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Abstract. In the present study, we propose three new energy expenditure (EE) 
methods and evaluate their accuracy against state-of-the-art EE estimation 
commercialized devices. To this end, we used several sensors on 8 subjects to 
simultaneously record acceleration forces from wrist-located sensors and bio-
potentials estimated from chest-located ECG devices. These subjects followed a 
protocol that included a wide range of intensities in a given set of activities, 
ranging from sedentary to vigorous. The results of the proposed human EE 
models were compared to indirect calorimetry EE estimated values (kcal/kg/h). 
The speed-based, heart rate-based and hybrid-based models are characterized 
by an RMSE of 1.22 ± 0.34 kcal/min, 1.53 ± 0.48 kcal/min and 1.03 ± 0.35 
kcal/min, respectively. Based on the presented results, the proposed models 
provide a significant improvement over the state-of-the-art. 

Keywords: energy expenditure, walking/running speed, human model, physical 
activity monitoring. 

1 Introduction 

The rapidly increasing prevalence of overweight and obesity is a worldwide health 
problem. Due to the associated serious medical conditions, it is estimated that obesity 
already accounts for up to 7% of healthcare costs in EU. Moreover, this value  
increases when considering the costs to wider economy associated with low produc-
tivity lost output and premature health problems [1]. At the simplest level, obesity 
results from a disturbed energy balance that reaches equilibrium only in an obese 
state. This situation occurs when energy intake is high and EE (physical activity) is 
low. Despite advances in dietary, exercise-based, behavioral, pharmacological and 
bariatric surgical approaches, lifestyle intervention remains the cornerstone of the 
prevention and treatment of obesity [2]. EE measurements are important indicators to 
consider for the estimation of spontaneous physical activity, as well as energy intake 
when body weight is stable (i.e., when EE equals energy intake).  
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Numerous laboratory methods can be used to estimate whole-body EE at rest and 
during exercise such as detailed activity/food diary [3], isotopic measurements [4], 
and direct and indirect calorimetry methods [5]. These methods have advantages and 
drawbacks that make them more appropriate in one situation or another, but, because 
of their cost, technical difficulties, or infrastructure, none of them is suitable for daily-
life EE monitoring. To overcome this issue, other methods, based on approaches such 
as pedometry, actigraphy or electrocardiography have been proposed. These methods 
use human kinetic models based on diverse parameters; namely step counts, heart rate 
(HR), speed, weight, sex, etc. The resulting EE estimation of such models might be 
sufficient for several applications. However, most of them are characterized by biased 
and inaccurate instantaneous EE values and necessitate specific calibration protocols. 

Recent studies have presented new approaches which combined long-term weara-
ble miniaturized sensors and activity-specific EE models [6-7]. These approaches first 
classify the physical activity of the subject, and then apply an activity-specific EE 
model. However, the evaluation of these models is not clear or is poorly documented. 
Moreover, the EE model inputs vary from activity class, through subject’s anthropo-
metric parameters and subject’s fitness indicators, to precise calibration values and 
HR [8-9]. A clear overall picture of the accuracy of such EE models is therefore  
required.  

In the present study, we propose three different human activity-specific EE models 
and evaluate their accuracy. These models range from two simple models based on (i) 
the subject’s estimated speed and anthropometric parameters (speed-based model), 
(ii) instantaneous fitness parameters (HR-based model), or a (iii) multimodal model 
using estimated speed, anthropometric parameters and fitness parameters (hybrid-
based model). The performance of these three models is evaluated with respect to 
gold standards (treadmill speed and body energy expenditure estimated from indirect 
calorimetry) and compared to published human EE models embedded in commercial 
devices. 

2 Method 

The following section describes the database and the protocol used in this study. It 
also describes the different proposed human speed and EE models. Finally, it contains 
the evaluation procedure and the statistical tools used to quantify the performance of 
the proposed models and to compare them against commercialized EE monitors. 

2.1 Database and Protocol 

In order to develop various human EE models, acceleration forces from CSEM’s pro-
prietary wrist-located sensors and bio-potentials estimated from chest-located dry 
electrodes were recorded simultaneously over 8 healthy male subjects. The distribu-
tion of the subjects’ anthropometric parameters is shown in Error! Reference source 
not found.. The subjects followed a standardized protocol that included a wide set  
of activities, ranging from sedentary to vigorous, recorded in laboratory settings. 
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More precisely, it consisted in three 3-minute phases of resting (lying down, standing 
up and sitting) and 3-minute walking/running phases (from 0.5 m/s to exhaustion; 
with steps of 0.5 m/s). 

In order to validate both the human EE models and their human walking/running 
speed sub-models, gold standard measurements were simultaneously recorded,  
namely the speed values labelled ݒ௥௘௙  obtained from a treadmill (Technogym’s  
Excite® Med), the HR values labelled HR obtained from an ambulatory ECG moni-
toring device, and the EE values labeled PMETAMAX obtained from a Cortex’s 
METAMAX® 3B device (accuracy of ±2.1% MET or kcal/kg/h) using an embedded 
indirect calorimetry approach. An Actigraph’s GT1M® device is also measuring the 
EE simultaneously. 

Before recording each subject, the oxygen (O2), carbon dioxide (CO2) analyzers 
and the atmospheric pressure and air volume sensors were calibrated using a medical 
grade calibration gas with known concentrations and known total volume. The air of 
the room was also taken into account in the indirect calorimetry computation. 

Table 1. Subjects’ anthropometric parameters 

Characteristic µ±σ (N =  8) Range 

Age [years] 35.95 ± 6.74 27 - 46 

Height [m] 1.82 ± 0.07 1.72 - 1.95 

Weight [kg] 75.88 ± 6.35 65 - 87 

2.2 Activity Classification and Human Speed Estimation 

In this study, the 3D accelerometer signals (x-, y- and z-axis) are used for two purpos-
es: classification of activity and estimation of the speed. Firstly, these 3D signals are 
used to classify each subject’s physical activity for every sample. In the context of 
this study, the considered classes of activities are: resting (subdivided in lying down, 
standing and sitting postures), walking, and running. The resulting activity-specific 
episodes were used to train an activity-specific human speed model based on common 
anthropometric parameters (i.e., weight, height and sex) and biomechanics principles. 
The proposed human EE models are finally trained by the resulting speed estimates 
(defined as ݒො) and the identified activity-specific episodes. 

2.3 Human Energy Expenditure Models 

Speed-Based Model: SPE2AR. As previously mentioned, each timestamp (sampling 
frequency of 0.9 second) is first classified in one of the following categories: resting, 
walking or running. Then, a multi-linear regression is performed for each category 
taking into account the speed and anthropomorphic parameters. The resulting model 
is denoted as SPE2AR (Speed-based Piece-wise Energy Estimation using AntRopo-
morphics). Formally, the regression model can be written as: 
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SܲPE2AR ൌ ቐ ݒ restߙ ൅ ݓ restߚ ൅ ݄ restߛ ൅ ,restߜ if restingߙwalk ݒ ൅ ݓ walkߚ ൅ ݄ walkߛ ൅ ,walkߜ if walkingߙrun ݒ ൅ ݓ runߚ ൅ ݄ runߛ ൅ ,runߜ if running            (1) 

where ݒ is the speed in km/h, ݓ is the weight in kg and ݄ is the height in cm.  

HR-Based Model: HEET. A multi-linear regression is performed for each category 
using instantaneous HR values. These instantaneous HR values are obtained from 
applying an embedded R-wave detection algorithm to ECG signals. The resulting 
model is denoted as HEET (HR-based Energy EstimaTion). Formally, the regression 
model can be written as: 

ுܲாா் ൌ ൜ ܴܪ୰ୣୱ୲ߙ ൅ , ୰ୣୱ୲ߚ if restingߙୟୡ୲୧୴ୣܴܪ ൅ , ୟୡ୲୧୴ୣߚ if active ,                    (2) 

where HR is the instantaneous HR in min-1. 

Hybrid-Based Model: QI2Hybrid. Our multimodal hybrid model combines both 
previous models into a single expression with the addition of two quality indicators 
labelled as ݌SPE2AR and ݌HEET (speed and HR values). Once both models have been 
properly calibrated, QI2Hybrid (Quality Indicator Hybrid) model can be written as:  ܲQIమH୷ୠ୰୧ୢ ൌ SPEమARܲSPEమAR݌ ൅ HEET݌ HܲEET,                   (3) 

where ݌SPEమAR is the probability of ܲSPEమAR producing a better estimate than HܲEET 
and ݌HEET  is the probability of HܲEET  providing a better estimate than ܲSPEమAR . 
Note that the relation ݌SPEమAR ൌ 1 െ HܲEET  always holds. These quality indicators 
are defined as ݌SPEమAR ൌ 1 െ ܳHR RMSESPEమAR

RMSEHEETାRMSESPE2AR
                       (4) 

and ݌HEET ൌ  1 െ ݌SPE2AR ,                               (5) 

where 0 ൑ ܳHR ൑ 1 is a value that informs about the quality of the current estimation 
of the HR value, and RMSEHEET and RMSESPE2AR are the root mean squared errors 
of the HEET and SPE2AR models, respectively. Note that in the extreme case, when ܳHR ൌ 0, the estimation of the EE is completely based on SPE2AR model: 

Hܲ୷ୠ୰୧ୢ ൌ SܲPE2AR.                                  (6) 

Analogously, when ܳHR ൌ 1 the estimation of EE is based on the convex combina-
tion of both methods relative to their performance: 

ுܲ௬௕௥௜ௗ ൌ RMSEHEET
RMSEHEETାRMSESPE2AR

SܲPE2AR ൅ RMSESPE2AR
RMSEHEETାRMSESPE2AR

HܲEET.         (7) 

Note that all EE models are expressed in MET or in kcal/kg/h. 
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Statistical Analysis. In order to deal with the limited number of subjects (N=8) in the 
database, a leave-one-out cross validation procedure is applied to the entire database 
in order to fit the EE models and to evaluate their respective performance with respect 
to the ground truth values (METAMAX® 3B values). That is, the parameters of each 
model are estimated using N-1 subjects and validated against the remaining one, and 
this procedure is iterated for each subject. The two quality indicators ݌SPE2AR  and ݌HEET  are obtained in the same manner.  Concerning SPE2AR, the coefficient of 
determination ( ܴଶሻ  distribution equals 0.96 േ 0.02 , whereas for HEET and 
QI2Hybrid models, the ܴଶ distributions equal 0.92 േ 0.05 and 0.96 േ 0.02.  

For the evaluation of the performance over the entire database of the proposed 
models, three performance indicators are defined: the distribution of the absolute  
and relative errors and the distribution of the RMSE. These distributions are characte-
rized by their mean µ and standard deviation σ. In order to compare our results with 
other studies, MET values are converted into kcal/min. Table 2 defines these three 
performance indicators. 

Table 2. Description of the performance indicators 

Performance indicator Equation 

Absolute energy error [kcal] หܧMETAMAX െ  ෠หܧ
Relative energy error [%] หܧMETAMAX െ  MetaMaxܧ/෠หܧ

Root mean squared error (RMSE) [kcal/min] ݓ ൈ ඨ׬ห MܲETAMAX െ ෠ܲหଶ∆ݐ  

 
Here, ܧMETAMAX  is the total energy measured by METAMAX® 3B, which equals ݓ ൈ ׬ MܲETAMAX ݀ݐ ෠ܧ .  is the total energy estimated by the proposed models, which 

equals ݓ ൈ ׬ ෠ܲ ݀ݐ. RMSE provides insight on the instantaneous error, while absolute 
and relative energy errors show how the errors accumulate over time. When these errors 
are accumulated over the entire recording sessions, they are referred as total EE errors. 

Comparison with Commercialized EE Estimates. The comparison against com-
mercial estimates is based on a limited set of published academic studies. Only the 
Actigraph’s GT1M provided real-time EE estimates that could be simultaneously 
acquired during the recordings. To provide a fair comparison, we contrast the pub-
lished measures against appropriate test conditions within our protocol (e.g. walking 
episodes compared to low intensity activities).  

3 Results 

3.1 Performance of the Three Proposed Models 

The overall performance of the activity-specific speed model is characterized by  
an RMSE distribution of 0.114 ± 0.063 km/h. The performance of the proposed  
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Table 5. Comparison with actigraphy-based devices 

EE Model Total EE relative error distribution (µ±σ) 

Actigraph GT1M - Harris-Benedict (N=16) 26.8 % [9] 

Actical (N=19) 17.8 % [9] 

IDEEA (N=18) 17.5 % [9] 

Directlife (N=19) 13.6 % [9] 

Fitbit (N=16) 28.7 % [9] 

SPE2AR 5.52 % ± 2.17 % 

 
In Table 6, we present a comparison, in terms of absolute and relative energy, of 

SPE2AR with an GT1M device by Actigraph over the proposed protocol. 

Table 6. Comparison with Actigraph GT1M for our experimental protocol 

EE Model Total EE absolute error 
distribution (µ±σ) 

Total EE relative error 
distribution (µ±σ) 

Actigraph GT1M - Work energy 
theorem 

110.45 ± 49.50  kcal 35.60 % ± 16.51 % 

Actigraph GT1M - Vector magnitude 127.85 ± 49.43 kcal 40.99 % ± 14.68 % 

SPE2AR 17.91 ± 9.32 kcal 5.52 % ± 2.17 % 

Electrocardiography. Electrocardiography (ECG) is a bio-potential technique aim-
ing at monitoring electrical activity of the heart and constitutes the gold standard 
technique to monitor HR. When the ECG monitoring systems are wearable, they are 
specifically referred as Holter systems. A large variety of alternative devices which 
monitor averaged HR values (one HR value over a specific time window) or heartbeat 
intervals based on bio-potential measurements exists. Their bio-potential sensors are 
based on gel, dry or textile electrode principles. There is also a family of strap-
less/wireless devices that temporally estimates fingertip bio-potentials using sensors 
embedded into watches (including Health Touch Plus by Timex, Vital by MIO and 
SmartHealth by Salutron).  

In Table 7, we present a comparison, in terms of absolute energy, of HEET, 
QI2Hybrid and two commercialized HR-monitoring devices. For a fair comparison, 
the statistics of our methods are restricted over low-intensity exercises, that is, similar 
conditions in which the other methods were tested. It is important to mention that the 
database used in Erdogan study [10] was dedicated to overweight and obese subjects 
during low-intensity exercises. 
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Table 7. Comparison with electrocardiography-based devices for low-intensity exercises 

EE Model Total EE absolute error distribution (µ±σ) 

Polar S810iTM (N=43) 0.5 ± 0.5 kcal/min [10] 

SenseWear Pro Armband TM (N=43) ~2.5 ± 1.1 kcal/min [10] 

HEET 0.85 ± 0.41 kcal/min 

Hybrid 0.72 ± 0.31 kcal/min 

Photoplethysmography. Photoplethysmography is an optical technology aiming at 
measuring tissue light propagation changes during cardiac cycle. In the daily activity 
monitoring context, the measurement of volumetric changes of microvascular bed of 
tissue due to blood flow is the target. This measure brings information on arterial 
pulsatility content. Wearable HR monitoring devices using this technology are already 
available on the market (including Nonin’s Onyx 2, MIO’s Alpha and Basis prod-
ucts). Unfortunately, to our knowledge, no peer-reviewed studies exist on the EE 
estimation performance based on this technology.   

4 Discussion 

4.1 Performance and Validation 

The present study demonstrates that SPE2AR provides already an accurate estimate  
of EE with an average of 1.22 kcal/min across all activities and subjects. Since the 
model is based on two complementary modes (walking vs. running), the system pro-
duces an artifact when the subjects switch from one mode to the other. We can  
observe this interphase around the minute 22 within Fig. 1 A. 

We observe that HEET provides an overall performance of 1.53 kcal/min (see Fig. 
1 A), which is slightly worse than the one offered by SPE2AR. However, HEET does 
not experience any artifact in the interphase between the walking to running modes. 
The accuracy of the HR-based model might be explained by the fact that the HR val-
ues are estimated for every time stamp using a small amount of previous detected  
R-waves instead of using global averages. Moreover, we also observe the well-known 
phenomenon that the HR-based model has a bigger relative error for low HR. This 
can be noticed in the resting phases within Fig. 1 A (lying down, standing up and 
sitting). 

Finally, the combination of both methods (QI2Hybrid) still exhibits a small jump at 
interphase between the running and walking phases. However, this discontinuity is 
mostly smoothed out by the contribution of the HR-based model (see Fig. 1 B). More-
over, the hybrid method provides a more robust estimation of the energy consumption 
for low values of HR (see lying down, standing up and sitting categories within Fig. 1 
B). This is due to the fact that the speed-based method regularizes the variability intro-
duced by the HR-based method. In Fig. 3, we can observe the behavior of the error 
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distribution for the different tasks comprised in the protocol. It can be shown that the 
dispersion of the error increases as the activity becomes more vigorous. This is due to 
increase in the variance of the estimate of our method as well as the METAMAX® 3B 
(see Fig. 1 for a typical example). In particular, we observe this phenomenon in the 
width of the distributions shown in Fig. 2. The distribution in the resting category ex-
hibits a sharp peak at zero, but it contains a second mode due to the poor estimation of 
the energy while standing (see Fig. 3). The error distribution becomes broader in the 
walking category, and a new secondary mode can be observed which corresponds to 
the transition towards running (see 2.0 m/sec in Fig. 3). Finally, the error distribution in 
the running category exhibits a Gaussian appearance with the largest support.  

All three EE models have shown to adjust properly to the subjects of the database, 
being the mean coefficients of determination ܴଶ 0.96, 0.92 and 0.96. Moreover, the 
standard deviations of these coefficients are quite low (0.02, 0.05 and 0.05). This 
indicates that our statistical models are robust to the change of the training data. 

4.2 Models versus Commercialized Devices 

In view of these preliminary but promising results, it suggest that the proposed mod-
els, specially the one combining all source of information, seem accurate at low, 
moderate and high activity levels. In particular, the accuracy of our speed-based me-
thod has shown to be comparable to the one reported by Walk4Life for low-activity 
levels (see Table 4), and to improve by an order of magnitude most of the commercial 
solutions based on actigraphy (see Table 6). For a fair comparison, we also used an 
actigraphy-based method as control within out protocol (see Table 7). The results 
were in concordance with the ones reported by the referred study [9] (see Table 6).  

As discussed, the HR-based method seems accurate even during stationary physi-
cal activities (see Fig. 1 A). Moreover, the accuracy of our methods using HR infor-
mation have shown to be comparable to the ones reported by the state-of-the-art  
methods based on ECG (see Table 8). 

Finally, the hybrid model consistently compensates for the deficiencies of the two 
models individually, producing a lower error estimate (absolute energy, relative error 
and RMSE) and a comparable standard deviation. Our EE estimation models embed-
ded into wrist-located devices would produce EE estimate performance at the state-of-
the-art level in an accurate, non-obtrusive, daily integrated, inconspicuous manner. 

Conclusion. Based on the presented results, it is concluded that there is high potential 
to improve the performance of the off-the-shelf commercialized devices (in terms of 
energy expenditure estimation) by using one of the proposed models. The model  
selection should be dictated by the implemented type of embedded sensors such as 3D 
accelerometers, GPS (providing gold standard speed values), and/or dry electrodes.  
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