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Abstract. Real-time optimization-based posture prediction has fostered the de-
velopment of zone differentiation, whereby performance-measure values result-
ing from a predicted posture are evaluated and displayed for large volumes of 
target points surrounding an avatar.  To date, this tool was limited with respect 
to computational speed and practical applications.  This paper presents a series 
of improvements and new features, including new algorithms for sphere filling 
and collision avoidance, significant increases to computational speed, incorpo-
ration of whole-body posture prediction, new methods for visualizing results, 
and multi-dimensional zone differentiation, which is the ability to automatically 
calculate multiple zones for various sets of problem parameters.  These new 
tools collectively advance human systems integration.  They are successfully 
applied to three example problems and demonstrate the ability to direct product 
design virtually, based on human performance. 

Keywords: Digital human modeling and simulation, zone differentiation, reach 
analysis, posture prediction. 

1 Introduction 

Often, the concepts of human systems integration (HSI) or human-centered design 
relate primarily to fit, access, and range-of motion, but not necessarily broader aspects 
of human performance. Yet, in order to design products for ease of use and safety, 
even when focusing on static analysis, one must consider performance. This is true 
whether one works with experimental protocols or with virtual simulation and analy-
sis. As digital human models (DHMs) become more mature and more prevalent in the 
virtual design process, the amount and form of the analysis data they present becomes 
more critical. Distilling a variety of results from many different cases (i.e. millions of 
potential reach targets) into palatable data that can be used for practical design 
changes continues to be a challenge. Furthermore, although basic DHMs can be used 
for geometric package analysis, predictive and analytical capabilities are critical for 
improving designs as effectively as possible and thus for increasing safety and ease of 
use. In this vein, optimization-based posture prediction provides a means of not only 



 A Digital Human Model for Performance-Based Design 137 

 

studying the interaction of virtual humans with their environment, but also studying 
their performance as well. Advances with this technology have been substantial over 
the past decade, but only recently have extensive real-world use cases for digital hu-
man models been published. 

In response to this state of the art, Santos Human Inc. has developed the next gen-
eration zone differentiation, which allows one to conduct concurrent virtual design 
and analysis, and has used this new tool for improving the designs of seats in amuse-
ment park rides, hand breaks in automobiles, and seats in heavy equipment. In all 
cases, one is able to consider biomechanical performance measures like joint dis-
placement or discomfort, when studying products for potential design changes. This 
in turn provides a novel approach to performance-based design. 

Zone differentiation is based on optimization-based posture prediction implemented 
within the Santos DHM, whereby optimization is used to determine joint angles that 
optimize a specified combination of performance measures, subject to constraints that 
represent the task being simulated. This approach is computationally fast, so it is poss-
ible to predict and evaluate postures for large numbers of scenarios in a relatively small 
period of time. Zone differentiation entails automatically running posture prediction 
with millions of target points, and recording the consequent performance-measure 
values for each posture. The values are then presented as a 3D contour plot. 

To date, this tools use with complex real-world problems and whole-body DHM 
models has been impractical, because it has not been fast enough, especially with cases 
that require collision avoidance. A variety of work has been completed with optimiza-
tion-based posture prediction as summarized by Marler (2005), and zone differentia-
tion is a natural outgrowth from such capabilities. One of the first developments in this 
regard is provided by Yang et al (2006), in the context of a 21-degree-of-freedon 
(DOF), one-arm, upper body system. Similar methods and results are presented by 
Yang et al (2008), albeit with a more extensive description of the discomfort model 
from Marler et al (2005). Yang et al (2008) extend this work with applications to dis-
comfort analysis within an automobile cab, and with the ability to view preliminary 
results before the complete zone is calculated. Again, the tool is used for upper-body 
analysis. The same work surfaces in Yang et al (2009) and Yang and Abdel-Malek 
(2009), although the latter focuses on analytical determination of reach envelopes. 

This paper presents new capabilities for whole-body zone differentiation, including re-
finements that increase computational speed. First, multi-dimensional zone differentia-
tion allows one to compute and compare multiple zone differentiation volumes calculated 
with different constraints. Secondly, iso-contour surfacing allows the user to specify 
desired thresholds for visualizing the performance measures used to calculate zone vo-
lumes, thus reducing the final size of the volume. It is then possible to shrink wrap the 
resulting volume and export and/or manipulate the consequent geometry. Finally, a series 
of computational enhancements have been implemented to increase the speed of zone 
differentiation, including parallel processing, with the potential for cloud-based use. 

2 Background 

This section provides an overview of the underlying human model and the formulation 
for posture prediction. The work presented in this paper uses the Santos human model 
(Abdel-Malek et al, 2004) as a platform for further development. The underlying  
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skeletal structure for Santo is modeled as a series of links with each pair of links con-
nected by one or more revolute joints (Figure 1). There is one joint angle for each 
DOF, and the relationship between the joint angles and the position of points on the 
series of links (or on the actual avatar) is defined using the Denavit-Hartenberg (DH)-
notation (Denavit and Hartenberg, 1955). This structure is becoming a common foun-
dation for additional work in the field of predictive human modeling and has been 
successfully used with other research efforts (Ma et al, 2009; Howard et al, 2010). 

 

Fig. 1. The Santos Model 

Given the structure in Figure 1, postures are predicted using an optimization-based 
approach first detailed by Marler (2005). Joint angles serve as the design variables, 
which are incorporated in various objective functions and constraints, the fundamental 
formulation for which given as follows: 

Find: 
DOFR∈q  

To minimize: 
( )f q

 

Subject to:  

( )end-effector target pointDistance ε= − ≤x q x
 

;  1,2, ,L U
i i iq q q i DOF≤ ≤ =   

q is a vector of joint angles, x is the position of an end-effector or point on the avatar, 
ε  is a small positive number that approximates zero, and DOF is the total number of 
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degrees of freedom. With this study, a single model with 113 DOFs is used for the 
human torso, arms, legs, neck, hands, eyes, and global position and orientation. In-
cluding the global DOFs as additional design variables allows one to predict the posi-
tion and orientation of the body as well. 

f(q) can be one of many performance measures (Marler et al, 2005; Marler et al, 
2005b; Marler, 2005; Marler et al, 2009). For these studies, joint displacement and 
discomfort are used. In general, the objective function, potentially composed of of 
many performance measures, models what drives human behavior. 

The primary constraint, called the distance constraint, requires the end-effector(s) 

to contact a specified target point(s). U
iq  represents the upper limit, and L

iq  represents 

the lower limit. These limits are derived from anthropometric data. In addition to 
these basic constraints, many other constraints can be used as boundary conditions in 
order to represent the virtual environment. In particular, in order to model collision 
avoidance, spheres are used to represent all geometry and all avatars, and collision 
constraints are added such that no one sphere overlaps another. Additional constraints 
can be created by the user on the fly, in order to simulate infinitely many tasks. 

Typically, posture is predicted for a single scenario (a single set of constraints). A 
single objective function is used, although multiple performance measures may be 
aggregated to form what is technically a multi-objective optimization problem. How-
ever, regardless of the objective function being used, any performance measure can be 
evaluated at a consequent posture. In fact, zone differentiation involves predicting 
postures for potentially millions of target points surrounding the avatar, recording the 
consequent set of performance-measure values for each target, and then displaying the 
performance values corresponding to each target point within a volume around an 
avatar. This volume is called the zone volume. 

3 Method 

3.1 Multi-dimensional Zone Differentiation 

Although zone differentiation has been a powerful tool for ergonomic analysis, there 
is been a need to automatically evaluate zone volumes for different conditions. For 
instance, one may need to evaluate a discomfort zone for different wrist orientations 
or different loading condition. This is called multi-dimensional zone differentiation. 
This functionality provides one with ways to batch more than one zone differentiation 
computation based on certain user configurable parameters. With respect to initial use 
cases, this tool provides a way to batch and compute several different volumes based 
on changing rotation of a 3D world entity, such as a lever of hand break (Figure 2). 

The user specifies the range of rotation around the X, Y, and Z axes. Then, once 
the user specifies the geometry of interest, the tool automatically detects the axis on 
which the user may intend to rotate the geometry. The user may then choose the num-
ber of volumes for each axis. The total number of zones computed is based L*M*N 
where L, M, and N indicate the number of volumes chosen per axis. The user may 
then submit the problem for solution, and the submission window allows the user to 
preview the orientation of the geometry of interest. 
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Fig. 1. Computing multiple zone volumes with changes in entity orientation 

Multi-dimensional zone differentiation is a compute-intensive process and relies on 
partial-zone evaluation, parallelization, and batch computation techniques to deliver re-
sults in a reasonable amount of time, all of which are discussed in the following sections. 

3.2 Computational Speed 

Although posture prediction typically requires less than one second to run, running 
multiple zone volumes with millions of target points can be computationally demand-
ing. Therefore, the following steps have been taken to increase the speed. First, we 
provide the feature of sub-zone volume calculations. This allows the end-user to take a 
more focused approach and define reduced zone volumes that do not necessarily in-
clude the complete volume around the avatar, some areas of which may not be impor-
tant for the problem at hand. 

A single instance of posture prediction can require more time when collision 
avoidance (Johnson et al, 2010) is involved. This is because, in order to incorporate 
collision avoidance, all avatars and geometry are represented by sphere-based surro-
gate geometry, and many additional constraints are included in the optimization prob-
lem to ensure one sphere does not overlap another. Thus, the second step in increasing 
the efficiency of zone differentiation entails a modified approach to selecting sphere 
constraints. Since we know that at most, an avatar will only intersect the spheres in 
the zone volume, all other spheres are discarded before zone differentiation (and post-
ure prediction) begins. Note that previous work presents a multi-run approach to colli-
sion avoidance, which significantly reduces the number of spheres used in collision 
avoidance (Johnson et al, 2009). This method is “smart” in determining which 
spheres need to be used in avoidance constraints, but it still has to determine which 
spheres are colliding with the computed posture, and then update the constraint set. 
Although this approach is faster than considering all spheres in the environment, it is 
not fast enough for zone differentiation. 

Next, one of the most significant improvements in computational time entails eli-
minating consideration of avatar/object collision spheres that are already in collision 
when the zone diff volume calculations begin. 

In addition to reducing the number of sphere constraints, we implement a reduced tar-
get set, whereby target points (for posture prediction) that happen to fall within existing 
geometry are automatically disregarded. It would be impossible to reach such points. 
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Zone differentiation provides an ideal opportunity for parallelization. Target points 
inside the zone volume are evaluated independently thereby eliminating data depen-
dency chains. The parallelization of zone volumes is achieved by splitting the volume 
into smaller fixed size volumes, which are then computed separately and in parallel 
on all available CPUs. Interestingly, paralleling zone volumes only provides a signifi-
cant benefit for larger volumes. The amount of effort required to split, compute, and 
combine smaller volumes outweighs the effort required to compute a small volume 
using non-parallelized zone differentiation. This break-point volume is approximately 
8x8x8. 

Since zone differentiation is computationally intensive it makes little sense to 
block a user’s access to the 3D program while the volume is computed. Thus, zone 
differentiation batch processing provides a way to run zone differentiation out-of-
process, whereby a separate program accepts computation requests and executes them 
one after another. 

How fast zone runs is now is determined by how many processors a machine has. 
The performance boost will be approximately 0.8 * (number of cores). 

3.3 Sphere Filling 

An integral component of collision avoidance, and thus the effectiveness of posture 
prediction, is the process by which the avatar and environment are represented with 
sphere-based surrogate geometry. New developments with the underlying approach to 
filling objects with spheres have led to substantial improvements in zone differentia-
tion. Sphere filling is more accurate, flexible, and orders of magnitude faster. Specific 
improvements are summarized as follows. 

Now, the avatars are actually filled with spheres based on their morphology, whe-
reas previously, the body-based spheres were fixed. Sphere representation of an avatar 
can now be completed by separating the avatar geometry into two regions defined by 
the hands and then the rest of the avatar. This provides the end-user with the ability to 
obtain highly accurate representations of the avatar hands and fingers for collision 
avoidance, without significantly increasing the number of spheres used to represent 
the rest of the avatar body. 

In addition, the avatar spheres can be re-oriented on the fly, depending on the post-
ure. Sphere representations of avatars can be dramatically different based on posture. 
For instance, sphere filling based on a seated posture eliminates overestimation in the 
hip region, rather than using standing posture and then moving the avatar joints into a 
seated posture. 

With respect to the use of spheres to represent general imported geometry, the un-
derlying inflate algorithms has been improved. First, the algorithm can now lump 
together various geometry components and consider the results as one piece for filling 
purposes. This increases the speed with which complex composite objects can be 
represented. There is a preprocess step to group triangles (fundamental elements for 
creating geometry) to the grid points (points where spheres are placed) they intersect. 
Then, grid points that are inside an object are determined differently.  Instead of eva-
luating the orientation of nearby triangles as it fills at every grid point, it now assumes 
all grid points on the outside of a bounding box are outside the object, and conducts a 
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breadth first search marking grid points as outside until a grid point intersects geome-
try. Since the algorithm knows which points are inside and outside, it only fills (plac-
es spheres at) inside points. With the geometry grouped to grid points, the algorithm 
only calculates distance to the nearby triangles instead of to all of them. 

The culling portion of the algorithm, which subsequently determines which spheres 
to retain/use, has been redesigned. The old method used a greedy approach, picking 
the spheres that covered the most grid points and then recalculating the coverage of 
the other spheres. The new method makes a list of the largest spheres providing cov-
erage to each grid point. It then starts filling by using the smallest spheres first, but 
only retaining spheres that are the largest spheres for covering a specific point. 

Computation time for sphere filling used to dedicate 70% of the time to distance 
calculation and then 30% to culling. Now time is allocated as 10% for preprocessing, 
88% for distance calculation, and 2% for culling (the new culling method is much 
faster). Overall, sphere filling is more than twice as fast. 

3.4 Zone Differentiation Compute Instance (ZDCI) 

In addition to developing new zone-differentiation capabilities, an overarching man-
agement system has been implemented. This program is responsible for accepting 
compute requests, batching, monitoring progress, enabling cancel requests, and pre-
senting computation progress. This program is automatically instantiated when it is 
needed. ZDCI accepts connections over HTTP using a REST-full interface. All 
needed parameters to run a zone computation are delivered using JSON. The Santos 
software submits tasks by connecting to ZDCI over HTTP and pushing a request us-
ing the POST method with the associated JSON payload. 

This tool allows one to run zone differentiation independently from other Santos-
related processes. It also provides the opportunity of scaling zone differentiation to 
external, more powerful, dedicated compute clusters. Since ZDCI communicates over 
HTTP, any external software package can submit computation requests over the In-
ternet, thereby allowing for cloud computing. 

3.5 Iso-contour Surfacing 

The color gradients used to present zone differentiation results are called iso-contour 
surfaces, and a suite of capabilities have been developed for manipulating these surfac-
es. Iso-contour surfacing provides the ability to generate surface geometry from zone 
differentiation data via a marching-cubes algorithm and an end-user definable zone 
differentiation data threshold value. The threshold value can be interactively modified to 
indicate what is of interest (and what is not). Values below the threshold value are con-
sidered “of interest” and are visible, while values above the threshold value are made 
invisible, as shown in Figure 3. Once the desired threshold value is identified, invoking 
the iso-contouring algorithm creates 3-dimensional surface geometry that encompasses 
the zone differentiation data. Removal of the orthographic cutting planes, which can 
help the end-user gain insight into the volumetric data, shows the complete, resulting 
surface, which can be exported for use with third party systems. 
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Fig. 2. Modification of threshholds with iso-contour surfaces 

4 Results 

In this section, three basic case studies are presented to further demonstrate the types 
of problems to which the new zone differentiation capabilities can be applied. The 
first example depicts Santos in an amusement park ride. As shown in Figure 4, colli-
sion avoidance is used to predict Santos’s posture while reaching over a restraint, as if 
to help another passenger for safety reasons. 
 

 

 

Fig. 3. Zone differentiation used for the analysis of an amusement park ride 

Zone differentiation is then used to illustrate the joint-displacement values for all 
points around Santos. Ranging from green to red, the color scheme demonstrate San-
tos’s difficulty, with red being the most difficult. A fixed volume around the ride was 
initialized before the test was run. The test shows the difficulty of reaching around the 
top of the front seat and the ease of touching the seat next to Santos. With respect to 
design considerations, in order to make sure a parent could reach his/her child in front 
of them, for instance, the seat would have to be redesigned. 
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As the second example, multi-dimensional zone differentiation is used to study the 
placement of a hand break in an automobile. With traditional zone differentiation, the 
user would have to manually re-orient the hand-brake and re-run zone differentiation 
for each orientation of interest. However, multi-dimensional zone differentiation  
automates this process. 

Results in Figure 5 illustrate the difficulty of numerous beginning, middle, and 
ending postures during the hand break motion. A given restriction of X, Y, and Z was 
assigned to the hand brake object a priori. Then, for each plane, a number of zones 
were calculated. This example includes four zones. As shown from beginning to end 
of the avatar’s hand brake motion, the green color begins to fade to red, where the red 
color corresponds to a less comfortable posture. The current location for the hand 
brake’s motion is easily seen as acceptable, since all four postures are located in  
a green zone. The results do indicate, however, that there could be some benefit to 
moving the hand break forward slightly. 

 

 

 

Fig. 4. Multi-dimensional zone differentiation for hand-break placement 

As shown in Figure 6, iso-contours can be altered in order to vary the presentation 
of the scale of the underlying numerical results (for joint displacement values). Any 
portion of the zone volume can be selected based on performance-measure scale or 
contour color, and the consequent volume can be shrink wrapped and exported for use 
in third party design packages. 

A third use case demonstrates the use of whole-body zone differentiation for con-
current seat design (Figure 7), whereby multiple ergonomic constraints (hand reach for 
joysticks, foot reach for pedals, visual target point, etc.) are considered concurrently. 

The design criteria were as follows. The location of a point midway between the 
operator’s hips when seated is provided. The range of motion of the seat is 7.2 cm 
forward of default location and 7.2 cm upward of default location. The joysticks are 
designed to be used while the elbows rested on the arm supports. The arm supports 
are not attached to the seat and are not adjustable. The left hand joystick rotates  
15-degrees forward and aft. The brake is fully deployed at 17-degrees. 

 

P1 P2

 

P3 P4
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Fig. 5. Variation in iso-contour coloring scale, and shrink wrapped contours 

 

Fig. 6. Seat design example 

Posture is predicted by minimizing discomfort while requiring both feet to remain 
on the pedals and both hands to remain on the joysticks. Zone differentiation is used 
to determine the discomfort value for the predicted postures when the seat (and ava-
tar) i.e. moved throughout the seat range of motion (ROM). Figure 8 displays the zone 
volume for the initial seat ROM, and then for a new ROM extended down and to the 
left. In the first case, the avatar actually has difficulty seeing the target and touching 
the pedals. When the ROM is extended, more comfortable postures become feasible, 
and the avatar is essentially able to relax. 

5 Discussion 

This paper presents new capabilities for optimization-based zone differentiation that 
yield a tool for human-centric, performance-based design. Improvements to collision 
avoidance, computational speed, and visualization allow zone differentiation to be used 
in a wider and more practical set of scenarios. This in turn allows one to automatically 
consider human performance when evaluating a virtual design. Most novel among the 
proposed capabilities is multi-dimensional zone differentiation, which allows one to 
consider variations in problem constraints when evaluating performance. 

By leveraging real time posture prediction, this work provides one of the first 
DHM tools for automatic human systems integration. Especially with the final exam-
ple, Santos actually determines beneficial design changes automatically while consi-
dering how a human interacts with the product. The inherent use of performance 
measures in the optimization-based posture-prediction construct is a key factor as to 
why this can be done. 
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Fig. 7. Whole body seat-based zone differentiation 

The presented work offers a new practical tool, and the implications of this work 
are significant. Ultimately, additional product parameters can be considered and au-
tomatically altered within an overarching optimal design loop. Furthermore, one can 
evaluate the differences in implied design changes when different performance meas-
ures are used. How does a seat designed to minimize discomfort differ from a seat 
designed to minimize joint displacement? Finally, these kinds of capabilities will not 
only be available within the Santos software, but given the provisions for ZDCI, they 
could be accessed by co-located users, thus fostering collaboration and concurrent 
design on a large scale. 
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