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Abstract. The luminance of natural scenes frequently presents a high
dynamic range and cannot be adequately captured with traditional imag-
ing devices. Additionally, even if the technology to capture the scene is
available, the image to be displayed on conventional monitors must be
compressed by a tone mapping operator. Exposure fusion is an affordable
alternative which blends multiple low dynamic range images, taken by a
conventional camera under different exposure levels, generating directly
the display image. In this paper, the Retinal-like Sub-sampling Contrast
metric has been adapted to work with the original version of the expo-
sure fusion algorithm in the CIELAB color space. In addition, saturation
and well-exposedness metrics have been reformulated in this color space,
adding a dynamic adjustment mechanism to the latter one which avoids
amplification of invisible contrast. Results based on objective evaluation
show that the proposed algorithm clearly outperforms the original ex-
posure fusion technique and most of the state-of-the-art tone mapping
operators for static images.

Keywords: Exposure Fusion, Tone Mapping, Perceptually Based Image
Processing, Contrast, Saturation, Well-Exposedness.

1 Introduction

The range of luminances in natural scenes is often of five orders of magnitude.
However, contrast ratio provided by conventional displays is not higher than
two orders of magnitude. Tone Mapping Operators (TMOs) and, more recently,
Exposure Fusion (EF) techniques are used to compress the High Dynamic Range
(HDR) of luminances into the Low Dynamic Range (LDR) of the target display,
generating images which are visually similar to the original scene. TMOs assume
the HDR radiance map from the scene is available to calculate in a second step
the corresponding LDR mapped image. EF directly provides the display LDR
image with no necessity of the HDR radiance map. Instead EF uses a bracketed
exposure sequence of LDR images which can be captured by a conventional
camera. These images are blended together using some quality metrics, which
guide the process of selecting those regions which contain the most relevant
information. In addition, EF presents other advantages compared to TMOs, such
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us the simplification of the pipeline, the non-necessity of a camera calibration
process and the decrease of damage in scene details due to the one-step approach
versus the two-step approach [1,2]. On the downside, EF takes more time when
acquiring the set of input LDR images and camera shake or objects moving
during the long-exposure captures might cause blurred images [3].

The EF algorithm proposed in this paper is based on the multiscale fusion
approach by Mertens et al. [1]. The original contrast metric guided by a Laplacian
filter has been replaced by a perceptually based contrast metric, Retinal-like
Sub-sampling Contrast (RSC) [5], adapted to work in CIELAB color space. In
addition, saturation and well-exposedness metrics have been reformulated in this
color space, adding a dynamic adjustment mechanism to the latter one which
avoids amplification of invisible contrast.

The rest of the paper is organized as follows; first a review of HDR mapping,
then the proposed algorithm is presented. Further, the experimental setup and
results are presented, at last conclusions are drawn.

2 Review of HDR Mapping

2.1 Tone Mapping Operators

Tone mapping algorithms can be classified according to the type of processing
as global or local. Global operators are simple and barely time-consuming, but
cannot deal well with huge contrast ratios. Local operators generally achieve
greater contrast reduction allowing significant compression of the dynamic range
of a scene. However, a major concern with them is the presence of halos or
artifacts around edges. One of the simplest global operator is the linear scale
factor by Ward [6], while one of the most representative local operator is the
gradient based by Fattal et al. [7], to give some examples. A comprehensive
study of TMOs can be found in [2,8,9,10]. Below we provide a short description
of the algorithms selected to carry out our objective comparison.

In general, TMOs attempt to imitate the perceptual processing of the Human
Visual System (HVS). Drago et al. [12] implement a logarithmic compression of
the HDR values, simulating the photoreceptors response to light. In the same
way, Reinhard et al. [13] use a global transformation by means of a sigmoid func-
tion which allows users to adjust some function parameters to preserve different
characteristics of the HDR image. The operator proposed by Pattanaik et al. [14]
includes a perceptually-based temporal processing of the stream of input frames
simulating the changes in visual appearance caused by variations in scene lumi-
nance. In [15] Ashikhmin presents a TMO which mimics two relevant functions
of HVS: reproduction of absolute brightness and preservation of local contrast.
A TMO is applied locally, aiming to capture overall brightness of each region
in the scene, then lost details and contrast are put back into the final image.
Mantiuk et al. [16] proposed a framework for perceptual contrast processing of
HDR images based on gradient domain, like Fattal et al. [7].

Reinhard et al. proposed another operator [17] which simulates the dodging and
burning technique used in traditional photography allowing different exposures
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across the image to be printed. The TMO of Durand et al. [18] carries out a two-
scale decomposition of the image into a base layer, encoding large-scale variations,
and a detail layer.

2.2 Exposure Fusion Algorithms

To the best of our knowledge, the original idea of using exposure fusion to
perform the mapping of the HDR image was formulated initially by Mertens
et al. [1]. Their algorithm computes an image quality metric for each pixel in
the multi-exposure sequence, which encodes perceptually desirable qualities, i.e.
contrast, saturation and well-exposedness. Guided by this set of quality metrics,
the algorithm selects the best pixels from the sequence and combine them into
the final result. The blending of input LDR images is driven by a multiscale
approach in which a Laplacian pyramid of the input images is multiplied by the
Gaussian pyramid of the quality weight maps. This multiscale processing is used
to avoid seams in the final LDR mapped image.

Other authors [2,19] use probabilistic models to fuse LDR images. In [2] vis-
ible contrasts and scene gradients are computed first for the Y channel of the
YUV color space and then a Maximum a Posteriori framework is considered
in the fusion step to preserve these visible contrasts and suppress the gradient
reversals between the input sequence and the corresponding LDR image. On the
other hand, in [19] it is proposed to use a second-order derivative to compute
contrast based on a central difference approach on a 3x3 neighborhood. In addi-
tion, a color consistency measure is applied, which is not considered in previous
methods. A generalized random walks framework is used to calculate a globally
optimal solution.

Other EF techniques have been proposed for some specific applications, such
as mobile phones. In [3] longer exposed input images are corrected to avoid
blurred images produced by camera and object motion. A parallel GPU and
FPGA implementation is proposed in [4].

3 The Proposed Algorithm

The full processing pipeline of the algorithm by Mertens et al. [1] has been
adapted to work in the CIELAB color space, preserving the multiscale fusion and
the multiplicative weighting combination of the original method. By introducing
a color space perceptually more correlated with the HVS we expect that the final
image further resembles the visual scene. Further, multiscale fusion is a simple
technique which removes fairly well artifacts in the final image, i.e. halos and
seams, so that it has been included in our algorithm without modification. The
pseudo code of the proposed algorithm is shown below. Contrast, Saturation and
Well Exposedness quality weighting maps are calculated for the CIELAB input
set of images and combine in a multiplicative fashion. The pyramid computation,
following the algorithm by Mertens et al. [1] combines the Gaussian pyramid of
the quality weighting map and the Laplacian pyramid of the CIELAB images.
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Finally this pyramid is collapsed to obtain the tone-mapped image, which is
transformed back to the RGB space.

Perceptual Exposure Fusion (LDR_Images, W_threshold)

begin

Lab_Im = CIELAB(LDR_Images);

Contrast = C(Lab_Im);

Saturation = S(Lab_Im);

Well_Exposedness = W(Lab_Im, W_threshold);

Quality_Measure = Contrast*Saturation*Well_Exposedness;

normalize(Quality_Measure);

initialize(pyr);

for i = 1:Number_LDR_images

pyrW = gaussian_pyramid(Quality_Measure);

pyrI = laplacian_pyramid(Lab_Im);

for l = 1:pyr_number_levels

pyr[l] = pyr[l] + pyrW[l]*pyrI[l];

end

end

R = reconstruct_laplacian_pyramid(pyr);

LDR_output = RGB(R);

end

The quality metrics are key components in the processing pipeline. We propose
to introduce modified versions of these metrics.

Contrast. The Retinal-like Sub-sampling Contrast (RSC) metric [5] was pro-
posed to measure contrast in digital images, and has shown to correlate well with
perceived contrast. RSC uses a multilevel approach with Tadmor and Tolhurst’s
[20] Difference-of-Gaussians (DoG) to measure the contrast in each pixel. In the
original formulation [5] three DoG contrast maps, DoGck

i , are calculated in each
level i, halving the size of the image, which correspond to the three color channels
ck: L*, a* and b* (c1, c2, c3) and then these three maps are linearly combined
to obtain one number of contrast at the end. However, in the EF algorithm a
weight map is required so that we consider the DoG contrast map of the first
level, see Eq. 1, as the final contrast map W ck

contrast for each color channel.

W ck
contrast = DoGck

i=1, (1)

The width of center and surround Gaussian components are set to 1 and 2,
following the recommendation by [21]. It was observed experimentally that RSC
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produces some artifacts overamplifying small undetectable contrasts in underex-
posed images. The normalization factor when computing the DoG (see equation
2 in [5] for more details) tends to highlight the contrast even when pixel values
are very low. For example, we can think of a very dark region of the image with
receptive-field values for the center and surround of 0.002 and 0.001. In this
case, according to equation 2 in [5] the output of the DoG is 0.33, a third of the
maximum value. However, this difference between center and surround is barely
perceived. A simple solution is proposed based on a set of fixed thresholds for
each L*a*b* component. Considering a normalized range of values for each color
component in the range [0,1] if the value of a pixel in the LDR image is below
0.05 automatically the RSC metric is not computed and its contrast value is set
to 0.

Saturation. Saturation is reformulated in CIELAB color space. In [22] image
colorfulness is correlated with experimental data using a linear combination of
the standard deviation and mean value in the a*b* plane. We base our metric
in the same concept and compute for each pixel the standard deviation within
the a* and b* channels according to Eq. 2.

Wsaturation = 10

√
(a∗ − ((a∗ + b∗)/2))2 + (b∗ − ((a∗ + b∗)/2))2

2
, (2)

A multiplicative scale factor of 10 is added to set the output of the saturation
metric in the same range of the other quality metrics.

Well-Exposedness. The function based on the Gauss curve of the original EF
algorithm is applied to the luminance component, L*, to determine how close is
each pixel to the considered gray value, i.e. 0.5. Then the same weight map is
applied to the three color components.

We observed a susceptibility of this metric to overamplify contrast if all overex-
posed images from the input sequence were included in the computation. There-
fore, a dynamic control mechanism has been added to this quality metric, based
on the global luminance level of each LDR input image, resulting in a consid-
erable decrease of the amplification of invisible contrast in the final results. We
estimate the global luminance level as the average of the L* value for each pixel
in each LDR image. Then if this luminance level is above a threshold the well-
exposedness metric of the LDR image is set to 0, which means that this input
image is not considered for the fusion procedure because of the multiplicative
nature of the weighting in the original EF algorithm (see [1]).

4 Experimental Setup

In the literature, we find that most of the TMOs and EF algorithms are often
perceptually assessed by visual comparisons of subjects who rate or rank the
different tone mapped LDR images [8,23,24,25] and whose decisions are later
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statistically analyzed. Conditions of each experiment and metrics used vary from
one to another and there is no standard methodology for performing such studies.
In this paper, we contrast the performance of some representative TMOs and EF
techniques widely used for static images by means of one of the most popular
objective quality metric used in tone mapping of HDR images. The Dynamic
Range Independent Metric (DRIM) [26], using a model of the HVS, is capable
of comparing images which have different dynamic ranges. This metric has been
amply validated and results show high correlation with visual ratings. For a
recent comparison of TMOs including a temporal model see [27].

The output of DRIM consists of three quality maps: contrast reversal, contrast
lost and contrast amplification. To obtain a single number from these maps a
Minkowski’s pooling of each one is computed with exponent 4. This exponent
is considered by Wang et al. [28] to further penalize low quality scores in the
image. The average of the three pooling numbers associated to each quality map
of the DRIM metric is considered as the final result. Then a sign-test at the 5 %
significance level is applied comparing results between the proposed algorithm
and each one of the evaluated algorithms.

The code of the evaluated TMOs can be downloaded from the web page of
the HDR lab in the Max Planck Institute [11]. All these algorithms and the
EF technique run with default parameters, except Pattanik00 whose parameter
m has been modified to 10 to produce reasonably fair results. Nevertheless, a
fine tune of these parameters might improve results of the TMOs considered.
For the proposed algorithm, considering normalized LDR input images in the
range [0,1], the threshold of the well-exposedness metric has been fixed to 0.5
in all images. DRIM runs online with default parameters [29] and each quality
map, i.e. the contrast reversal, contrast lost and contrast amplification, is saved
independently through the interactive viewer.

The ten images selected are commonly used in HDR Tone Mapping and can be
referenced as: Bristol Bridge, Tinterna, Atrium Night, Belgium House, Stanford
Memorial Church, Girl in Lit Room, Clock Building, Cornell Box, Tahoe and
Rosette.

5 Experimental Results

Fig. 1 shows a comparison between the output of the original EF technique and
the proposed algorithm for the image Stanford Memorial Church. The algorithm
by Mertens et al. tends to increase the brightness and overamplify contrast of
the tone mapped image. The DRIM metric marks in blue these overamplified
regions of the image corresponding to the wooden structure of the ceiling. It can
be argued that an increase of contrast usually enhances details in the darkest
areas of the image, as can be seen in the upper left corner of both images.
However, if contrast is too amplified some colors may be distorted such as the
color of wood in this example. In fact, this distortion has been observed in other
images, specially in dimly lit areas of the scene, when contrast is overamplified
causing a similar effect of noise in images. An excessive increase of brightness
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Fig. 1. On top: output images of the original EF (left) technique and the proposed
EF algorithm (right). In the bottom: DRIM evaluation of both images respectively.
Contrast reversal is marked in red, contrast loss in green and contrast amplification in
blue.
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also causes losses of contrast in over-exposed regions of the HDR image, marked
in green in the dome ring.

Table 1. Minkowski’s pooling with exponent 4 of DRIM images and average of the
three values. Results shown have been multiplied by 1000 to better viewing. PA is
the proposed algorithm, EF is the original Exposure Fusion [1], Dr03 is Drago03 [12],
Du02 is Durand02 [18], Ma06 is Mantiuk06 [16], Pa00 is Pattanaik00 [14], Re02 is
Reinhard02 [17] and Re05 is Reinhard05 [13].

Algorithm
PA EF Dr03 Du02 Ma06 Pa00 Re02 Re05

Bridge 0.06 44.36 27.24 0.30 13.78 28.84 7.21 74.10

Tinterna 0.02 22.28 7.99 0.02 11.51 0.00 0.52 3.19

Atrium 3.76 12.51 10.08 5.48 4.46 5.69 6.24 18.79

House 1.44 11.01 16.07 1.90 1.85 31.01 31.01 38.10

Memorial 6.65 16.24 13.86 10.26 7.53 20.69 14.95 39.02

Girl-Room 16.34 50.24 69.41 20.30 26.96 109.70 45.13 139.41

Clock Building 13.37 79.79 28.55 17.20 38.79 1.59 30.37 44.25

Cornell Box 8.31 8.53 65.03 19.67 12.37 12.86 15.11 173.92

Tahoe 27.62 5.77 99.69 64.25 57.22 114.82 69.59 301.11

Rosette 16.00 32.81 22.48 2.83 6.391 48.14 44.05 63.67

The objective evaluation conducted reflects that our algorithm produces the
best result in six out of ten images, see Table 1. When the proposed algorithm
is outperformed the pooling obtained is the closest to the best one. In general,
highly textured images, such as Belgium House and Stanford Memorial Church,
and very under-exposed images, such as Cornell Box, result in the best perfor-
mance of our algorithm. The statistical sign-test at the 5% significance level of
Table 2 shows a reliable improvement of the algorithm proposed with regard to
the rest of algorithms evaluated except for Pattanaik00.

Table 2. Sign-test at the 5% significance level. The proposed algorithm is compared
to each one of the evaluated algorithms.

Algorithm
EF Dr03 Du02 Ma06 Pa00 Re02 Re05

p-value 0.022 0.002 0.040 0.022 0.110 0.002 0.002

Reject null hypothesis yes yes yes yes no yes yes

6 Conclusions

A HDR mapping algorithm is proposed based on the EF technique. The RSC
metric has been adapted to work with the original version of the EF in the
CIELAB color space. Saturation and well-exposedness metrics have been refor-
mulated in this color space, adding a dynamic adjustment mechanism to the
latter one which avoids amplification of invisible contrast.
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Ten HDR images, commonly used in tone mapping, are considered to per-
form an objective quality evaluation using the DRIM metric. Our algorithm is
compared to the original EF technique and six of the most representative TMOs
for static images. Parameters of our algorithm and other algorithms are fixed
for all images. A statistical sign-test at the 5% significance level shows that the
proposed algorithm clearly outperforms the original EF algorithm and five out
of six of the TM operators. More images are going to be considered in future
tests to reliably show the improvement of the algorithm proposed. In addition, a
perceptual subjective experiment could support results presented in this paper.
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