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Abstract. New methods in Combinatorial Problem Solving can solve
larger problems in different domains. They also became more complex,
which means that they are hard to use and fine-tuning to the peculiar-
ities of a given problem, limiting its use to a small set of experts, and
instead black-box solvers with automated search procedure are needed
for its broad applicability. Autonomous Search Systems represent a new
research field defined to precisely address the above challenge. The main
goal of this paper is to review recent works on this kind of Self-adaptive
Systems from the standpoint of the actual requirement for solvers.
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1 Introduction

An Autonomous Search (AS) system should provide the ability to modify its
internal components (heuristics, inference mechanisms, etc.) when exposed to
changing external forces and opportunities. As corresponds to an instance of
Self-adaptive Systems with the objective of improving its problem solving per-
formance by adapting its search strategy to the problem at hand. Autonomous
search is particularly relevant to the Constraint Programming community, where
much work has been conducted to improve the efficiency and usability of con-
straint solvers. AS provides to a system the ability to change its components in
order to improve its problem solving performance. AS can be defined as search
processes that integrate control in their solving process either by self adaptation
or by supervised adaptation [18]. This control allows an AS system to improve its
solving performance by modifying and adjusting itself to the problem at hand.
In more detail, the notion of control is present when the parameters or heuristics
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are adjusted online, i.e., when the constraint solver is running. Different meth-
ods such as control encoding, control variable and value selection, and evolving
heuristics have been proposed to provide control during solving [18].

Concerning the control, in self adaptation, techniques are tightly integratedwith
the search process and usually require some overhead. The algorithm is observing
its own behavior in an online fashion, modifying its parameters accordingly. This
information can be either directly collected on the problem or indirectly computed
through the perceived efficiency of individual components. Because the adaptation
is done online, there is an important trade-off between the time spent computing
process information and the gains that are to be expected from this information.
Therefore we can consider that the most appropriate strategy depends on the set
of computed states and changes during solving. Supervised adaptation works at
a higher level. It is usually external and its mechanisms are not coupled with the
search process. It can be seen as a monitor that observes the search and analyzes it.
Then it modifies the components of the solver (or requires the solver to modify its
components) in order to adapt it. Supervised adaptation can usemore information,
e.g., learning-based knowledge.

2 Recent Advances in Constraint Solving

In recent years different efforts of research have been conducted in order to
improve the efficiency of solvers. These improvements often rely on new heuris-
tics, adjustement of parameters and heuristics before/during solving and/or hy-
bridization of solving techniques. Diverse domains of research such as parame-
ter setting in evolutionary computing, reactive search, and hyperheuristics have
tackled this challenge using different terms and concepts. However, they have
common principles and purposes that respond to similar needs.

2.1 Parameter Setting in Evolutionary Computing

The first domain is evolutionary computing, where parameter setting [25] consti-
tutes amajor issue and the taxonomyproposedby Eiben et al. [13] may be recalled.
Methods are classified depending on whether they attempt to set parameters be-
fore the run (tuning) or during the run (control). The goal of parameter tuning
is to obtain parameter values that could be useful over a wide range of problems.
Such results require a large number of experimental evaluations and are generally
based on empirical observations. Parameter control is divided into three branches
according to the degree of autonomyof the strategies.Control is deterministicwhen
parameters are changed according to a previously established schedule, adaptive
when parameters are modified according to rules that take into account the state
of the search, and self-adaptive when parameters are encoded into individuals in
order to evolve conjointly with the other variables of the problem.

2.2 Reactive Search

In [2], Reactive Search is characterized by the integration of machine learning
techniques into search heuristics. Basically, reactive search allows an internal
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flexibility of the solver taking into acount, by learning the past history of the
search process. Moreover, an escape mechanism allowing the restart of the sys-
tem from a new random point is used when the system shows no improvement.
In [30] a framework for adaptive enumeration strategies and meta-backtracks for
a propagation-based constraint solver has been extended in order to trigger some
functions of a solver, or of a hybrid solver to respond to some observations of the
solving process. Being able also simply design adaptive hybridisation strategies
by just changing some rules of its update component.

2.3 Hyperheuristics

Finding the best configuration of heuristic algorithms is strongly related to the
recent notion of Hyperheuristics [5,6,8,10,9]. Hyperheuristics are methods that
aim at automating the process of selecting, combining, generating, or adapting
several simpler heuristics (or their components) to efficiently solve computational
search problems. Hyperheuristics are also defined as heuristics to choose heuris-
tics [7] or heuristics to generate heuristics [1]. Hyperheuristics that manage a set
of given available basic search heuristics by means of search strategies or other
parameters have been widely used for solving combinatorial problems.

3 Autonomous Search Mechanisms

A classification of basic search processes has been proposed by Hamadi et al. [18].
It tries to differentiate offline tasks from online processes, tuning (adjustment of
parameters and heuristics before solving) from control.

Table 1. Autonomous mechanisms and their strategies

Mechanism Strategy

Tuning before solving Preprocessing
[13,25] [26]

Parameter tuning on preliminary experiments
[23,36,32]
Component setting
[16,4,41,21,22]

Control during solving Control encoding
[19]
Evolving heuristics
[14,17,11]
Controlling variable ordering and variale selection in
search heuristics
[28,3,12,29,20,33]
Controlling evaluation function
[31,38]
Parameter control in metaheuristics algorithms
[2,24,34,24,37,39,40,27,15]
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As mentioned before, AS has been indeed investigated for many years, across
many different areas and under different names. In [18], the way that autonomous
mechanisms have been used in the literature are identified. Table 4.1 summarizes
the autonomous mechanisms. Autonomous mechanisms are classified in offline
tasks (tuning) and online processes (control).

4 Conclusion

This paper has reviewed approaches, methods and challenges in the new field of
Autonomous Search systems. The aforementioned approaches are mainly focused
on sampling and learning good strategies after solving a problem or a set of prob-
lems. We state that an interesting research direction is how we can provide an
autonomous solver with an early replacement (“on the fly“) of bad-performance
strategies without waiting the entire resolution process or an exhaustive analysis
of a given class of problems.
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