction and (u;, ;) are respectively the average and the
standard deviation in the j (column) direction inside P. The homogeneity Hom is the
closeness of the distribution of elements in P to the diagonal: Hom = 3, . 1i<‘2j ;'I . The
entropy H measures the randomness of P: H = — 3=, 3>~ P(i, j)log2 P (i, j). In order to
obtain the RGB centiles features, the red (R), green (G) and blue (B) image histograms
are computed. Each histogram contains the frequency of the image pixels at different
intensity values in the given red, green or blue channel. After that, a cumulative channel
histogram is derived from each channel histogram. In the cumulative histogram, each
bin is the sum of all lower bins of the channel histogram. Centiles are computed from
the normalized cumulative channel histograms C;(v), where i represents the channel,
by detecting the intensity values v that split the cumulative channel histogram vertically
into different parts. For example, the 20% centile of green channel corresponds to the
intensity value of the green channel such that the 20% of all the pixels in the image
is darker than this value. This intensity value is considered as a feature value. Three
centile values are obtained from each cumulative channel histogram [7].

2.2 Similarity Computation

In order to determine the graph weights, we first need to compute the distance between
two images. To this end, we used the L; norm because, as pointed out in [3], it is fast
and one of the most popular measures adopted in image retrieval. Thus, given the fea-
ture vectors I = [i1,i2,...,1,) and J = [j1, j2, ..., jn] associated with images i and
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J, the distance between ¢ and j is computed as: d;; = > ;_, |ix — jx|. The similarity
w(i, j) between images 4 and j is then obtained by applying the formula proposed by
Gdalyahu et al. in [4]: w(i, j) = e~%.3/%”), where a is a local scale parameter defined
by Gdalyahu et al. as the average distance to the second nearest neighbor. However,
we propose to compute this scale parameter by using the distance of each image to
its first nearest neighbor. The concept of first nearest neighbors, and more generally of
h-nearest neighbors of an image 4, analogously to [1] in the context of image segmen-
tation, is introduced as follows.
dr =A{d .. dh |d <, <dY ol ={jdi; €dlt (1)
Given a generic image 4 in the graph, let d” , be the first h lowest distance values
between image ¢ and all the other images in the database. The h nearest neighbors of
i, denoted by nnlt, are defined as the set of those images having minimum distance
from i, i.e. maximum similarity with 4. It is worth to note that the cardinality of nn/
can be greater than h since there can be more that one image j such that d; ; € d”,,..
The local scale parameter a is then computed. To obtain a sparse representation of the
images contained in the dataset, we connect two images ¢ and j only if j is among the
h-nearest neighbors of ¢,

2
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e”of ifjennti#fj

w; 5 = a

dt
- 2tk 2)

0 otherwise.

Thus, if the distance between two images ¢ and j is high, the corresponding weight
w(i, j) between these images will be low. On the other hand, if the value of distance
is sufficiently weak, this happens when images are similar to each other in color and
texture, the weight between the two images will be very high.

(a) African (b) Beaches (C) Horses (d) African (e) Beaches (f) Horses

Fig. 1. Six example images from three semantic classes: African people and villages, Beaches,
and Horses

As an example, consider the image database DB composed of the six images in
Figure 1. Each image is transformed into a 14-dimension feature vector. For example,
the first image feature representation is I; =[0.001 0.001 0.99 0.37 0.76 0.25 0.42
0.61 0.17 0.33 0.47 0.16 0.28 0.43]. The L; distance between each couple of image
features is computed and then the distance matrix D is calculated, as reported in Figure
2 (a). Fixed a h-neighborhood of 3, the nearest neighbors with the first 3 lowest distance
values are computed for each image (Figure 2 (b)). Then, the a parameter is derived as
the average distance of each image to its first nearest neighbor, as computed in the D
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Fig. 2. Example of graph-based representation of an image database

matrix, i.e. a = (0.47+0.95+1.154+0.474+0.95+1.15)/6 = 0.8563. The similarity
values are calculated as in Formula 2 from the corresponding distance values of the
3-nearest neighbors for each image row ¢ in D. Finally, the similarity matrix W (Figure
2 (a)), is derived, and the corresponding graph in Figure 2 (c), where each node is an
image in DB, is built from W, i.e. W is the weighted adjacency matrix of this graph.

3 Algorithm

In this section a description of the algorithm GA-IC is reported, along with the rep-
resentation we used and the variation operators we adopted. The genetic algorithm
uses the locus-based adjacency representation proposed in [8]. In this graph-based rep-
resentation an individual of the population consists of n genes g1, ..., g, and each
gene can assume values in the range {1,...,n}. Genes represent nodes of the graph
G = (V, E,w), and a value j assigned to the ith gene is interpreted as a link between
images ¢ and j. The initialization process assigns to each node one of its neighboring
images at random. The kind of crossover operator we adopted is uniform crossover.
The mutation operator randomly assigns to a node i, chosen in a random way, one of
its neighbors. To better understand the genetic operators, consider the graph reported
in Figure 2(c) built from the six images depicted in Figure 1. Figure 3(a) shows an ex-
ample of individual initialized at random in which node 1 is connected with node 6,
node 2 with node 3, and so on. This initialization corresponds to the division of the six
images in 3 clusters composed by {1,6}, {2,3}, and {4,5}. Uniform crossover (Figure
3(b)) considers a random binary mask and, from two parents, generates a child having
the value of the first parent if the mask is 1, while the value of the second parent if the
mask is zero. Mutation (Figure 3(b)) changes the first parent of the crossover operator
by substituting the neighbor of node 6 from 3 to 1, thus generating two new clusters
composed by {1,3,4,6} and {2,5}. The fitness function we adopted to obtain groups of
images densely connected with edges having high weights, and sparse low weighted
edges between groups, is the modularity introduced by Girvan and Newman [5] and
suitably modified for weighted graphs.

The weighted modularity is defined as Q = ! > (Wij — ki'rkj )6(Ci, Cj), where W ;

T

is the weight of the edge (7, j), r is the total weight of all edges, k; is the total weight
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Fig. 3. Example of genetic operators: (a) Initialization, (b) crossover and mutation

of edges adjacent to node i, C; is the cluster to which ¢ belongs to, 6(C;, C;) is 1 if
the images 7 and j belong to the same cluster, 0 otherwise. The algorithm thus creates
a random initial population by connecting each image to one of its nearest neighbor
similar images, and, for a fixed number of generations, applies crossover and mutation
operators, evaluates the fitness of each individual, and generates a new population. At
the end of the evolutionary process, the individual with the best fitness provides the
graph partitioning, where each partition is a cluster of similar images.

4 Experimentation

In this section we present the results of GA-IC on the Wang image database and com-
pare the performance of our algorithm with other four methods. The GA-IC algorithm
has been written in MATLAB 7.14 R2012a, using the Genetic Algorithms and Direct
Search Toolbox 2. In order to set parameter values, a trial and error procedure has been
employed and then the parameter values giving good results for the benchmark images
have been selected. Thus we set crossover rate to 0.9, mutation rate to 0.5, elite repro-
duction 10% of the population size, tournament selection function. The population size
was 700, the number of generations 200. The value h of nearest neighbors has been
fixed to 9, after a proper tuning of values in the range [1, ..., 100].

The Wang image database has been created at the Pennsylvania State University. It is
a manually selected subset of the Corel stock photo database, well known in Computer
Vision, available at the website http://wang.ist.psu.-edu/docs/related/. The dataset is
composed of 1000 color test images, divided into ten semantic classes, each composed
of 100 images. The ten image classes are: African people and villages, Beaches, Build-
ings, Buses, Dinosaurs, Elephants, Flowers, Horses, Mountains and glaciers, Food. Im-
ages are of size 256 x 384 or 384 x 256 in jpeg format. Example figures of each class
are shown in Figure 4.
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(f) Elephants (g) Flowers (h) Horses (l) Mountains

Fig. 4. Example images from the Wang dataset, one for each semantic class: African people and
villages (a), Beaches (b), Buildings (c), Buses (d), Dinosaurs (e), Elephants (f), Flowers (g),
Horses (h), Mountains and glaciers (i), Food (j)

4.1 Evaluation Measures

Image clustering is a retrieval problem, thus the popular evaluation measures of preci-
sion, recall, and f-measure are adopted to test the performance of the methods and to
compare the results of GA-IC with other clustering approaches.

Precision P is the ratio of the number of retrieved relevant images to the total num-
ber of retrieved images: P = T # refricved relevant images ' Recal] R is the ratio of

Tot. # retrieved images

the total number of retrieved relevant images to the total number of relevant images:

R = Tot-# retrieved relevant images The F-Measure F is the harmonic mean of preci-
ot. # relevant images
sion and recall: F' = 2 iig. Since we deal with a multi-class problem, i.e. the dataset of

images contains a number k£ > 2 of different image categories, and we can obtain any
number of clusters, we need to specify what we mean by relevant images for each cat-
egory. To this end we create a confusion matrix C' M where the rows {g1, - - ., Gksru. |
correspond to the k... ground-truth image groups contained in the dataset, and the
columns {cy,...,cx,,.,} to the ky.cq clusters obtained by the algorithm. C'M (i, j)
counts the number of images of cluster j appearing in the ground-truth group 7. We
assume that the predicted cluster c¢; corresponding to the ground-truth group g; is that
containing the maximum number of images belonging to g;.

_ tp R~ i
toi+ fpi " tpit+ fr

The above measures P; and R; are then computed for each ground class g;, where p; is
the number of true positive images, i. . those images contained in the predicted cluster
¢; corresponding to g;, contained also in g;, and fp; is the number of false positive
images, i.e. those images contained in c; but not appearing in g;. fn; is the number of
false negative images, i.e. those images of class g; not predicted by c;.

¢; = arg mazx;CM(i,j) P 3)

4.2 Experimental Results

In order to compare the results of GA-IC with other clustering paradigms, we run the
well known K-Means method, a classical average linkage hierarchical clustering, the
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Table 1. Precision, Recall and F-measure computed for each ground class of the Wang dataset for
the image clustering approaches: GA-IC, Block Truncation Algorithm (BTC), K-Means, average
linkage hierarchical clustering and Local Scaling clustering with co-occurrence descriptors and
color centiles as image features. nClusters is the number of clusters obtained by the algorithms,
classes is the name of the specific ground class in the Wang dataset. Values in bold correspond to
cases in which GA-IC outperforms the other techniques.

nClusters classes Precision Recall F-measure
African people and villages 0.3870 (0.0560) 0.4490 (0.0849) 0.4082 (0.0362)
Beaches 0.1693 (0.0108) 0.3480 (0.0377) 0.2272 (0.0133)
GA-IC Buildings 0.2127 (0.0087) 0.4380 (0.0518) 0.2855 (0.0131)
Buses 0.5688 (0.0048) 0.5450 (0.0135) 0.5566 (0.0091)
13 Dinosaurs 0.3750 (0.0940) 0.4130 (0.0067) 0.3862 (0.0595)
Elephants 0.3375 (0.0367) 0.3700 (0.0271) 0.3509 (0.0200)
Flowers 0.4427 (0.0453) 0.4870 (0.0503) 0.4611 (0.0360)
Horses 0.6614 (0.0272) 0.5770 (0.0841) 0.6141 (0.0609)
Mountains and glaciers ~ 0.1943 (0.0591) 0.3320 (0.0736) 0.2417 (0.0604)
Food 0.2456 (0.1873) 0.3380 (0.0476) 0.2567 (0.0626)
African people and villages 0.3358 0.4400 0.3809
Beaches 0.4242 0.4200 0.4221
BTC Buildings 0.0792 0.0800 0.0796
Buses 0.4483 0.5200 0.4815
10 Dinosaurs 0.9706 0.9900 0.9802
Elephants 0.4483 0.3900 0.4171
Flowers 0.9412 0.8000 0.8649
Horses 0.5882 0.5000 0.5405
Mountains and glaciers 0.4321 0.3500 0.3867
Food 0.2232 0.2500 0.2358
African people and villages 0.3621 (0.0536) 0.3660 (0.0386) 0.3604 (0.0273)
Beaches 0.1730 (0.0327) 0.2330 (0.0427) 0.1978 (0.0345)
K-means Buildings 0.3164 (0.0622) 0.3780 (0.0312) 0.3422 (0.0461)
Buses 0.5885 (0.0220) 0.5220 (0.1146) 0.5440 (0.0704)
10 Dinosaurs 0.3737 (0.0800) 0.3770 (0.0696) 0.3752 (0.0750)
Elephants 0.3358 (0.0342) 0.3520 (0.0469) 0.3427 (0.0373)
Flowers 0.4496 (0.0155) 0.4590 (0.0694) 0.4505 (0.0337)
Horses 0.5353 (0.1587) 0.3840 (0.0412) 0.4395 (0.0876)
Mountains and glaciers ~ 0.2611 (0.0128) 0.2790 (0.0277) 0.2690 (0.0144)
Food 0.2373 (0.0428) 0.3160 (0.0420) 0.2699 (0.0378)
African people and villages 0.2632 0.4000 0.3175
Beaches 0.1346 0.5100 0.2129
Hierarchical Buildings 0.1372 0.5200 0.2171
Buses 0.5800 0.5800 0.5800
10 Dinosaurs 0.4100 0.4100 0.4100
Elephants 0.3208 0.3400 0.3301
Flowers 0.4623 0.4900 0.4757
Horses 0.1240 0.4700 0.1962
Mountains and glaciers 0.2632 0.4000 0.3175
Food 0.1451 0.5500 0.2296
African people and villages 0.2205 (0.0061) 0.4370 (0.0048) 0.2931 (0.0064)
Beaches 0.1795 (0.0036) 0.3560 (0.0135) 0.2386 (0.0061)
LS clustering Buildings 0.1795 (0.0029) 0.3560 (0.0126) 0.2386 (0.0054)
Buses 0.5882 (0.0000) 0.3000 (0.0000) 0.3974 (0.0000)
10 Dinosaurs 0.1677 (0.0032) 0.2580 (0.0063) 0.2033 (0.0043)
Elephants 0.3251 (0.0019) 0.3710 (0.0032) 0.3466 (0.0024)
Flowers 0.4557 (0.0013) 0.5200 (0.0000) 0.4858 (0.0007)
Horses 0.6741 (0.0067) 0.3680 (0.0042) 0.4761 (0.0032)

Mountains and glaciers ~ 0.2476 (0.0019) 0.4910 (0.0110) 0.3292 (0.0037)
Food 0.2623 (0.0035) 0.4230 (0.0067) 0.3238 (0.0035)



330 A. Amelio and C. Pizzuti

clustering algorithm based on local scaling proposed in [10], and the Block Truncation
Algorithm (BTC) proposed by Silakari et al. [9].

The local scaling clustering algorithm [10] is a spectral method, based on the compu-
tation of an affinity matrix W, where a value at position (i, j) inside W represents the
similarity between the points 7 and j. The feature vectors associated with images are the
same of those used in our approach, i.e. co-occurrence descriptors and color centiles.
Moreover, affinity computation is performed similarly to our formula (2). However,
while we evaluate the affinity values only between the data points and their h-nearest
neighbors, in [10] the affinity values are computed for each pair of data points. Specif-
ically, in formula (2) the a parameter between two data points ¢ and j is calculated as
the average distance of all the data points to their corresponding first nearest neighbors
and it is always the same. In [10], given an affinity value W (4, j), this a parameter is
computed for the specific data point % as 0,07, where o; (o) is the distance of 7 (j) from
its k-nearest neighbor.

BTC applies the k-means algorithm to images represented by features obtained by
using the concepts of color moment and block truncation coding. In particular, the color
distribution in each image is considered as a probability distribution, whose moments
(mean, standard deviation and skewness) can be used as color features. Based on this
concept, the algorithm calculates the Red, Green and Blue components from the original
input image. Mean, standard deviation and skewness are computed for each component,
and then each component is split in the color component of all pixels in the image which
are above and below the corresponding mean. In such a way, for each of the three colors,
six informations are computed to obtain a final feature vector of 18 components. The
k-means algorithm is then applied to group the image feature vectors into clusters. The
authors showed that on the Wang dataset the algorithm performs better, in terms of
retrieval precision/recall, than the k-means algorithm with only color moments.

The results obtained by GA-IC and the other contestant methods are reported in Ta-
ble 1. For each method we report the number of clusters found by each algorithm,
and, for every class image, the precision, recall and f-measure values. Note that for the
comparison methods the number of clusters must be given as input parameter. GA-IC,
instead, automatically computes this value by evolving the population. GA-IC has been
executed ten times, thus Table 1 reports the values averaged over these 10 runs with
standard deviation in parenthesis. Values in bold on the rows of the four methods we
compare with, correspond to those cases in which GA-IC outperforms the other tech-
niques. From the table we can observe that the values of precision, recall, and f-measure
obtained by GA-IC are better than those found by BT'C for 5 out of 10 classes. As re-
gards K-means, GA-IC obtains always the highest recall values and better precision for
5 out of 10 cases, and 7 out of 10 cases for f-measure. Furthermore, the hierarchical
approach outperforms GA-IC only on four classes as regards precision and f-measure
values, and on 5 classes for recall values. Finally, the clustering algorithm based on
local scaling is superior to GA-IC on six classes as regards precision, on five classes as
regards recall but only on four classes for f-measure. It is worth to note that the number
of clusters obtained by GA-IC does not differ too much from the true number of ground
truth groups. These results show that the genetic algorithm is a very promising approach
to cluster images in groups of homogeneous images.
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Furthermore, the modularity value of GA-IC has been computed on the graph repre-
senting the image database, averaged on ten different solutions found from the algorithm.
A value of 0.7586 reveals that the clusters obtained from the algorithm well capture the
image graph structure, demonstrating the high quality of the found clustering.

5 Conclusions

The paper proposed an approach to image clustering based on graph partitioning with
genetic algorithms. The image database is represented by a graph where images cor-
respond to nodes, and two images are connected provided that they are sufficiently
similar. The similarity concept we introduced relies on the nearest neighbor images of
a given image. The lower the distance between two images, the higher the weight of the
edge connecting them. Experiments on a standard image dataset show very promising
results, comparable with other state-of-the-art approaches. Future work will aim at in-
vestigating different content based features to improve evaluation indexes. Furthermore,
an image database summarization approach will be provided by detecting the centroids
from each retrieved image cluster.
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