
M. Jarke et al. (Eds.): CAiSE 2014, LNCS 8484, pp. 150–164, 2014.
© Springer International Publishing Switzerland 2014

Analyzing Variability of Software Product Lines
Using Semantic and Ontological Considerations

Iris Reinhartz-Berger1, Nili Itzik1, and Yair Wand2

1 Department of Information Systems, University of Haifa, Israel
iris@is.haifa.ac.il, nitzik@campus.haifa.ac.il,
2 Sauder School of Business, University of British Columbia, Canada

yair.wand@ubc.ca

Abstract. Software Product Line Engineering (SPLE) is an approach to systemat-
ically reuse software-related artifacts among different, yet similar, software prod-
ucts. Previewing requirements as drivers of different development methods and
activities, several studies have suggested using requirements specifications to
identify and analyze commonality and variability of software products. These stu-
dies mainly employ semantic text similarity techniques. As a result, they might
be limited in their ability to analyze the variability of the expected behaviors of
software systems as perceived from an external point of view. Such a view is im-
portant when reaching different reuse decisions. In this paper we propose to intro-
duce considerations which reflect the behavior of software products as manifested
in requirement statements. To model these behavioral aspects of software re-
quirements we use terms adapted from Bunge’s ontological model. The suggested
approach automatically extracts the initial state, external events, and final state of
software behavior. Then, variability is analyzed based on that view.

Keywords: Software Product Line Engineering, Variability analysis,
Requirements Specifications, Ontology.

1 Introduction

Software Product Line Engineering (SPLE) is an approach to systematically reuse
software-related artifacts among different, yet similar, software products [6], [19].
Reuse of artifacts, such as requirements specifications, design documents and code,
often results in the creation of a myriad of variants. Managing such a variety of arti-
facts’ variants is a significant challenge. Thus, SPLE promotes the definition and
management of software product lines (SPLs), which are families of similar software
systems, termed software products. An important aspect of SPLE is managing
the variability that exists between the members of the same SPL. In this context,
variability is defined as “the ability of an asset to be efficiently extended, changed,
customized, or configured for use in a particular context” [10].

In SPLE, different artifacts need to be managed. Of those, requirements manage-
ment is of special interest due to several reasons. First, requirements represent the
expectations of different stakeholders from the requested system. These stakeholders

 Analyzing Variability of Software Product Lines 151

include users and customers and not just developers. Second, requirements are the
drivers of other development activities, including analysis, design, implementation,
and testing. Finally, requirements are relevant to many development methods, includ-
ing agile ones (through concepts such as user stories).

Several studies have suggested using requirements specifications in order to identi-
fy and analyze commonality and variability of software products. In these studies,
requirements are operationalized or realized by features, and variability is usually
represented as feature diagrams, the main aid for representing and managing variabili-
ty in SPLE [5], [11]. The current studies commonly apply only semantic similarity
metrics, that is, seek similarities of terminology, in order to identify common features,
create feature diagrams, and analyze the variability of the resultant feature diagrams.
As we will show via examples, using only semantic considerations might limit the
ability to analyze the variability of the expected behaviors of software systems as
perceived from an external point of view of a user or a customer. Such a view is im-
portant for reaching different reuse decisions, e.g., when conducting feasibility stu-
dies, estimating software development efforts, or adopting SPLE. In addition, current
variability analysis methods take into account intermediate outcomes of the behavior
that may not matter to external stakeholders, such as users and customers. For exam-
ple, a system may intermediately keep information in case a transaction fails, but this
would be of no interest when the behavior ends successfully. Hence, when analyzing
variability of software products, we aim at minimizing the impact of intermediate
outcomes which cannot be used for (and might confound) comparing the products
from an external point of view.

In this work we propose to overcome the shortcomings of pure semantic-based va-
riability analysis by combining semantic similarity with similarity of software beha-
vior as manifested in requirement statements. To compare software behavior we apply
an ontological view of dynamic aspects of systems which we proposed in earlier work
[20], [21]. For a given requirement, we consider the behavior it represents in the ap-
plication (“business”) domain. Taking an external point of view, behavior is described
in terms of the initial state of the system before the behavior occurs, the external
events that trigger the behavior, and the final state of the system after the behavior
occurs. We use semantic metrics to evaluate the similarity of related behavioral ele-
ments and use this similarity to analyze variability.

The rest of this paper is structured as follows. Section 2 reviews related work, ex-
emplifying limitations of current approaches. Section 3 briefly provides the ontologi-
cal background and our framework for classifying software variability. Section 4
introduces the ontological approach to variability analysis and demonstrates its appli-
cability. Section 5 presents preliminary results and discusses advantages and limita-
tions. Finally, Section 6 summaries the work and presents future research directions.

2 Related Work

As mentioned above, the main approach to variability analysis in SPLE is semantic –
based on text similarity measures. Semantic text similarity measures are commonly
classified as knowledge-based or corpus-based [9], [16].

152 I. Reinhartz-Berger, N. Itzik, and Y. Wand

Corpus-based measures identify the degree of similarity based on information de-
rived from large corpora (e.g., [4], [12], and [22]). Latent Semantic Analysis (LSA)
[12], for example, is a well-known method that analyzes the statistical relationships
among words in a large corpus of text. Sentence similarity is computed as the cosine
of the angle between the vectors representing the sentences’ words.

Knowledge-based measures use information drawn from semantic networks. Many
of these methods use WordNet [26] for measuring word (or concept) similarity. This
can be done in different ways, including measuring path length between terms on the
semantic net or using information content, namely, the probability to find the concept
in a given net. Several measures have been suggested to extend word similarity to
sentence similarity. These measures consider sentences as vectors, sets, or lists of
words and suggest ways to calculate sentence similarity using word similarities (e.g.,
[13], [14], and [16]). The MCS method [16], for example, calculates sentence similar-
ity by finding the maximum word similarity score for each word in a sentence with
words in the same part of speech class in another sentence. The derived word similari-
ty scores are weighted with the inverse document frequency scores that belong to the
corresponding word.

In the context of analyzing software products variability, different studies have
suggested ways to use textual requirements to generate variability models in general
and feature diagrams in particular. Examples of such studies are [7], [17], and [25]. In
[25], for instance, the semantic similarity of the requirements is measured using LSA.
Then, similar requirements are grouped using a hierarchical agglomerative clustering
algorithm. Finally, a Requirements Description Language enables the specification
and composition of variant features.

All the above methods employ only semantic considerations. Furthermore, the si-
milarity calculation takes into consideration the full text of a requirement statement.
As mentioned before, such statements might include aspects (e.g., intermediate out-
comes) that are less or not relevant for analyzing variability from an external perspec-
tive. We illustrate the limitations of the current methods and motivate our approach,
using a series of examples.

The first example refers to the following requirements:

(1) “The system should be able to report on any user update activities”;
(2) “Any user should be able to report system activities”.

Applying the well-known and commonly used semantic similarity method LSA1,
the similarity of these sentences is 1. This would imply that their semantic meanings
are identical, and hence no variability between these requirements exists. It is clear,
however, that these requirements are quite different: the first represents behavior that
is internal and likely aims at detecting suspicious user update activities. The second
requirement represents a behavior triggered by an external user who intends to report
his/her system activities.

As a second example, consider the following two requirements:

(3) “The system will allow different functions based on predefined user profiles”;
(4) “Different operations should be allowed for different user profiles”.

1 We used LSA implementation that can be accessed via http://lsa.colorado.edu/.

 Analyzing Variability of Software Product Lines 153

In this case, LSA results with a low similarity value of 0.38, failing to reflect the
situation accurately: the two requirements represent very similar domain behaviors.

Finally, the following two requirements can be considered similar from an external
point of view, although they differ in their levels of details of intermediate actions.
(5) “When the client activates an activity she is allowed to perform, the system dis-
plays the outputs of the activity.”
(6) “If the user is authorized to perform an action, the system initializes the parame-
ters needed by the action. The user performs the action and the system responds that
the action was performed. Finally, the user requests to display the outputs, and the
system presents the action's outcomes.”

However, the LSA-based value of the similarity of these two requirements is rela-
tively low (0.57), failing to reflect their similarity from an external point of view.

To overcome the above limitations, we propose to combine a semantic approach
and considerations which reflect system behavior as manifested in requirements
statements and modeled ontologically.

3 Bung’s Ontology and Software Variability Classification

We use concepts from Bunge's ontological model [2, 3] and its adaptations to
software and information systems [23, 24] in order to define behaviors and use them
for variability analysis. We have chosen this ontology because it formalizes concepts
that are important for representing functionality and behaviors. Specifically, these
concepts include things, states, events, and transformations. Furthermore, Bunge’s
ontological model has already served us to define software variability classes [20, 21].

Bunge's ontological model [2], [3] describes the world as made of things that pos-
sess properties. Properties are known via attributes, which are characteristics assigned
to things by humans. A state variable is a function which assigns a value to an attribute
of a thing at a given time. The state of a thing is the vector of state variables’ values at
a particular point in time. For a state s, s.x denotes the value of the state variable x in s.
An event is a change of a state of a thing. An event can be external or internal. An
external event is a change in the state of a thing as a result of an action of another
thing. An internal event is a change which arises due to an internal transformation in
the thing. Finally, a state can be stable or unstable: a stable state can be changed only
by an external event. An unstable state will be changed by an internal event.

We exemplify the above concepts using a library management domain. In this
domain, book status can be considered a state variable, defining whether a book is
borrowed, on the shelf, or in repair; ready to lend can be considered a stable state,
when it can accept the external event – borrow book (generated by a reader); and
book becomes past-due can be considered an internal event, which is initiated when a
certain period has passed from borrowing and the book is not yet returned.

Using these concepts, we defined in [20] a behavior as a triplet (s1, E, s*). s1 is
termed the initial state of the behavior and s* – the final state of the behavior. We
assume that the system can respond to external events when in s1 (i.e., s1 is an input
sensitive state, see [20], [21]). s* is the first stable state the thing (the real domain or a
system) reaches when it starts in state s1 and the external events sequence E=<e1,…,

154 I. Reinhartz-Berger, N. Itzik, and Y. Wand

en> occurs. The full behavior includes intermediate states the thing traverses due to its
own transformations in response to the external events. However, only (s1, E, s*) are
“visible” from an external (user) point of view.

In our example, borrowing can be considered a behavior, which starts in the state
ready to lend (i.e., when the book status is “on the shelf” and the librarian is “availa-
ble”), is triggered by the external event borrow book, and ends in the state book is
borrowed (i.e., the book status is “borrowed” and the librarian is “available” again).

We further made two assumptions regarding the things whose behavior we model
[21]: no interruption (external events can affect a thing only when it or at least one of
its components is in a stable state) and stability assumption (all things we deal with in
practice will eventually reach stable states).

Finally, we defined similarity of behaviors in terms of similarity of their external
events and states [20]:

Event similarity: Two external events are considered similar if they appear to be
the same in the application domain.

State similarity: Two states s and t are considered similar with respect to a set of
state variables X, iff ∀x∈X s.x = t.x. X is termed the view of interest.

Based on these definitions we identified eight classes of external variability, name-
ly, variability that refers to software functionality as visible to users (see Table 1).

Table 1. External variability classes based on systems’ behaviors

s1 E s* Class Name
ݎ݈ܽ݅݉݅ݏ .1 ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ Completely similar behaviors
ݎ݈ܽ݅݉݅ݏ .2 ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ ݐ݋݊ Similar cases and responses, different interactions
ݎ݈ܽ݅݉݅ݏ .3 ݐ݋݊ ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ Similar triggers, different responses
ݎ݈ܽ݅݉݅ݏ .4 ݐ݋݊ ݎ݈ܽ݅݉݅ݏ ݐ݋݊ ݎ݈ܽ݅݉݅ݏ Similar cases, different behaviors
ݎ݈ܽ݅݉݅ݏ ݐ݋݊ .5 ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ Different cases, similar behaviors
ݎ݈ܽ݅݉݅ݏ ݐ݋݊ .6 ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ ݐ݋݊ Different triggers, similar responses
ݎ݈ܽ݅݉݅ݏ ݐ݋݊ .7 ݐ݋݊ ݎ݈ܽ݅݉݅ݏ ݎ݈ܽ݅݉݅ݏ Different cases and responses, similar interactions
ݎ݈ܽ݅݉݅ݏ ݐ݋݊ .8 ݐ݋݊ ݎ݈ܽ݅݉݅ݏ ݐ݋݊ ݎ݈ܽ݅݉݅ݏ Completely different behaviors

In the current work, we use textual software requirements as the basis for automat-

ic identification of domain behaviors and their elements (namely, the initial and final
states and the external events). We use semantic measurements in order to refine
event and state similarity definitions.

4 Deriving Domain Behaviors from Software Requirements

Perceiving a software system as a set of intended changes in a given domain, we fo-
cus on systems’ behaviors as specified by or represented in functional requirements.
Functional requirements commonly refer to actions (what should be performed?) and
objects (on what objects, also termed patients, should the action be performed?). They
can further refer to the agents (who performs the action?), the instruments (how the
action is performed?), and the temporal constraints (when is the action preformed? in
what conditions is it performed?).

There are different ways to write and phrase functional requirements. For our
purpose, we assume that they are specified as user stories or descriptions of use cases.

 Analyzing Variability of Software Product Lines 155

We further assume that each use case or user story represents a single behavior of the
requested system2. For example, consider the following requirement which describes
a typical use case in a library management system:

When the home page is displayed, a borrower borrows a book copy by
herself. She enters the copy identification number after she provides the
borrower number. If the copy identification number and the borrower num-
ber are valid, the system updates the number of available copies of that title.

Our approach consists of four steps: (1) pre-processing which checks the quality of
the individual requirements and identifies the need for corrections or improvements;
(2) extraction of the main behavioral elements from a requirement, e.g., the require-
ment’s agents (who?), actions (what?), and patients (on what objects?); (3) Classifica-
tion of the extracted main behavioral elements according to the ontological definition
of behavior (in terms of states and events); and (4) measuring requirements variabili-
ty based on the framework presented in [20], [21].

Pre-processing is out of the scope of this paper. It may use existing quality models,
such as that presented in [1]. In the following sub-sections we elaborate on steps 2-4.

4.1 Extraction of the Main Behavioral Elements

In order to extract the main behavioral elements of software requirements we use
semantic role labeling (SRL) [8]. This approach labels constituents of a phrase with
their semantic roles in the phrase. Currently, we refer to five semantic roles which are
of special importance to functional requirements. These roles, their labels, and the
aspects they fulfill in functional requirements are listed in Table 2.

Table 2. The semantic roles we use in our work

Label Role Assigned to Aspects fulfilled
in requirements

A0 Agent Agents, causers, or experiencers Who?
A1 Patient Undergoing state change or being affected by the action On what?
A2 Instrument Instruments, benefactives, attributes How?
AM-
TMP

Temporal
modifier

Time indicators specifying when an action took place When?

AM-
ADV

Adverbial
modifier

Temporally related (modifiers of events), intentional (modifi-
ers of propositions), focus-sensitive (e.g., only and even), or
sentential (evaluative, attitudinal, viewpoint, performative)

In what condi-
tions?

Using SRL3, we specify for each requirement R a list of behavioral vectors

BVR={bvi}i=1..n. Two types of behavioral vectors are identified: action and non-action
vectors. The following definitions formally specify the behavioral vectors for these
two types. Examples are provided immediately afterwards.

2 If this is not the case, a pre-processing done by a requirements engineer is needed to split the

requirements statements to separate expected behaviors.
3 We specifically use the system at http://barbar.cs.lth.se:8081/ or

http://en.sempar.ims.uni¬stuttgart.de/.

156 I. Reinhartz-Berger, N. Itzik, and Y. Wand

Definition 1. An action vector represents an activity (identified by a verb) in the be-
havior: bvi ::= (Agenti, Actioni, Patienti, Instrumenti, Sourcei), where:

- Agenti, Patienti and Instrumenti are as explained in Table 2.
- Actioni is the verb predicate of the phrase.
- Sourcei∈{AM-TMP, AM-ADV, None} indicates whether the vector originates

from a modifier (temporal or adverbial) or a non-modifier phrase, respectively.
An action vector is derived from a non-modifier phrase or a compound modifier

phrase that is further parsed to reveal its constituting components (e.g., agents and
actions).

Definition 2. A non-action vector represents the temporal or adverbial pre-condition
of the behavior (or part of it): bvi ::= (Modifieri, Sourcei), where:

- Modifieri includes the atomic modifier phrase
- Sourcei∈{AM-TMP, AM-ADV} indicates whether the vector originates from a

temporal or adverbial modifier, respectively.
A non-action vector is derived from an atomic modifier phrase which includes no

verb (and thus is not further parsed by SRL).
Table 3 lists the derived behavioral vectors for our previous requirement of the library

management example. Vector #5 is a non-action vector. All other vectors represent ac-
tions. We further replace pronouns with their anaphors (i.e., the nouns to which they
refer) using the algorithm in [18] (e.g. the agent “she” becomes “a borrower”).

Table 3. Examples of behavioral vectors

Agent Action Patient Instrument Modifier Source
1 4 is displayed the home page AM-TMP
2 a borrower Borrows a book copy by herself None
3 5She [a

borrower]
Enters the copy identifica-

tion number
 None

4 5She [a
borrower]

Provides the borrower
number

 AM-TMP

5 4 the copy identifi-
cation number and
the borrower
number are valid

AM-ADV

6 The
system

Updates the number of
available copies of
that title

 None

The next step in the analysis is to arrange the behavioral vectors of each require-
ment in a temporal order. We do this by constructing temporal graphs:

Definition 3. Given a requirement R and its derived list of behavioral vectors BVR,
the temporal graph is defined as TGR=(BVR, E), where e=(bv1, bv2)∈E implies that
bv1, bv2∈ BVR and bv1 temporally precedes bv2 (notation: bv1  bv2).

The construction of edges in this graph is done in two steps. First, we use syntactic
ordering, based on the order of the argument vectors in the requirement’s phrasing.

4 Note that since we are interested in automated analysis, we cannot incorporate here assump-

tions about what causes these actions (e.g., the system or an external user).
5 Replacement of a pronoun by the relevant noun is indicated with pronoun [noun].

 Analyzing Variability of Software Product Lines 157

Second, we apply semantic ordering, using the machine learning algorithm suggested
in [15], to update the syntactic edges based on six types of temporal relations derived
from the text. These relations are listed in Table 4. Whenever a semantic relationship
contradicts a syntactic one, we use the semantic relationship as shown in the table.

Table 4. The temporal relations for overriding syntactic edges with semantic ones; W, X, Y,
and Z are temporal phrases or events,  indicates their order

The graph after phase 1 Detected semantic temporal
relation

The graph after phase 2

W  X  Y Z Y before X
Y ibefore X

W  Y  X Z

W  X  Y  Z X begins Y6
X ends Y6
X includes Y6
X simultaneous Y6

 X
W Z
 Y

Fig. 1 exhibits the temporal graph for our example (Table 3). The changes the se-

mantic ordering causes to the syntactic order (the gray arrows) are depicted with the
black arrows7.

Fig. 1. The temporal graph generated for our example; Ellipses represent action vectors and
rectangles – non-action vectors

4.2 Classification of the Behavioral Vectors

We now turn to the classification of the dynamic aspects of the requirements to initial
states, external events, and final states. To this end, we first classify each behavioral
vector into external, internal, or unknown (with respect to the requested system). In
particular, we examine the Agent and Action components of action vectors: the agent
can be internal, external, or missing (as in passive phrases)8; independently, the action

6 In all these cases X and Y are executed in parallel (at least partially).
7 We assume that the requirements are well-written (i.e., include no ambiguities and contradic-

tions) after the pre-processing step. Thus, the temporal graph is a directed acyclic graph.
8 We maintain a list of terms representing internal agents, including: “the system”, “the applica-

tion”, and the explicit name and abbreviation of the requested system. The requirements ana-
lyst may update this default list to include the main components of the requested system.

158 I. Reinhartz-Berger, N. Itzik, and Y. Wand

can have an active or a passive meaning9. All non-action vectors are considered inter-
nal, as they do not represent an actual action, but a pre-condition for the behavior (or
part of it). Accordingly, we identify six generic cases (see Table 5).

Table 5. Classifying behavioral vectors into internal, external, and unknown

Case Classification
class(bv)

Example Comments

1. An action vector with
an external agent and
an active meaning

EXTERNAL “a borrower bor-
rows a book”

The action is per-
formed by an external
agent

2. An action vector with
an external agent and a
passive meaning

INTERNAL “a borrower rece-
ives an email mes-
sage”

The system acted on an
external agent

3. An action vector with
an internal agent and
an active meaning

INTERNAL “the system updates
the number of
available copies”

The action is per-
formed by the system

4. An action vector with
an internal agent and a
passive meaning

EXTERNAL “the system rece-
ives the number of
available copies”

The system is acted on

5. An action vector with a
missing agent

UNKNOWN “a book is
borrowed”

The vector cannot be
deterministically clas-
sified

6. A non-action vector INTERNAL if “the book copy is
valid” or if “the
borrower is new”

The vector represents a
pre-condition for the
behavior (or part of it)

Returning to our example (Table 3): class(bv1) = UNKNOWN; class(bv2) =

class(bv3) = class(bv4) = EXTERNAL; class(bv5) = class(bv6) = INTERNAL.
Behavioral vectors classified as EXTERNAL represent actions performed by ex-

ternal agents and therefore are considered external events (E). In contrast, behavioral
vectors classified as INTERNAL represent actions performed or pre-conditions
checked by the system. They are considered to reflect states: initial, final, or interme-
diate. As an initial state describes the state before the behavior occurs, only internal
behavioral vectors that precede (in the temporal graph) the sequence of external be-
havioral vectors will be taken into consideration for defining the initial state of the
behavior. Of those, only vectors whose sources are modifiers (and thus represent pre-
conditions) are considered the initial state of the behavior (s1). Following similar
arguments, only internal behavioral vectors which follow the sequence of external
behavioral vectors will be taken into consideration for defining the final state of the
behavior. Of those, only action vectors whose sources are not modifiers (and thus
represent actual internal actions) are considered the final state of the behavior (s*).
All other internal behavioral vectors, i.e., those interleaved with the external beha-
vioral vectors, are considered to be manifested by intermediate states. Such actions
(and related states) are not currently taken into consideration in our analysis, which is
based on an external view of behaviors.

9 Note that passive actions can use an active form of the verb (e.g., “receive” and “get”). Thus,

we maintain a list of such verbs.

 Analyzing Variability of Software Product Lines 159

Behavioral vectors for which the agent is unknown are classified at this stage into
multiple behavioral elements (e.g., both initial state and external events). The decision
whether these vectors represent internal or external actions is taken in a later stage,
when calculating for each vector the most similar counterparts.

We next formally define the behavior associated with a requirement and exemplify
this definition on our requirement:

Definition 4. Given a requirement R, its derived list of behavioral vectors BVR, and
its temporal graph TGR, the behavior associated with R is defined as a triplet BR=(s1,
E, s*), where:

- The initial state (s1) includes all internal or unknown vectors originated from mod-
ifiers (i.e., may represent pre-conditions) and precede all external vectors in the
temporal graph representing the behavior. Formally expressed,
s1 = {bv∈BVR | class(bv) ∈ {INTERNAL, UNKNOWN} and bv.Source ∈ {AM-
TMP, AM-ADV} and ¬∃path p∈TGR such that bv’ bv∈p and class(bv’) =
EXTERNAL}

- The external events (E) include all potentially external behavioral vectors (name-
ly, external vectors and action vectors with unknown agents). Formally expressed,
E = {bv ∈ BVR | class(bv) ∈ {EXTERNAL, UNKNOWN}}

- The final state (s*) includes all internal or unknown vectors that do not originate
from modifiers (i.e., may represent actual actions) and follow all external vectors
in the temporal graph representing the behavior. Formally expressed,
s* = {bv ∈ BVR | class(bv) ∈ {INTERNAL, UNKNOWN} and bv.Source = None
and ¬∃path p∈TGR such that bv bv’∈p and class(bv’) = EXTERNAL}

In our previous example, we obtain the classification of behavioral vectors as
shown in Table 6. Note that bv1 appears twice as its agent is unknown and hence it
can be considered either an external event or an initial state. bv5 = (the copy identifi-
cation number and the borrower number are valid, AM-ADV) does not appear at all
as it represents a pre-condition originated from an adverbial modifier and appearing
after external events. Thus, bv5 cannot be considered an initial neither final state (but
rather an intermediate state).

Table 6. An example of the outcome of the behavioral vectors classification phase

S1 (initial state) E (external event to which the system responds) S* (final state the sys-
tem is expected to have)

bv1=(, is displayed,
the home page, ,
AM-TMP)

bv1=(, is displayed, the home page, , AM-TMP)
bv2=(a borrower, borrows, a book copy, by herself

, None)
bv4=(a borrower, provides, the borrower number, ,

None)
bv3=(a borrower, enters, the copy identification

number, , None)

bv6=(the system, updates,
the number of available
copies of that title, ,
None)

4.3 Measuring Requirements Variability

Having two requirements, their behavioral vectors, and the classification of the
vectors to initial states, external events, and final states, we now define behavioral
similarity. The definitions are followed by an example.

160 I. Reinhartz-Berger, N. Itzik, and Y. Wand

Definition 5 (Behavioral Vectors Similarity). Given two behavioral vectors, the
vectors similarity is calculated as follows:

1. If the two vectors are action vectors, the vectors similarity is the weighted average
of their component semantic similarities. Formally expressed,

VS (v1, v2) =
∑ ೎೚೘೛כ௪೎೚೘೛כ௦௜௠ሺ௩భ.௖௢௠௣,௩మ.௖௢௠௣ሻ೎೚೘೛אሼಲ೒೐೙೟,ಲ೎೟೔೚೙,ುೌ೟೔೐೙೟,಺೙ೞ೟ೝ೚೘೐೙೟ሽ∑ ೎೚೘೛כ௪೎೚೘೛೎೚೘೛אሼಲ೒೐೙೟,ಲ೎೟೔೚೙,ುೌ೟೔೐೙೟,಺೙ೞ೟ೝ೚೘೐೙೟ሽ ,

where:
- wcomp is the weight given to a specific vector component (agent, action, pa-

tient, or instrument), ∑ ሼ஺௚௘௡௧,஺௖௧௜௢௡,௉௔௧௜௘௡௧,ூ௡௦௧௥௢௠௘௡௧ሽא௖௢௠௣௖௢௠௣ݓ =1.
- δcomp is 1 if the component comp exists (i.e., it is not empty in both v1 and v2)

and 0 otherwise.
- sim(v1.comp, v2.comp) is the semantic similarity of the two vectors’ compo-

nents.
2. If the two vectors are non-action vectors, the vectors similarity is the semantic

similarity of their modifier components. Formally expressed,
VS (v1, v2) = sim(v1.Modifier, v2.Modifier), where
- sim(v1.Modifier, v2.Modifier) is the semantic similarity of the modifier com-

ponents of the two vectors.
3. If one vector is an action vector (say v1) and the other is a non-action vector, the

vectors similarity is the semantic similarity between the corresponding phrases.
Formally expressed, VS (v1, v2) = sim(v1, v2.Modifier), where:
- sim(v1, v2. Modifier) is the semantic similarity between the concatenation of

the agent, action, patient, and instrument components of the first vector and
the modifier component of the second vector.

Definition 6 (Behavioral Element Similarity). Given two requirements, R1 and R2,
and their behavioral vectors that are classified as the same element bh (initial state,
external events, or final state), the behavioral element similarity is calculated as the
average of the maximal pair-wise similarities. Formally expressed:

BS (R1, R2 | bh) =

0 ܴଵ. bh׎ ܽ݊݀ ܴଶ. bh ൌ ∑ ׎ ୫ୟ୶ೕసభ..೘ ௏ௌሺ௩೔,௩ᇱೕሻ೙೔సభ ௡ ܴଵ. bh ൌ ሼݒଵ, … , .௡ሽ and ܴଶݒ bh ൌ ሼݒԢଵ, … , Ԣ௠ሽ1ݒ ܴଵ. bh ൌ , ׎

where:
- Rଵ. bh, Rଶ. bh are the behavioral vectors classified as the element bh in re-

quirements R1 and R2, respectively; R୧. bh=∅ means that no behavioral vec-
tors were classified as bh.

- VS (vi, v’j) is the behavioral vector similarity of vi and v’j.

As an example consider the following requirements:

1. “When a borrower borrows a book copy by herself, she enters the copy identification
number and the borrower number. The system updates the number of available copies of
that title.”

2. “When a librarian lends a book copy to a borrower, she enters the copy identification
number and the borrower number. The system updates the number of available copies of
that title and stores the lending details (when, by whom, to whom).”

For calculating component semantic similarities we used an MCS version that han-

dles phrases rather than complete sentences. We set the component weights to 0.3,

 Analyzing Variability of Software Product Lines 161

0.4, 0.2, and 0.1 for agents, actions, patients, and instruments, respectively, perceiving
agents and actions as the dominant components in behavioral vectors similarities. We
obtain initial state similarity for the given requirements of 1 (no special pre-conditions
in both requirements), external events similarity of 0.78 (due to differences in the
agents that initiate the events), and final state similarity of 1 (as the final state of the
first requirement is included in the final state of the second requirement). Note that we
chose an asymmetric metric for defining behavioral element similarity, meaning that
BS (R1, R2 | bh) ≠ BS (R2, R1 | bh), as we perceive similarity as the ability to reuse
behavior R2 when behavior R1 is required. The asymmetry in this measure reflects the
possibility that it might be acceptable to substitute one behavior for another, but not
the second for the first, as exemplified by the two requirements above.

Based on the behavioral element similarity, we classify the outcome of comparing
each pair of requirements to one of the eight variability classes in Table 1. To this
end, we define event similarity threshold (the) and state similarity threshold (ths):

1. Initial states are considered similar if and only if BS (R1, R2 | s1) > ths.
2. External events are considered similar if and only if BS (R1, R2 | E) > the.
3. Final states are considered similar if and only if BS (R1, R2 | s*) > ths.

Assuming an event similarity threshold greater than 0.5 (e.g., 0.8), the variability
class to which requirement 1 belongs with respect to requirement 2 is # 2 (see Table
1: similar cases and responses, different interactions). This class accurately describes
the requirements variability.

5 Preliminary Results

To evaluate the proposed approach, we compared its outcomes to evaluations by ex-
perts. We provided five experts, each having 10 to 25 years of experience in require-
ments engineering and software development, with 10 requirements. For each re-
quirement, four alternative systems to be considered were presented to the experts.
Each alternative was describes as a requirement. The full set of requirements and
alternatives is discussed in [20]10. We asked the experts to rank the four alternatives
for each requirement based on the similarity to the given requirement in terms of the
amount of changes needed to adapt the alternatives to the requirement. Since experts’
ranking requires some subjective considerations, there was no full agreement between
the experts regarding the ranking of the alternatives. Therefore, we defined for each
pair of alternatives, Si and Sj (i, j=1…4, i>j), relation “Si is not better than Sj”
(Si§Sj). For each requirement there were four possible alternatives yielding six such
relations. This provided a total of 60 relations for the 10 requirements. There were 55
relations on which most experts (at least four out of the five experts, 80%) agreed.

We conducted the analysis described in this work for the same set of requirements.
We used the behavioral element similarities to calculate overall similarity, which can
serve as a basis for ranking alternatives. The weight of initial state similarity was set
to 0.2, the weight of external events – 0.3, and the weight of final state similarity –
0.5. This reflected an assumption that the final state of behaviors (usually specifying

10 It can be accessed at http://mis.hevra.haifa.ac.il/~iris/research/OA/
QuestionnaireEng.pdf.

162 I. Reinhartz-Berger, N. Itzik, and Y. Wand

system output) is the dominant element in defining behavior similarity. We followed a
similar procedure using the well-known semantic similarity method LSA, which as
noted is based only on semantic considerations. Table 7 summarizes the results of the
ontological approach and LSA with respect to experts11.

Table 7. Comparing the results of the ontological approach and LSA with experts

 Ontological approach LSA
Number of experts’ relations
found by the method (out of 55)

51 relations
(93%)

45 relations
(82%)

As can be seen, our approach performed better than LSA in comparison to rankings
by experts. We believe that our approach has an additional advantage to better
performance – it is self-explanatory. Users of the approach, who are expected to be
requirements analysts, can see not only the overall calculated similarity, but also more
details: initial state, external events, and final state similarities. This can help make
their reuse decisions more evidence-based and feasibility studies more systematic.

Analyzing the relations missed by the ontological approach, we observed the fol-
lowing. First, some of the requirements included phrases that explain reasons, e.g.,
“so the librarian can make inter-library loans”. These phrases were interpreted by the
approach as an integral part of the behavior (part of the external events in this case).
Second, in a few cases, where the requirements statements included very complicated
sentences, SRL failed to correctly identify the agents, actions, patients and/or instru-
ments of the different phrases. Finally, we observed that in some cases our approach
resulted with the conclusion that two alternatives are very similar to the given re-
quirement and the experts subjectively preferred one alternative over the other.

6 Summary and Future Work

We proposed a method to analyze variability and similarity of software requirements
based on combining semantic and behavioral aspects of requirement statements.
To formalize the external (user-oriented) aspects of software behavior we used an
ontological model where a specific functional requirement is modeled as a triplet:
initial state, external events, and the final state of the system. We have shown
how such a representation can be obtained automatically by: (1) applying semantic
analysis to requirements statements to identify behavioral vectors; (2) describing the
vectors in common terms; (3) ordering the vectors temporally based on modifiers
identified in the semantic analysis; and (4) extracting the initial state, external events,
and final state for each functional requirement. We then suggested a way to measure
the similarity of two requirements based on each element of their behavioral triplets
and classified pairs of requirements to one of eight variability classes. In a prelimi-
nary evaluation, the approach yielded results more similar to experts’ evaluations than
those of a well-known semantic similarity measure – LSA.

11 Elaborations can be found at
 http://mis.hevra.haifa.ac.il/~iris/research/SOVA/.

 Analyzing Variability of Software Product Lines 163

In the future, we intend to extend the approach in several ways. First, we intend to
consider additional semantic roles, e.g., location modifiers. Second, we plan to refine
the similarity measures to include a choice of specific state variables rather than com-
plete behavioral vectors, thus having a way to reflect user views more faithfully. This
will enable us to analyze variability of software requirements from different points of
view that may reflect different purposes or stakeholders. Users may consider two
software behaviors similar while developers may consider them different, or vice
versa. Similarly, such differences might exist among users. The choice of state va-
riables to represent different points of view can be included in the behavioral analysis
and hence in the similarity calculation. Third, we also intend to take into account in
the variability analysis different ordering of the occurrence of external events.

References

1. Berry, D.M., Bucchiarone, A., Gnesi, S., Lami, G.,Trentanni, G.: A new quality model for
natural language requirements specifications. In: The International Workshop on Require-
ments Engineering: Foundation of Software Quality, REFSQ (2006)

2. Bunge, M.: Treatise on Basic Philosophy. Ontology I: The Furniture of the World, vol. 3.
Reidel, Boston (1977)

3. Bunge, M.: Treatise on Basic Philosophy. Ontology II: A World of Systems, vol. 4. Reidel,
Boston (1979)

4. Burgess, C., Livesay, K., Lund, K.: Explorations in context space: Words, sentences, dis-
course. Discourse Processes 25(2-3), 211–257 (1998)

5. Chen, L., Babar, M.A.: A systematic review of evaluation of variability management ap-
proaches in software product lines. Information and Software Technology 53(4), 344–362
(2011)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley (2001)

7. Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-Herrera, C.,
Mirakhorli, M.: On-demand feature recommendations derived from mining public product
descriptions. In: 33rd IEEE International Conference on Software Engineering (ICSE
2011), pp. 181–190 (2011)

8. Gildea, D., Jurafsky, D.: Automatic Labeling of Semantic Roles. Computational Linguis-
tics 28(3), 245–288 (2002)

9. Gomaa, W.H., Fahmy, A.A.: A Survey of Text Similarity Approaches. International Jour-
nal of Computer Applications 68(13), 13–18 (2013)

10. Jaring, M.: Variability engineering as an Integral Part of the Software Product Family De-
velopment Process, Ph.D. thesis, The Netherlands (2005)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented do-
main analysis (FODA) – feasibility study. Technical report no. CMU/SEI-90-TR-21).
Carngie-Mellon University, Pittsburgh (1990)

12. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to Latent Semantic Analysis. Dis-
course Processes 25, 259–284 (1998)

13. Li, Y., McLean, D., Bandar, Z.A., O’Shea, J.D., Crockett, K.: Sentence Similarity Basedon
Semantic Nets and Corpus Statistics. IEEE Transactions on Knowledge and Data Engi-
neering 18(8), 1138–1150 (2006)

164 I. Reinhartz-Berger, N. Itzik, and Y. Wand

14. Malik, R., Subramaniam, V., Kaushik, S.: Automatically Selecting Answer Templates
toRespond to Customer Emails. In: The International Joint Conference on Artificial Intel-
ligence (IJCAI 2007), pp. 1659–1664 (2007)

15. Mani, I., Verhagen, M., Wellner, B., Lee, C.M., Pustejovsky, J.: Machine learning of tem-
poral relations. In: The 21st International Conference on Computational Linguistics and
the 44th Annual Meeting of the Association for Computational Linguistics, pp. 753–760
(2006)

16. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of
text semantic similarity. In: The 21st National Conference on Artificial Intelligence (AAAI
2006), vol. 1, pp. 775–780 (2006)

17. Niu, N., Easterbrook, S.: Extracting and modeling product line functional requirements.
In: The 16th IEEE International Requirements Engineering Conference (RE 2008),
pp. 155–164 (2008)

18. Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky, D.,
Manning, C.: A Multi-Pass Sieve for Coreference Resolution. In: The conference on
Empirical Methods in Natural Language Processing (EMNLP 2010), pp. 492–501 (2010)

19. Pohl, K., Böckle, G., van der Linden, F.: Software Product-line Engineering: Foundations,
Principles, and Techniques. Springer (2005)

20. Reinhartz-Berger, I., Sturm, A., Wand, Y.: Comparing Functionality of Software Systems:
An Ontological Approach. Data & Knowledge Engineering 87, 320–338 (2013)

21. Reinhartz-Berger, I., Sturm, A., Wand, Y.: External Variability of Software: Classification
and Ontological Foundations. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011.
LNCS, vol. 6998, pp. 275–289. Springer, Heidelberg (2011)

22. Turney, P.D.: Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In: Flach,
P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 491–502. Springer,
Heidelberg (2001)

23. Wand, Y., Weber, R.: On the ontological expressiveness of information systems analysis
and design grammars. Information Systems Journal 3(4), 217–237 (1993)

24. Wand, Y., Weber, R.: An Ontological Model of an Information System. IEEE Transac-
tions on Software Engineering 16(11), 1282–1292 (1990)

25. Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semantically com-
posable feature models from natural language requirements. In: The 13th International
Software Product Line Conference (SPLC 2009), pp. 211–220 (2009)

26. WordNet, http://wordnet.princeton.edu/

	Analyzing Variability of Software Product Lines Using Semantic and Ontological Considerations
	1 Introduction
	2 Related Work
	3 Bung’s Ontology and Software Variability Classification
	4 Deriving Domain Behaviors from Software Requirements
	4.1 Extraction of the Main Behavioral Elements
	4.2 Classification of the Behavioral Vectors
	4.3 Measuring Requirements Variability

	5 Preliminary Results
	6 Summary and Future Work
	References

