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Abstract. Software Product Line Engineering (SPLE) is an approach to systemat-
ically reuse software-related artifacts among different, yet similar, software prod-
ucts. Previewing requirements as drivers of different development methods and 
activities, several studies have suggested using requirements specifications to 
identify and analyze commonality and variability of software products. These stu-
dies mainly employ semantic text similarity techniques. As a result, they might  
be limited in their ability to analyze the variability of the expected behaviors of 
software systems as perceived from an external point of view. Such a view is im-
portant when reaching different reuse decisions. In this paper we propose to intro-
duce considerations which reflect the behavior of software products as manifested 
in requirement statements. To model these behavioral aspects of software re-
quirements we use terms adapted from Bunge’s ontological model. The suggested 
approach automatically extracts the initial state, external events, and final state of 
software behavior. Then, variability is analyzed based on that view. 
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1 Introduction 

Software Product Line Engineering (SPLE) is an approach to systematically reuse 
software-related artifacts among different, yet similar, software products [ 6], [ 19]. 
Reuse of artifacts, such as requirements specifications, design documents and code, 
often results in the creation of a myriad of variants. Managing such a variety of arti-
facts’ variants is a significant challenge. Thus, SPLE promotes the definition and 
management of software product lines (SPLs), which are families of similar software 
systems, termed software products. An important aspect of SPLE is managing  
the variability that exists between the members of the same SPL. In this context,  
variability is defined as “the ability of an asset to be efficiently extended, changed, 
customized, or configured for use in a particular context” [ 10].   

In SPLE, different artifacts need to be managed. Of those, requirements manage-
ment is of special interest due to several reasons. First, requirements represent the 
expectations of different stakeholders from the requested system. These stakeholders 
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include users and customers and not just developers. Second, requirements are the 
drivers of other development activities, including analysis, design, implementation, 
and testing. Finally, requirements are relevant to many development methods, includ-
ing agile ones (through concepts such as user stories).  

Several studies have suggested using requirements specifications in order to identi-
fy and analyze commonality and variability of software products. In these studies, 
requirements are operationalized or realized by features, and variability is usually 
represented as feature diagrams, the main aid for representing and managing variabili-
ty in SPLE [ 5], [ 11]. The current studies commonly apply only semantic similarity 
metrics, that is, seek similarities of terminology, in order to identify common features, 
create feature diagrams, and analyze the variability of the resultant feature diagrams. 
As we will show via examples, using only semantic considerations might limit the 
ability to analyze the variability of the expected behaviors of software systems as 
perceived from an external point of view of a user or a customer. Such a view is im-
portant for reaching different reuse decisions, e.g., when conducting feasibility stu-
dies, estimating software development efforts, or adopting SPLE. In addition, current 
variability analysis methods take into account intermediate outcomes of the behavior 
that may not matter to external stakeholders, such as users and customers. For exam-
ple, a system may intermediately keep information in case a transaction fails, but this 
would be of no interest when the behavior ends successfully. Hence, when analyzing 
variability of software products, we aim at minimizing the impact of intermediate 
outcomes which cannot be used for (and might confound) comparing the products 
from an external point of view. 

In this work we propose to overcome the shortcomings of pure semantic-based va-
riability analysis by combining semantic similarity with similarity of software beha-
vior as manifested in requirement statements. To compare software behavior we apply 
an ontological view of dynamic aspects of systems which we proposed in earlier work 
[ 20], [ 21]. For a given requirement, we consider the behavior it represents in the ap-
plication (“business”) domain. Taking an external point of view, behavior is described 
in terms of the initial state of the system before the behavior occurs, the external 
events that trigger the behavior, and the final state of the system after the behavior 
occurs. We use semantic metrics to evaluate the similarity of related behavioral ele-
ments and use this similarity to analyze variability. 

The rest of this paper is structured as follows. Section 2 reviews related work, ex-
emplifying limitations of current approaches. Section 3 briefly provides the ontologi-
cal background and our framework for classifying software variability. Section 4 
introduces the ontological approach to variability analysis and demonstrates its appli-
cability. Section 5 presents preliminary results and discusses advantages and limita-
tions. Finally, Section 6 summaries the work and presents future research directions. 

2 Related Work 

As mentioned above, the main approach to variability analysis in SPLE is semantic – 
based on text similarity measures. Semantic text similarity measures are commonly 
classified as knowledge-based or corpus-based [ 9], [ 16].  
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Corpus-based measures identify the degree of similarity based on information de-
rived from large corpora (e.g., [ 4], [ 12], and [ 22]). Latent Semantic Analysis (LSA) 
[ 12], for example, is a well-known method that analyzes the statistical relationships 
among words in a large corpus of text. Sentence similarity is computed as the cosine 
of the angle between the vectors representing the sentences’ words.  

Knowledge-based measures use information drawn from semantic networks. Many 
of these methods use WordNet [ 26] for measuring word (or concept) similarity. This 
can be done in different ways, including measuring path length between terms on the 
semantic net or using information content, namely, the probability to find the concept 
in a given net. Several measures have been suggested to extend word similarity to 
sentence similarity. These measures consider sentences as vectors, sets, or lists of 
words and suggest ways to calculate sentence similarity using word similarities (e.g., 
[ 13], [ 14], and [ 16]). The MCS method [ 16], for example, calculates sentence similar-
ity by finding the maximum word similarity score for each word in a sentence with 
words in the same part of speech class in another sentence. The derived word similari-
ty scores are weighted with the inverse document frequency scores that belong to the 
corresponding word. 

In the context of analyzing software products variability, different studies have 
suggested ways to use textual requirements to generate variability models in general 
and feature diagrams in particular. Examples of such studies are [ 7], [ 17], and [ 25]. In 
[ 25], for instance, the semantic similarity of the requirements is measured using LSA. 
Then, similar requirements are grouped using a hierarchical agglomerative clustering 
algorithm. Finally, a Requirements Description Language enables the specification 
and composition of variant features. 

All the above methods employ only semantic considerations. Furthermore, the si-
milarity calculation takes into consideration the full text of a requirement statement. 
As mentioned before, such statements might include aspects (e.g., intermediate out-
comes) that are less or not relevant for analyzing variability from an external perspec-
tive. We illustrate the limitations of the current methods and motivate our approach, 
using a series of examples. 

The first example refers to the following requirements:  

(1) “The system should be able to report on any user update activities”;  
(2) “Any user should be able to report system activities”.  

Applying the well-known and commonly used semantic similarity method LSA1, 
the similarity of these sentences is 1. This would imply that their semantic meanings 
are identical, and hence no variability between these requirements exists. It is clear, 
however, that these requirements are quite different: the first represents behavior that 
is internal and likely aims at detecting suspicious user update activities. The second 
requirement represents a behavior triggered by an external user who intends to report 
his/her system activities.  

As a second example, consider the following two requirements:  

(3) “The system will allow different functions based on predefined user profiles”;  
(4) “Different operations should be allowed for different user profiles”.  
                                                           
1  We used LSA implementation that can be accessed via http://lsa.colorado.edu/. 
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In this case, LSA results with a low similarity value of 0.38, failing to reflect the 
situation accurately: the two requirements represent very similar domain behaviors. 

Finally, the following two requirements can be considered similar from an external 
point of view, although they differ in their levels of details of intermediate actions. 
(5) “When the client activates an activity she is allowed to perform, the system dis-
plays the outputs of the activity.” 
(6) “If the user is authorized to perform an action, the system initializes the parame-
ters needed by the action. The user performs the action and the system responds that 
the action was performed. Finally, the user requests to display the outputs, and the 
system presents the action's outcomes.” 

However, the LSA-based value of the similarity of these two requirements is rela-
tively low (0.57), failing to reflect their similarity from an external point of view.  

To overcome the above limitations, we propose to combine a semantic approach 
and considerations which reflect system behavior as manifested in requirements 
statements and modeled ontologically.  

3 Bung’s Ontology and Software Variability Classification 

We use concepts from Bunge's ontological model [ 2,  3] and its adaptations to  
software and information systems [ 23,  24] in order to define behaviors and use them 
for variability analysis. We have chosen this ontology because it formalizes concepts 
that are important for representing functionality and behaviors. Specifically, these 
concepts include things, states, events, and transformations. Furthermore, Bunge’s 
ontological model has already served us to define software variability classes [ 20,  21].  

Bunge's ontological model [ 2], [ 3] describes the world as made of things that pos-
sess properties. Properties are known via attributes, which are characteristics assigned 
to things by humans. A state variable is a function which assigns a value to an attribute 
of a thing at a given time. The state of a thing is the vector of state variables’ values at 
a particular point in time. For a state s, s.x denotes the value of the state variable x in s. 
An event is a change of a state of a thing. An event can be external or internal. An  
external event is a change in the state of a thing as a result of an action of another 
thing. An internal event is a change which arises due to an internal transformation in 
the thing. Finally, a state can be stable or unstable: a stable state can be changed only 
by an external event. An unstable state will be changed by an internal event. 

We exemplify the above concepts using a library management domain. In this  
domain, book status can be considered a state variable, defining whether a book is 
borrowed, on the shelf, or in repair; ready to lend can be considered a stable state, 
when it can accept the external event – borrow book (generated by a reader); and  
book becomes past-due can be considered an internal event, which is initiated when a 
certain period has passed from borrowing and the book is not yet returned. 

Using these concepts, we defined in [ 20] a behavior as a triplet (s1, E, s*). s1 is 
termed the initial state of the behavior and s* – the final state of the behavior. We 
assume that the system can respond to external events when in s1 (i.e., s1 is an input 
sensitive state, see [ 20], [ 21]). s* is the first stable state the thing (the real domain or a 
system) reaches when it starts in state s1 and the external events sequence E=<e1,…, 
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en> occurs. The full behavior includes intermediate states the thing traverses due to its 
own transformations in response to the external events. However, only (s1, E, s*) are 
“visible” from an external (user) point of view. 

In our example, borrowing can be considered a behavior, which starts in the state 
ready to lend (i.e., when the book status is “on the shelf” and the librarian is “availa-
ble”), is triggered by the external event borrow book, and ends in the state book is 
borrowed (i.e., the book status is “borrowed” and the librarian is “available” again). 

We further made two assumptions regarding the things whose behavior we model 
[ 21]: no interruption (external events can affect a thing only when it or at least one of 
its components is in a stable state) and stability assumption (all things we deal with in 
practice will eventually reach stable states).  

Finally, we defined similarity of behaviors in terms of similarity of their external 
events and states [ 20]: 

Event similarity: Two external events are considered similar if they appear to be 
the same in the application domain.  

State similarity: Two states s and t are considered similar with respect to a set of 
state variables X, iff ∀x∈X s.x = t.x. X is termed the view of interest.  

Based on these definitions we identified eight classes of external variability, name-
ly, variability that refers to software functionality as visible to users (see Table 1). 

Table 1. External variability classes based on systems’ behaviors 

# s1 E s* Class Name  
ݎ݈ܽ݅݉݅ݏ  .1 ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ Completely similar behaviors  
ݎ݈ܽ݅݉݅ݏ  .2 ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ ݐ݋݊ Similar cases and responses, different interactions  
ݎ݈ܽ݅݉݅ݏ  .3 ݐ݋݊ ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ Similar triggers, different responses 
ݎ݈ܽ݅݉݅ݏ  .4 ݐ݋݊ ݎ݈ܽ݅݉݅ݏ ݐ݋݊ ݎ݈ܽ݅݉݅ݏ Similar cases, different behaviors
ݎ݈ܽ݅݉݅ݏ ݐ݋݊  .5 ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ Different cases, similar behaviors
ݎ݈ܽ݅݉݅ݏ ݐ݋݊  .6 ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ ݐ݋݊ Different triggers, similar responses 
ݎ݈ܽ݅݉݅ݏ ݐ݋݊  .7 ݐ݋݊ ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ Different cases and responses, similar interactions 
ݎ݈ܽ݅݉݅ݏ ݐ݋݊  .8 ݐ݋݊ ݎ݈ܽ݅݉݅ݏ ݐ݋݊ ݎ݈ܽ݅݉݅ݏ Completely different behaviors 

 
In the current work, we use textual software requirements as the basis for automat-

ic identification of domain behaviors and their elements (namely, the initial and final 
states and the external events). We use semantic measurements in order to refine 
event and state similarity definitions. 

4 Deriving Domain Behaviors from Software Requirements 

Perceiving a software system as a set of intended changes in a given domain, we fo-
cus on systems’ behaviors as specified by or represented in functional requirements. 
Functional requirements commonly refer to actions (what should be performed?) and 
objects (on what objects, also termed patients, should the action be performed?). They 
can further refer to the agents (who performs the action?), the instruments (how the 
action is performed?), and the temporal constraints (when is the action preformed? in 
what conditions is it performed?).  

There are different ways to write and phrase functional requirements. For our  
purpose, we assume that they are specified as user stories or descriptions of use cases. 
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We further assume that each use case or user story represents a single behavior of the 
requested system2. For example, consider the following requirement which describes 
a typical use case in a library management system: 

When the home page is displayed, a borrower borrows a book copy by  
herself. She enters the copy identification number after she provides the 
borrower number. If the copy identification number and the borrower num-
ber are valid, the system updates the number of available copies of that title. 

Our approach consists of four steps: (1) pre-processing which checks the quality of 
the individual requirements and identifies the need for corrections or improvements; 
(2) extraction of the main behavioral elements from a requirement, e.g., the require-
ment’s agents (who?), actions (what?), and patients (on what objects?); (3) Classifica-
tion of the extracted main behavioral elements according to the ontological definition 
of behavior (in terms of states and events); and (4) measuring requirements variabili-
ty based on the framework presented in [ 20], [ 21].  

Pre-processing is out of the scope of this paper. It may use existing quality models, 
such as that presented in [ 1]. In the following sub-sections we elaborate on steps 2-4. 

4.1 Extraction of the Main Behavioral Elements 

In order to extract the main behavioral elements of software requirements we use 
semantic role labeling (SRL) [ 8]. This approach labels constituents of a phrase with 
their semantic roles in the phrase. Currently, we refer to five semantic roles which are 
of special importance to functional requirements. These roles, their labels, and the 
aspects they fulfill in functional requirements are listed in Table 2.  

Table 2. The semantic roles we use in our work 

Label Role Assigned to  Aspects fulfilled 
in requirements 

A0 Agent Agents, causers, or experiencers Who? 
A1 Patient Undergoing state change or being affected by the action On what? 
A2 Instrument Instruments, benefactives, attributes How? 
AM-
TMP 

Temporal 
modifier 

Time indicators specifying when an action took place When? 

AM-
ADV 

Adverbial 
modifier 

Temporally related (modifiers of events), intentional (modifi-
ers of propositions), focus-sensitive (e.g., only and even), or 
sentential (evaluative, attitudinal, viewpoint, performative) 

In what condi-
tions? 

 
Using SRL3, we specify for each requirement R a list of behavioral vectors 

BVR={bvi}i=1..n. Two types of behavioral vectors are identified: action and non-action 
vectors. The following definitions formally specify the behavioral vectors for these 
two types. Examples are provided immediately afterwards. 

                                                           
2  If this is not the case, a pre-processing done by a requirements engineer is needed to split the 

requirements statements to separate expected behaviors. 
3 We specifically use the system at http://barbar.cs.lth.se:8081/ or 

http://en.sempar.ims.uni¬stuttgart.de/.  
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Definition 1. An action vector represents an activity (identified by a verb) in the be-
havior: bvi ::= (Agenti, Actioni, Patienti, Instrumenti, Sourcei), where:  

- Agenti, Patienti and Instrumenti are as explained in Table 2. 
- Actioni is the verb predicate of the phrase. 
- Sourcei∈{AM-TMP, AM-ADV, None} indicates whether the vector originates 

from a modifier (temporal or adverbial) or a non-modifier phrase, respectively. 
An action vector is derived from a non-modifier phrase or a compound modifier 

phrase that is further parsed to reveal its constituting components (e.g., agents and 
actions). 

Definition 2. A non-action vector represents the temporal or adverbial pre-condition 
of the behavior (or part of it): bvi ::= (Modifieri, Sourcei), where: 

- Modifieri includes the atomic modifier phrase  
- Sourcei∈{AM-TMP, AM-ADV} indicates whether the vector originates from a 

temporal or adverbial modifier, respectively. 
A non-action vector is derived from an atomic modifier phrase which includes no 

verb (and thus is not further parsed by SRL).  
Table 3 lists the derived behavioral vectors for our previous requirement of the library 

management example. Vector #5 is a non-action vector. All other vectors represent ac-
tions. We further replace pronouns with their anaphors (i.e., the nouns to which they 
refer) using the algorithm in [ 18] (e.g. the agent “she” becomes “a borrower”). 

Table 3. Examples of behavioral vectors 

# Agent Action Patient Instrument Modifier Source 
1 4 is displayed the home page   AM-TMP  
2 a borrower Borrows a book copy by herself  None 
3 5She [a 

borrower] 
Enters the copy identifica-

tion number 
  None 

4 5She [a 
borrower] 

Provides the borrower  
number 

  AM-TMP 

5 4    the copy identifi-
cation number and 
the borrower 
number are valid  

AM-ADV 

6 The  
system  

Updates the number of 
available copies of 
that title 

  None 

The next step in the analysis is to arrange the behavioral vectors of each require-
ment in a temporal order. We do this by constructing temporal graphs:  

Definition 3. Given a requirement R and its derived list of behavioral vectors BVR, 
the temporal graph is defined as TGR=(BVR, E), where e=(bv1, bv2)∈E implies that 
bv1, bv2∈ BVR and bv1 temporally precedes bv2 (notation: bv1    bv2).  

The construction of edges in this graph is done in two steps. First, we use syntactic 
ordering, based on the order of the argument vectors in the requirement’s phrasing. 
                                                           
4 Note that since we are interested in automated analysis, we cannot incorporate here assump-

tions about what causes these actions (e.g., the system or an external user). 
5 Replacement of a pronoun by the relevant noun is indicated with pronoun [noun]. 
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Second, we apply semantic ordering, using the machine learning algorithm suggested 
in [ 15], to update the syntactic edges based on six types of temporal relations derived 
from the text. These relations are listed in Table 4. Whenever a semantic relationship 
contradicts a syntactic one, we use the semantic relationship as shown in the table. 

Table 4. The temporal relations for overriding syntactic edges with semantic ones; W, X, Y, 
and Z are temporal phrases or events,    indicates their order 

The graph after phase 1 Detected semantic temporal 
relation 

The graph after phase 2 

W   X    Y   Z Y before X 
Y ibefore X 

W   Y    X   Z 

W    X    Y    Z X begins Y6 
X ends Y6  
X includes Y6 
X simultaneous Y6  

 X 
W  Z 
 Y 

 
Fig. 1 exhibits the temporal graph for our example (Table 3). The changes the se-

mantic ordering causes to the syntactic order (the gray arrows) are depicted with the 
black arrows7.  

 

Fig. 1. The temporal graph generated for our example; Ellipses represent action vectors and 
rectangles – non-action vectors 

4.2 Classification of the Behavioral Vectors   

We now turn to the classification of the dynamic aspects of the requirements to initial 
states, external events, and final states. To this end, we first classify each behavioral 
vector into external, internal, or unknown (with respect to the requested system). In 
particular, we examine the Agent and Action components of action vectors: the agent 
can be internal, external, or missing (as in passive phrases)8; independently, the action 

                                                           
6 In all these cases X and Y are executed in parallel (at least partially). 
7 We assume that the requirements are well-written (i.e., include no ambiguities and contradic-

tions) after the pre-processing step. Thus, the temporal graph is a directed acyclic graph. 
8 We maintain a list of terms representing internal agents, including: “the system”, “the applica-

tion”, and the explicit name and abbreviation of the requested system. The requirements ana-
lyst may update this default list to include the main components of the requested system. 
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can have an active or a passive meaning9. All non-action vectors are considered inter-
nal, as they do not represent an actual action, but a pre-condition for the behavior (or 
part of it). Accordingly, we identify six generic cases (see Table 5).  

Table 5. Classifying behavioral vectors into internal, external, and unknown 

Case Classification 
class(bv) 

Example Comments 

1. An action vector with 
an external agent and 
an active meaning 

EXTERNAL “a borrower bor-
rows a book” 

The action is per-
formed by an external 
agent

2. An action vector with 
an external agent and a 
passive meaning 

INTERNAL “a borrower rece-
ives an email mes-
sage” 

The system acted on an 
external agent 

3. An action vector with 
an internal agent and 
an active meaning 

INTERNAL “the system updates 
the number of 
available copies” 

The action is per-
formed by the system 

4. An action vector with 
an internal agent and a 
passive meaning 

EXTERNAL “the system rece-
ives the number of 
available copies” 

The system is acted on 

5. An action vector with a 
missing agent 

UNKNOWN “a book is  
borrowed” 

The vector cannot be 
deterministically clas-
sified 

6. A non-action vector INTERNAL if “the book copy is 
valid” or if “the 
borrower is new” 

The vector represents a 
pre-condition for the 
behavior (or part of it) 

 
Returning to our example (Table 3): class(bv1) = UNKNOWN; class(bv2) = 

class(bv3) = class(bv4) = EXTERNAL; class(bv5) = class(bv6) = INTERNAL.  
Behavioral vectors classified as EXTERNAL represent actions performed by ex-

ternal agents and therefore are considered external events (E). In contrast, behavioral 
vectors classified as INTERNAL represent actions performed or pre-conditions 
checked by the system. They are considered to reflect states: initial, final, or interme-
diate. As an initial state describes the state before the behavior occurs, only internal 
behavioral vectors that precede (in the temporal graph) the sequence of external be-
havioral vectors will be taken into consideration for defining the initial state of the 
behavior. Of those, only vectors whose sources are modifiers (and thus represent pre-
conditions) are considered the initial state of the behavior (s1). Following similar 
arguments, only internal behavioral vectors which follow the sequence of external 
behavioral vectors will be taken into consideration for defining the final state of the 
behavior. Of those, only action vectors whose sources are not modifiers (and thus 
represent actual internal actions) are considered the final state of the behavior (s*). 
All other internal behavioral vectors, i.e., those interleaved with the external beha-
vioral vectors, are considered to be manifested by intermediate states. Such actions 
(and related states) are not currently taken into consideration in our analysis, which is 
based on an external view of behaviors.  

                                                           
9 Note that passive actions can use an active form of the verb (e.g., “receive” and “get”). Thus, 

we maintain a list of such verbs. 
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Behavioral vectors for which the agent is unknown are classified at this stage into 
multiple behavioral elements (e.g., both initial state and external events). The decision 
whether these vectors represent internal or external actions is taken in a later stage, 
when calculating for each vector the most similar counterparts. 

We next formally define the behavior associated with a requirement and exemplify 
this definition on our requirement: 

Definition 4. Given a requirement R, its derived list of behavioral vectors BVR, and 
its temporal graph TGR, the behavior associated with R is defined as a triplet BR=(s1, 
E, s*), where: 

- The initial state (s1) includes all internal or unknown vectors originated from mod-
ifiers (i.e., may represent pre-conditions) and precede all external vectors in the 
temporal graph representing the behavior. Formally expressed, 
s1 = {bv∈BVR | class(bv) ∈ {INTERNAL, UNKNOWN} and bv.Source ∈ {AM-
TMP, AM-ADV} and ¬∃path p∈TGR such that bv’  bv∈p and class(bv’) = 
EXTERNAL} 

- The external events (E) include all potentially external behavioral vectors (name-
ly, external vectors and action vectors with unknown agents). Formally expressed, 
E = {bv ∈ BVR | class(bv) ∈ {EXTERNAL, UNKNOWN}}   

- The final state (s*) includes all internal or unknown vectors that do not originate 
from modifiers (i.e., may represent actual actions) and follow all external vectors 
in the temporal graph representing the behavior. Formally expressed, 
s* = {bv ∈ BVR | class(bv) ∈ {INTERNAL, UNKNOWN} and bv.Source = None 
and ¬∃path p∈TGR such that bv   bv’∈p and class(bv’) = EXTERNAL} 

In our previous example, we obtain the classification of behavioral vectors as 
shown in Table 6. Note that bv1 appears twice as its agent is unknown and hence it 
can be considered either an external event or an initial state. bv5 = (the copy identifi-
cation number and the borrower number are valid, AM-ADV) does not appear at all 
as it represents a pre-condition originated from an adverbial modifier and appearing 
after external events. Thus, bv5 cannot be considered an initial neither final state (but 
rather an intermediate state). 

Table 6. An example of the outcome of the behavioral vectors classification phase 

S1 (initial state) E (external event to which the system responds) S* (final state the sys-
tem is expected to have) 

bv1=( , is displayed, 
the home page, , 
AM-TMP) 

bv1=( , is displayed, the home page, , AM-TMP) 
bv2=(a borrower, borrows, a book copy, by herself 

, None) 
bv4=(a borrower, provides, the borrower number, , 

None) 
bv3=(a borrower, enters, the copy identification 

number, , None) 

bv6=(the system, updates,  
the number of available 
copies of that title, , 
None) 
 

4.3 Measuring Requirements Variability 

Having two requirements, their behavioral vectors, and the classification of the  
vectors to initial states, external events, and final states, we now define behavioral 
similarity. The definitions are followed by an example. 
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Definition 5 (Behavioral Vectors Similarity). Given two behavioral vectors, the 
vectors similarity is calculated as follows: 

1. If the two vectors are action vectors, the vectors similarity is the weighted average 
of their component semantic similarities. Formally expressed,  

VS (v1, v2) = 
∑ ೎೚೘೛כ௪೎೚೘೛כ௦௜௠ሺ௩భ.௖௢௠௣,௩మ.௖௢௠௣ሻ೎೚೘೛אሼಲ೒೐೙೟,ಲ೎೟೔೚೙,ುೌ೟೔೐೙೟,಺೙ೞ೟ೝ೚೘೐೙೟ሽ∑ ೎೚೘೛כ௪೎೚೘೛೎೚೘೛אሼಲ೒೐೙೟,ಲ೎೟೔೚೙,ುೌ೟೔೐೙೟,಺೙ೞ೟ೝ೚೘೐೙೟ሽ , 

where:  
- wcomp is the weight given to a specific vector component (agent, action, pa-

tient, or instrument), ∑ ሼ஺௚௘௡௧,஺௖௧௜௢௡,௉௔௧௜௘௡௧,ூ௡௦௧௥௢௠௘௡௧ሽא௖௢௠௣௖௢௠௣ݓ =1. 
- δcomp is 1 if the component comp exists (i.e., it is not empty in both v1 and v2) 

and 0 otherwise. 
- sim(v1.comp, v2.comp) is the semantic similarity of the two vectors’ compo-

nents. 
2. If the two vectors are non-action vectors, the vectors similarity is the semantic 

similarity of their modifier components. Formally expressed,  
VS (v1, v2) = sim(v1.Modifier, v2.Modifier), where 
- sim(v1.Modifier, v2.Modifier) is the semantic similarity of the modifier com-

ponents of the two vectors. 
3. If one vector is an action vector (say v1) and the other is a non-action vector, the 

vectors similarity is the semantic similarity between the corresponding phrases. 
Formally expressed, VS (v1, v2) = sim(v1, v2.Modifier), where: 
- sim(v1, v2. Modifier) is the semantic similarity between the concatenation of 

the agent, action, patient, and instrument components of the first vector and 
the modifier component of the second vector. 

Definition 6 (Behavioral Element Similarity). Given two requirements, R1 and R2, 
and their behavioral vectors that are classified as the same element bh (initial state, 
external events, or final state), the behavioral element similarity is calculated as the 
average of the maximal pair-wise similarities. Formally expressed: 

BS (R1, R2 | bh) = 

0 ܴଵ. bh׎ ܽ݊݀ ܴଶ. bh ൌ ∑   ׎ ୫ୟ୶ೕసభ..೘ ௏ௌሺ௩೔,௩ᇱೕሻ೙೔సభ ௡ ܴଵ. bh ൌ ሼݒଵ, … , .௡ሽ and ܴଶݒ bh ൌ ሼݒԢଵ, … , Ԣ௠ሽ1ݒ ܴଵ. bh ൌ   , ׎

where: 
- Rଵ. bh, Rଶ. bh are the behavioral vectors classified as the element bh in re-

quirements R1 and R2, respectively; R୧. bh=∅ means that no behavioral vec-
tors were classified as bh. 

- VS (vi, v’j) is the behavioral vector similarity of vi and v’j. 

As an example consider the following requirements: 

1. “When a borrower borrows a book copy by herself, she enters the copy identification 
number and the borrower number. The system updates the number of available copies of 
that title.” 

2. “When a librarian lends a book copy to a borrower, she enters the copy identification 
number and the borrower number. The system updates the number of available copies of 
that title and stores the lending details (when, by whom, to whom).” 

 
For calculating component semantic similarities we used an MCS version that han-

dles phrases rather than complete sentences. We set the component weights to 0.3, 
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0.4, 0.2, and 0.1 for agents, actions, patients, and instruments, respectively, perceiving 
agents and actions as the dominant components in behavioral vectors similarities. We 
obtain initial state similarity for the given requirements of 1 (no special pre-conditions 
in both requirements), external events similarity of 0.78 (due to differences in the 
agents that initiate the events), and final state similarity of 1 (as the final state of the 
first requirement is included in the final state of the second requirement). Note that we 
chose an asymmetric metric for defining behavioral element similarity, meaning that 
BS (R1, R2 | bh) ≠ BS (R2, R1 | bh), as we perceive similarity as the ability to reuse 
behavior R2 when behavior R1 is required. The asymmetry in this measure reflects the 
possibility that it might be acceptable to substitute one behavior for another, but not 
the second for the first, as exemplified by the two requirements above.  

Based on the behavioral element similarity, we classify the outcome of comparing 
each pair of requirements to one of the eight variability classes in Table 1. To this 
end, we define event similarity threshold (the) and state similarity threshold (ths):  

1. Initial states are considered similar if and only if BS (R1, R2 | s1) > ths.  
2. External events are considered similar if and only if BS (R1, R2 | E) > the.  
3. Final states are considered similar if and only if BS (R1, R2 | s*) > ths.   

Assuming an event similarity threshold greater than 0.5 (e.g., 0.8), the variability 
class to which requirement 1 belongs with respect to requirement 2 is # 2 (see Table 
1: similar cases and responses, different interactions). This class accurately describes 
the requirements variability. 

5 Preliminary Results 

To evaluate the proposed approach, we compared its outcomes to evaluations by ex-
perts. We provided five experts, each having 10 to 25 years of experience in require-
ments engineering and software development, with 10 requirements. For each re-
quirement, four alternative systems to be considered were presented to the experts. 
Each alternative was describes as a requirement. The full set of requirements and 
alternatives is discussed in [ 20]10. We asked the experts to rank the four alternatives 
for each requirement based on the similarity to the given requirement in terms of the 
amount of changes needed to adapt the alternatives to the requirement. Since experts’ 
ranking requires some subjective considerations, there was no full agreement between 
the experts regarding the ranking of the alternatives. Therefore, we defined for each 
pair of alternatives, Si and Sj (i, j=1…4, i>j), relation “Si is not better than Sj” 
(Si§Sj). For each requirement there were four possible alternatives yielding six such 
relations. This provided a total of 60 relations for the 10 requirements. There were 55 
relations on which most experts (at least four out of the five experts, 80%) agreed.  

We conducted the analysis described in this work for the same set of requirements. 
We used the behavioral element similarities to calculate overall similarity, which can 
serve as a basis for ranking alternatives. The weight of initial state similarity was set 
to 0.2, the weight of external events – 0.3, and the weight of final state similarity – 
0.5. This reflected an assumption that the final state of behaviors (usually specifying 

                                                           
10 It can be accessed at http://mis.hevra.haifa.ac.il/~iris/research/OA/ 
QuestionnaireEng.pdf.  
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system output) is the dominant element in defining behavior similarity. We followed a 
similar procedure using the well-known semantic similarity method LSA, which as 
noted is based only on semantic considerations. Table 7 summarizes the results of the 
ontological approach and LSA with respect to experts11.  

Table 7. Comparing the results of the ontological approach and LSA with experts 

 Ontological approach LSA 
Number of experts’ relations 
found by the method (out of 55) 

51 relations  
(93%) 

45 relations  
(82%) 

 

As can be seen, our approach performed better than LSA in comparison to rankings 
by experts. We believe that our approach has an additional advantage to better  
performance – it is self-explanatory. Users of the approach, who are expected to be 
requirements analysts, can see not only the overall calculated similarity, but also more 
details: initial state, external events, and final state similarities. This can help make 
their reuse decisions more evidence-based and feasibility studies more systematic. 

Analyzing the relations missed by the ontological approach, we observed the fol-
lowing. First, some of the requirements included phrases that explain reasons, e.g., 
“so the librarian can make inter-library loans”. These phrases were interpreted by the 
approach as an integral part of the behavior (part of the external events in this case). 
Second, in a few cases, where the requirements statements included very complicated 
sentences, SRL failed to correctly identify the agents, actions, patients and/or instru-
ments of the different phrases. Finally, we observed that in some cases our approach 
resulted with the conclusion that two alternatives are very similar to the given re-
quirement and the experts subjectively preferred one alternative over the other. 

6 Summary and Future Work  

We proposed a method to analyze variability and similarity of software requirements 
based on combining semantic and behavioral aspects of requirement statements.  
To formalize the external (user-oriented) aspects of software behavior we used an 
ontological model where a specific functional requirement is modeled as a triplet: 
initial state, external events, and the final state of the system. We have shown  
how such a representation can be obtained automatically by: (1) applying semantic 
analysis to requirements statements to identify behavioral vectors; (2) describing the 
vectors in common terms; (3) ordering the vectors temporally based on modifiers 
identified in the semantic analysis; and (4) extracting the initial state, external events, 
and final state for each functional requirement. We then suggested a way to measure 
the similarity of two requirements based on each element of their behavioral triplets 
and classified pairs of requirements to one of eight variability classes. In a prelimi-
nary evaluation, the approach yielded results more similar to experts’ evaluations than 
those of a well-known semantic similarity measure – LSA.  
                                                           
11 Elaborations can be found at  
    http://mis.hevra.haifa.ac.il/~iris/research/SOVA/. 
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In the future, we intend to extend the approach in several ways.  First, we intend to 
consider additional semantic roles, e.g., location modifiers. Second, we plan to refine 
the similarity measures to include a choice of specific state variables rather than com-
plete behavioral vectors, thus having a way to reflect user views more faithfully. This 
will enable us to analyze variability of software requirements from different points of 
view that may reflect different purposes or stakeholders. Users may consider two 
software behaviors similar while developers may consider them different, or vice 
versa. Similarly, such differences might exist among users. The choice of state va-
riables to represent different points of view can be included in the behavioral analysis 
and hence in the similarity calculation. Third, we also intend to take into account in 
the variability analysis different ordering of the occurrence of external events. 
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