New Modular Compilers for Authenticated Key
Exchange

Yong Li"*, Sven Schiige®**, Zheng Yang!***,
Christoph Bader!, and Jérg Schwenk!

! Horst Gortz Institute for IT Security, Ruhr-University Bochum, Germany
{yong.1li,christoph.bader, joerg.schwenk}@rub.de
2 University College London, United Kingdom
s.schage@ucl.ac.uk
3 Chongqing University of Technology
zheng.yang@rub.de

Abstract. We present two new compilers that generically turn passively
secure key exchange protocols (KE) into authenticated key exchange pro-
tocols (AKE) where security also holds in the presence of active adver-
saries. Security is shown in a very strong security model where the adver-
sary is also allowed to i) reveal state information of the protocol partici-
pants and ii) launch theoretically and practically important PKI-related
attacks that model important classes of unknown-key share attacks. Al-
though the security model is much stronger, our compilers are more
efficient than previous results with respect to many important metrics
like the additional number of protocol messages and moves, the addi-
tional computational resources required by the compiler or the number
of additional primitives applied. Moreover, we advertise a mechanism for
implicit key confirmation. From a practical point of view, the solution is
simple and efficient enough for authenticated key exchange. In contrast
to previous results, another interesting aspect that we do not require that
key computed by the key exchange protocol is handed over to the com-
piler what helps to avoid additional and costly modifications of existing
KE-based systems.

Keywords: Protocol Compiler, Authenticated Key Exchange, Security
Model.

1 Introduction

Authenticated key exchange (AKE) protocols are among the most important
building blocks of secure network protocols. They allow a party A to i) authen-
ticate a communication partner B and ii) securely establish a common session

* Corresponding author supported by secure eMobility grant number 01ME12025.
** Corresponding author supported by EPSRC grant number EP/G013829/1.
*** Corresponding author supported by CSC china. Part of the work done at Ruhr
University Bochum as a doctoral student in 2013.

I. Boureanu, P. Owesarski, and S. Vaudenay (Eds.): ACNS 2014, LNCS 8479, pp. 1-18, 2014.
© Springer International Publishing Switzerland 2014

2 Y. Li et al.

key with B. In many existing systems both of these tasks are addressed by a
single protocol. This can yield very efficient solutions. However, there are several
scenarios where these two tasks are actually addressed by separate protocols. For
example in typical browser-based applications, the user relies on TLS to exchange
a session key k with an authenticated server. The user, on the other hand, of-
ten uses a simple username/password combination which is encrypted with & to
authenticate himself. In this paper, we consider generic and very efficient con-
structions that securely combine authentication protocols (AP) and passively
secure key exchange protocols (KE) to yield authenticated key exchange.

While combined solutions may be more efficient in general, there are several
advantages for the modular design of AKE systems. One is flexibility as one can
resort to a rich collection of existing authentication and key exchange protocols
that can be combined to yield new AKE systems which are specifically crafted to
fit a certain application scenario. The second reason is applicability, as a generic
compiler (ideally) does not require any modifications in existing implementa-
tions of the input protocols (which are often costly or error-prone in practice).
Instead, security can be established by simply ‘adding’ the implementation of
the compiler to the system. Finally, a generic compiler can considerably simplify
the security analysis, as only the input protocols have to be analysed to meet
their respective security requirements. Security of the entire AKE protocol fol-
lows from the security proof of the compiler. This greatly pays off in the setting
of key exchange protocols, as here, we usually only require the underlying key
exchange protocol to be passively secure (which is a comparably simple secu-
rity notion) while the output protocol must be secure even under active attacks
(where the adversary is granted several additional attack capabilities).

1.1 Contribution

We present two very efficient compilers that construct secure AKE systems from
authentication protocols (AP) and passively secure key exchange protocols (KE).
To the best of our knowledge, they are the first such compilers that are efficient
and truly generic, i.e. they do not require any modifications in the underlying
AP and KE protocols. Thus, they are easily applicable to existing systems, what
makes them very useful in practice. Previous compilers require costly modifi-
cations on the key exchange protocol such that either the messages have to be
modified or the secret session key k also has to be output to the compiler. A
new session key is computed using e.g. the requested key derivation function
(KDF), i.e. the compilers require the session key of the underlying key exchange
KE protocol as input. We stress that in some scenarios it is very difficult or
impossible (for example because the network application is closed-source) to re-
alize these modifications. Our compilers, in contrast, avoid such problems as
they only require the public transcript of the key exchange protocol but not the
secret session key from the passively secure KE protocol as input. Our compilers
are very efficient but restrict the class of KE protocols to those which do not rely
on long-term keys. We have chosen to restrict our attention to this class of key
exchange protocols because they i) allow for efficient protocols with very high

New Modular Compilers for Authenticated Key Exchange 3

security guarantees (like forward secrecy) and ii) they can efficiently be recog-
nized. Let us elaborate on this. As a consequence of our restriction long-term
keys are only used in the authentication protocol, whereas in the KE protocol,
all values are freshly drawn in each new communication session. Our restriction
is useful to design protocols with forward secrecy, which states that even after
the compromise of long-term keys previously executed sessions remain secure.
The same restriction is made on the KE protocols which are used in the recent
compiler by Jager, Kohlar, Schige, and Schwenk (JKSS) [7]. The well-known
compiler by Katz and Yung (KY) uses a slightly different approach by directly
requiring that the input protocol provides forward secrecy [9]. We present two
compilers each of which relies on a different authentication mechanism. Our first
compiler is very efficient. It relies on signature schemes and only requires two
additional moves in which signatures are exchanged. The second compiler relies
on public key encryption systems. Although the first compiler is more efficient,
the second compiler accounts for scenarios where the parties do not have (certi-
fied) signature keys but only encryption keys. This can often occur in practice.
For example, the most efficient (for the client) and most wide-spread key ex-
change mechanism in TLS is RSA key transport. The latter can be extended
to symmetric-based authentication systems in which the communication parties
have secure pre-shared keys. All our solutions work in the standard model, i.e.
without assuming random oracles.

Technical Contribution. Our efficiency improvements rely on the following tech-
niques. First, we do not use explicit key confirmation to thwart unknown-key
share attacks. Instead we use a form of implicit key confirmation where we in-
clude the identities of the partners in the messages that are authenticated. At
the same time, this helps to also counter strong attacks that an adversary might
launch with the help of the extended attack capabilities (state reveals and PKI-
based attacks) of our strong security model. In terms of efficiency, this helps us
to save the exchange of two MAC values (as compared to the JKSS compiler).
As our second efficiency improvement, we formally show that for security we do
not have to exchange uniformly random nonces after the key exchange protocol
as in the JKSS compiler. In the JKSS compiler these nonces are solely used to
make every session’s transcript unique. We can prove that instead it is sufficient
to use the public ephemeral keys which are exchanged in the key exchange pro-
tocol. Technically, we show that if a key exchange protocol that does not rely on
long-term keys is passively secure, then with negligible probability there are no
collisions among the ephemeral public keys. This is sufficient to show that even
in the presence of active attackers each transcript is unique as long as one party
is uncorrupted. Finally, our efficient compilers only require the public transcript
of the key exchange protocol, denoted here as KE, but not the secret key kxe
from KE as input. Our approach helps us to save the additional computation
of a new session key for authenticated key exchange (as compared to previous
compiler). In other words, our compilers require no cryptographic session key
generator other than KE itself.

4 Y. Li et al.

1.2 The Security Model

Our proofs of our compilers hold in two very strong security models respectively.
These models rely on the concept of indistinguishability of session keys which
first emerged in the seminal work of Bellare and Rogaway [2] and later extended
by [4,15,12] to the public key setting. In contrast to previous works, we explicitly
model the strong and practical PKI-based attacks (via a RegCorruptParty query)
like the public key substitution attack (PKS) [3,13] or the duplicate-signature
key selection (DSKS) attack [13,10]. To model strong and practical PKI-related
attacks we use the RegCorruptParty query into our models that allows attackers
to register adversarially chosen public keys and identities. Observe that the ad-
versary does not have to know the corresponding secret key. In practice, most
certification authorities (CAs) do not require the registrant to deliver proofs of
knowledge of the secret key. Using RegCorruptParty query the adversary may
easily register a public key which has already been registered by another honest
user U. Since the public keys are equal, all the signatures that are produced
by U can be re-used by the adversary. Such attacks can have serious security
effects [3,13,10]. Our model also formalizes the revelation of state information
of sessions (via a RevealState query) and perfect forward secrecy. We believe
that the revelation of state information is much more realistic than (just) the
revelation of keys. For forward secrecy, it is a very strong form of security which
guarantees that past sessions remain secure even if the long-term keys get ex-
posed in later sessions. We use a formal definition of forward secrecy that is
adopted from [8].

1.3 Related Work

In 1998, Bellare, Canetti and Krawczyk (BCK) were the first to consider a
modular way for the development of AKE [1]. They propose to first design a
protocol in the authenticated link model, an idealized model where the links
between parties are always authenticated. Then they systematically transform
the protocol into a protocol which is also secure in the unauthenticated link
model, in which the adversary has control over all the message flows in the
network, by applying a so-called authenticator. Basically, for every message A
needs to transmit to B there will be some additional communication with B in
which B sends a random nonce to A and A responds with an application of an
authentication mechanism on this nonce (in a challenge-response like fashion).
For example, when instantiated with a signature scheme or with a combination of
an encryption system and a message authentication code, the authenticator adds
another two messages to every message sent in the original protocol. Altogether,
this amounts for a 200% increase in the number of moves of the protocol and
the number of messages sent.

In 2003, Katz and Yung presented a generic compiler for group key agree-
ment [9]. The KY compiler first adds an initial round to a passively secure group
key exchange protocol where each party chooses a random nonce and broadcasts
it to its communication partner. In the next step, the compiler basically adds to

New Modular Compilers for Authenticated Key Exchange 5

every message of the original protocol a signature which is also computed over all
the random values that have been computed in the first phase. When restricted
to the two-party case, this compiler is much more efficient in terms of protocol
moves, in contrast to the BCK compiler, each message sent does not need to be
authenticated interactively. The KY compiler only accounts for a single round
that is added to the input protocol. However, the compiler still modifies each
message sent in the protocol by basically adding a signature to that message. As
before, this approach amounts for a huge decrease in efficiency due to the addi-
tional signature generation and verification operations each user has to execute.
The KY compiler outputs protocols which guarantee forward secrecy. However,
it does require that the input group key protocols already provide forward se-
crecy. This assumption is similar to our (and the JKSS) assumption on the KE
protocol to not rely on long-term keys. Our restriction is, in some sense rougher
than that of KY but it allows for a very simple verification by inspection. We
stress that we could adapt the KY definition and yield a slightly more general
result. We think, however, that in scenarios where a complex, practical proto-
col is given it might be hard to inspect if the KY compiler is applicable at all.
Intuitively, our approach implies forward-secrecy because if all values which are
used to generate the session keys are freshly computed in each session of the
passively secure key exchange protocol then the keys computed in the different
sessions are independent. This intuition is formalized in the security proofs of
the subsequent sections. In 2010 Jager et al. presented the first compiler which
accounts only for a constant number of additional messages (which is indepen-
dent of the KE protocol) to be exchanged [6], denoted here as JKSS compiler. In
terms of efficiency, this compiler is closest to our results. Basically, the compiler,
after executing the KE protocol, makes A and B additionally exchange 1) ran-
dom nonces, 2) signatures over these nonces and the KE transcript and 3) two
MAC values (using a MAC-key K;,q. generated using the session key from the
passively secure KE protocol) which have been computed over all the previous
messages. As mentioned above this compiler is less efficient than our solution.
At the same time all of the above compilers do neither consider state reveals nor
PKI-related attacks in their security analysis.

2 Security Assumptions

Let [n] = {1,...,n} C N be the set of integers between 1 and n, and x € N be a

security parameter. We write a & S to denote the action of sampling a uniformly
random element a from a set S. Let ‘||” denote the operation concatenating two
binary strings. To state our results, we will rely on standard security definitions
for the collision-resistant cryptographic hash functions, IND-CCA2 secure public
key encryption schemes, unforgeable signature schemes, UF-CMA secure one-
time message authentication code schemes and a class of passively secure key
exchange protocols. Due to space restrictions, we only give generic definitions of
passively secure key exchange protocols in this section.

6 Y. Li et al.

KEy EXCHANGE PROTOCOLS. A two party key-exchange (KE) protocol is a
protocol that enables those two parties to compute a shared secret key. In the
following, we formally provide a very technical definition of KE which is more
detailed than in most other works. This is solely for the purpose of deriving a
technical result on general KE protocols without long-term keys. In other words,
we require that every secret keys used to generate the session keys must be
chosen freshly in each session. For simplicity we first focus on the practically
most important class of two-move key exchange protocols. We stress that our
definitions and results can easily be generalized to y-move key exchange protocols
as sketched below.

A key exchange scheme KE = (KE.Setup, KE.EKGen, KE.SKGen) consists of
three algorithms which may be called by a party ID € ZDS in each session.
Let Mkg be the message space and ESK be the space for ephemeral secret key
and EPK be the space for ephemeral public key. Let T be the transcript of all
messages exchanged in a KE protocol instance (see Figure 1).

— pms®® < KE.Setup(1*): This probabilistic polynomial time algorithm takes
as input the security parameter x and outputs a set of system parameters
pms*e. The parameters pms* might be implicitly used by other algorithms
for simplicity.

— (eskip, epkip, mip) & KE.EKGen(pms®©,in): The probabilistic polynomial
time algorithm takes as input the system parameters pms*® and message
in € Mg and outputs an ephemeral key pair (eskip, epkip), where eskip €
ESK and epkp € EPK, and a message mip € Mgg that requires to be
sent in a protocol move. The execution of this algorithm might be deter-
mined by the input message (in) which could be any information including
for example identities of session participants, ephemeral public key or just
empty string 0. If mip = (), for simplicity we may write (eskip, epkip) &
KE.EKGen(pms*e in).

— k + KE.SKGen(eskip, T): The session key generator is a deterministic poly-
nomial time algorithm which takes as input eskjp of a session participant
ID and transcript T of all messages exchanged in this session, and outputs a
session key k.

CORRECTNESS. We say a correct key exchange protocol without long-term key if
for any protocol instance with session key generated as k := KE.SKGen(eskip, T')
it holds that eskip is generated freshly by KE.EKGen in corresponding protocol
instance. That is, each party computes each session key using only ephemeral
secret key which is freshly generated by KE.EKGen in corresponding protocol
instance. We consider key exchange protocols with perfect correctness that is

KE.SKGen(eskip,,T) = KE.SKGen(eskip,,T);
(eskip,, epkip, , mip,) & KE.EKGen(pms*©,iny),| 1
(eskip,, epkip,, mip,) - KE.EKGen(pms*® iny),|

(m|D1,m|D2) eT.

Pr

New Modular Compilers for Authenticated Key Exchange 7

|D1 |D2
(eskip, , epkip, , mup,) (eskip, , epkip,, mup,) &
KE.EKGen(pms®©,in;) KE.EKGen(pms"©, inz)
mip,
_
MIDy
(——~
T = mup, ||mup, T = mip, ||mup,
accept accept
k := KE.SKGen(eskip,,T) k := KE.SKGen(eskip,, T')

Fig. 1. General Two-move KE Protocol

We observe that in a passively secure key exchange protocol where we do not
rely on long-term keys it is necessary that the values epkip, and epkip, are non-
empty and ‘meaningful’. This is because both parties have to keep the session key
secret from a curious adversary. For example in ephemeral Diffie-Hellman key
exchange (EDH) [5], the KE.EKGen is executed without any additional message,
i.e. iny = ing = (), and the generated messages such that mip, = epkp, and
mip, = epkip,. In some KE protocols, the KE algorithms of the initiator ID; can
be very different from those of the responder IDs like for example in encrypted
key transport with freshly chosen key material (FEKT), in which case we could
instantiate those messages in Figure 1 as: iny = (J, ing = mp, = epkip,. We stress
that the key pairs (eskip,, epkip,) and (eskip,, epkip,) may have distinct forms
depending on specific KE protocol, which are also determined by the forms of
messages (iny, ing) while running KE.EKGen.

In case both parties ‘contribute’ values which are used to computed the session
key, i.e. k # eskip, and k # eskip,, this is very obvious as the contribution of
ID; has to be transmitted to IDy and vice versa. However, if only one party
ID. € {ID1, D2} decides on the session key eskip, = k, then k has to securely be
transferred to the other party (ID.) via some form of encryption of k. In order
to guarantee that only the single party ID. can decrypt the session key, the
encryptor has to encrypt the session key exclusively for ID/, using an ephemeral
public key of ID’.. As we do not rely on long-term keys, ID, has to generate this
key freshly and send it to ID. as epkip, in the first move of the key exchange
protocol, resulting in ID/C = IDy and ID, = ID>.

In order to model passive attacks we define an Execute(IDq,1D3) query. The
adversary can use the query to perform passive attacks in which the attacker
initiates and eavesdrops on honest executions between parties ID; and ID5. Note
that each identity should be uniquely chosen from the identity space ZDS. By
using this query the adversary can obtain the transcripts that were exchanged
during the honest execution of the protocol. For each Execute(IDq,ID2) query,
an instance of KE protocol is executed between ID; and IDs. After simulation

8 Y. Li et al.

this query returns the transcript 7' of all messages exchanged in corresponding
protocol instance and a session key.

Definition 1. We say that a correct key-exchange protocol KE is (t,exe) pas-
swwely secure if for all probabilistic polynomial-time (PPT) adversary A holds that
|[EXPie a(r) = 1]=1/2| < exe for some negligible function exe (k) in the security
parameter k in the following experiment EXPﬁSE’A(l’“): On input security param-
eter 1%, the security experiment is proceeded as a game between a challenger C
and an adversary A based on a key exchange protocol KE, where the following
steps are performed:

1. C generates a set of identities {ID1,...,IDs} for potential protocol partic-
ipants where ¢ € N. A is given all identities as input and is allowed to
interact with C via making Execute(ID;, ID;) query at most d times for each
party where d € N and i, j € [¢]. As response, C returns (T, Ky) to A.

2. At some point, A outputs a special symbol T and sends T to C. Given T, C
runs a new protocol instance and outputs the transcript T* and the session
key K. Then, C samples K uniformly at random from the key space of the
protocol, and tosses a fair coin b € {0,1}. Then C returns (T, K}) to A.
After that A may continually perform Execute(ID;,ID;) queries. Finally, A
may terminate with returning a bit b’ as output.

3. At the end of the experiment, 1 is returned if b’ = b; Otherwise 0 is returned.

In the following, we formally show that for every passively secure key exchange
protocol after polynomially calls to KE.EKGen there cannot be any collisions
among the ephemeral public keys generated by certain type of KE.EKGen. This
lemma will be useful in the security proofs of our compilers to show that a
compiler does not have to exchange additional random values after the KE run to
guarantee that the transcripts which are authenticated with the authentication
mechanism are unique. We can therefore discard the random values which are
used in the JKSS compiler. Please note that for a two-move and two-party (IDy
and 1Dy) KE-protocol there exist at most two types of KE.EKGen algorithms
which may be determined by input messages iny and iny. We here explicitly
classify the algorithm KE.EKGen into two types denoted by KE.EKGenip, for
party ID; and KE.EKGen|p, for party ID2. While considering the collisions among
ephemeral keys, let Coll denote the event that: after a polynomial number g times
execution of KE.EKGen algorithm there exist at least two ephemeral public keys
epk and epk’ generated by the ephemeral key generator KE.EKGen are identical,
where the number ¢ is determined by time ¢. Let probability €..;; denote the event
Coll occurred within time t. We say all ephemeral keys generated by KE.EKGen
are (q, t, e.on)-distinct if those ephemeral keys are generated by KE.EKGen after g
times execution of KE.EKGen algorithm within time ¢ and there exists no collision
among those ephemeral keys except for probability €..;;. For space reasons we
only provide a sketch of the proof.

Lemma 1. Assume KE is a (t, ekg)-passively secure protocol without long-term
key as defined above. Then all ephemeral public keys generated by KE.EKGen in
the runs of KE are (g, t, €con)-distinct such that €.on < q - €kg.-

New Modular Compilers for Authenticated Key Exchange 9

Proof. We first consider the case that the ephemeral keys are generated by differ-
ent types of ephemeral key generators, i.e. KE.EKGen|p, # KE.EKGen|p,. Obvi-
ously, in this case there is no collision between ephemeral keys epkip, and epkip,,
because those keys are assumed to be generated from different key spaces, so we
only need to evaluate the collision probability among ephemeral keys generated
by the same type of ephemeral key generators, i.e. KE.EKGenp, = KE.EKGen|p,.
For this case, we assume that with non-negligible probability €..;; there will be a
collision among the epkip, after g protocol runs, or a collision among the epkip,
after g protocol runs. According to the protocol specification the epkip, values
are computed by randomized runs of KE.EKGenjp, while the epkip, values have
been computed by randomized runs of KE.EKGenp,. In particular, the compu-
tation of the epkip, and epkip, are deterministic in system parameters pms*e,
message iny (resp. inz) and the internal random coins w rp, used by ID; and wip,
used by IDy. The wip, and wp, are drawn uniformly random and in particular
independently.

Let epkp, and epkjp, be the ephemeral public keys that are exchanged in the
test session and given, together with the challenge key k; and transcript T, to
the adversary. Let eskjp and eskjp_ be the corresponding ephemeral secret keys.
These keys have also been computed using KE.EKGen; (resp. KE.EKGeng) with
random coin wip, (resp. wip,) and iny (resp. inz). The adversary first guesses
whether the collision occurs among the epkp, or the epkp, with probability
> 1/2. In the first case, the adversary can re-run KE.EKGen|p, (¢ — 1) times
with wip, ; and iny; to output {eskip, :, epkip, i} for i € [1;¢ — 1] in time less
than t. With the same probability .oy it obtains two values epkjy , epkip, among
the ¢ values epkjy, ,epkip, 1, - -, epkip, (q—1) With epkip = epkip, . Since it holds
with probability > 2/q that either epkip = epkjp, or epkjp = epkjy, . In this
case the adversary knows one pair (wip, i, in1,;) that maps to epkyp, . Let eskjp be
the corresponding ephemeral secret key. We now have to show that eskjy helps
us to break the passive security. This simply follows from the determinism of
KE.SKGen and correctness of KE. Since we have perfect correctness the adversary
A can compute the session key k by using the ephemeral secret key esk,’D1 and
transcript 1. Next the adversary can compare whether k; = k and correctly
guess the value b. In case there is a collision among the epkp, the situation is
similar. Hence, due to the security of KE protocol, we have that the probability
bound 6“(;”' < €KkE.

GENERAL KEY EXCHANGE PROTOCOLS.The above definition of KE, the cor-
responding security definition, and the results of the above lemma can easily
be extended to y-move KE protocols. Concretely, besides the KE.Setup and
KE.SKGen algorithms, each party may run at most [y/2] different types of
KE.EKGen algorithms in each protocol instance depending on the input mes-
sages in; : 1 <4 < y. Namely, each session participant can call at most [y/2] of
times of KE.EKGen algorithms during protocol execution. We let each invocation
of algorithm KE.EKGen in i-move (1 < i < y) as KE.EKGen; which is used to com-
pute the message for i-move. Consequently, we may have (for instance when y

. . . $
is even) a series of executions:{(eskip,,1,epkip,,1, MID;,1) KE.EKGen, (pms®e,

10 Y. Li et al.

inl), (esk‘m%g, €p/€|D2727 m|D272) (i KE.EKGeng(pmske, ing), Ceey (eSk‘IDl,(yfl)a
6pk‘|D1’(y,1), m|D1,(y,1)) (i KE.EKGen(y,l)(pmske, in(y,l)), (es/ﬂD%y, eplﬂD%y,
MUD,,y) & KE.EKGen, (pms*®, in,)}. We could therefore apply the result of
Lemma 1 to y-move KE protocols, namely with overwhelming probability there

is for instance no collision among all epkip, generated by KE.EKGenp, with
be{l,2}.

3 Security Model

In this section we present a formal security model for a two-party AKE pro-
tocol. We follow the important line of research that was initiated by Bellare
and Rogaway [2], and later modified and extended in [4,12]. In these models
the adversary is provided with an execution environment, which emulates the
real-world capabilities of an active adversary.

Ezecution Environment. Let KC € {0,1}" be the key space of session keys, and
{PK,SK} € {0,1}" be key spaces of long-term public/private keys respectively.
Fix a set of honest parties {Py,..., P} € {0,1}" for £ € N, where each honest
party P; € {P1,..., P} is a potential protocol participant and has a pair of long-
term public/private key (pk;, sk;) € (PK,SK) that corresponds to its identity 4.
In order to formalize several sequential and parallel executions of the protocol,
each party P; is characterized by a polynomial number of oracles {7} where
s € [d] is an index for a range such that d € N. An oracle 7§ represents a process
in which the party P; executes the s-th protocol instance with access to the long-
term key pair (pk;, sk;) of party P; and to all public keys of the other parties.
Moreover, we assume each oracle 7 maintains a list of independent internal
state variables as described in Table 1.

Table 1. Internal States of Oracles

Variable Decryption
PID; records the identity j € {1,...,£¢} of intended communication partner P;
®; denotes & € {accept,reject}
K{ records the session key K; € K
STA; records some secret states used to compute the session key K7
T; records all messages sent and received in the order of appearance by oracle 7

The internal state of each oracle 77 is initialized as (PID], ®%, K5, STA?, T%)
= (0, 0, 0, 0, 0), where denotes the empty string. We assume that the session
key is assigned to the variable K{ such that K{ # () iff each oracle completes the
execution with an internal state @] = accept.

Adversary Model. An active adversary A is able to interact with the execution
environment by issuing the following queries:

New Modular Compilers for Authenticated Key Exchange 11

— Send(7}, m): A can use this query to send any message m of his own choice
to oracle 7}. The oracle will respond according to the protocol specification
and depending on its internal state. If m consists of a special symbol T
(m = T), then 7§ will respond with the first protocol message.

— Corrupt(P;): Oracle 7} responds with the long-term private key sk; of party
P;. If Corrupt(FP;) is the 7-th query issued by A, then we say that P; is
T-corrupted. For parties that are not corrupted we define 7 := oo.

— RegCorruptParty(pk., P.): This query allows A to register a new party P,
(¢ < ¢ < N), with a static public key pk. on behalf of P.. If the same party
P, is already registered (either via RegCorruptParty-query or r € [£]), a failure
symbol L is returned to A. Otherwise, P, is registered, the pair (P., pke) is
distributed to all other parties, and a symbol of success A is returned. This
query formalizes a malicious insider setting which can be used to model un-
known key share (UKS) attacks and other chosen public key attacks [3,15,14].
We here formalize the arbitrary key registration policy via this query. Parties
established by this query are called corrupted or adversary-controlled.

— Reveal(w?): Oracle 77 responds to this query with the contents of variable
K? to A. This query models the attacks that loss of a session key should not
be damaging to other sessions.’

— RevealState(n}): Oracle 7} responds with the contents of the secret state
stored in variable STA;.

— Test(nf): This query may only be asked once throughout the game. Oracle
m; handles this query as follows: if the oracle has state ¢ # accept, then
it returns some failure symbol L. Otherwise it flips a fair coin b, samples a
random element ko < IC, sets k1 = K3 to the ‘real’ session key, and returns
kp.

Security Definitions. We model the partnership of two oracles via the concept of
matching conversations which was first introduced by Bellare and Rogaway [2]
and later refined in [8,11]. Let T denote the transcript of messages sent and
received by oracle 7. We assume that messages in a transcript T, are represented
as binary strings. Let |T}| denote the number of the messages in the transcript
T7. Assume there are two transcripts 77 and T}, where w := |T}’| and n := [T}|.
We say that T} is a prefix of T} if 0 < w < n and the first w messages in
transcripts T, and Tf are pairwise equivalent as binary strings.

Definition 2 (Matching Conversations). We say that 7{ has a matching
conversation to oracle 7r§, if

has sent the last message(s) and T; is a prefiz of T, or

s

i

% has sent the last message(s) and T} is a prefiz of T}.

We say that two oracles w; and 7T§» have matching conversations if m has a
t

matching conversation to process 5 OT Vice Versa.

! Note that we have K§ # @ if and only if # = accept.

12 Y. Li et al.

Definition 3 (Correctness). We say that a two-party AKE protocol, X, is
correct if for any two oracles, 7} and 7r§, that have matching conversations it

holds that ®; = @' = accept, PID] = j and PIDj =i and K; = K%,

Definition 4 (Security Game). We formally consider a security experiment
that is played between an adversary A and a challenger C. The challenger C
implements the collection of oracles {m} : i € [{],s € [d]}. At the beginning of the
game, long-term public/private key pairs (pki, sk;) for each honest entity i are
generated by C. The adversary receives public keys pki,...,pke as input. Now
the adversary may start issuing Send, RevealState, Corrupt, RegCorruptParty and
Reveal queries, as well as one Test query at some point of the game. Finally, the
adversary outputs a bit b’ and terminates.

Definition 5 (Freshness). Let w7 be an accepting oracle held by a party P;
with intended partner P;. Meanwhile, let 7T;- be an oracle (if it exists), such that
75 and 75 have matching conversations. Then the oracle w} is said to be To-fresh
when the adversary A issues its To-th query and none of the following conditions
holds:

— The party P; has been established by the adversary A via the RegCorruptParty
query,

— P; is 1j-corrupted with 7; < 19 and P; is 7;-corrupted with 7; < 7o,

— A has either made a RevealState(r) query or a RevealState(n}) query (if 7
exists),

— A has either made a query Reveal(n}) query or a Reveal(r}) query (if n
exists).

Definition 6. We say that a two-party AKE protocol X is (t, €)-secure, if for all
adversaries A running the AKE security game within time t while having some
negligible probability € = €(k), it holds that:

1. When A terminates, there exists no To-fresh oracle mi (except with probability
€), such that
— w3} has internal states {2 = accept and ¥ = j, and
— there is no unique oracle 7T§» such that 7} and 7T§» have matching conver-

sations.
2. When A returns b’ such that
— A has issued a Test-query to oracle 7¢, and
— the oracle 7} is To-fresh throughout the security game,
then the probability that V' equals the bit b sampled by the Test-query is
bounded by
|Pr[b=10"]—1/2| <e.

4 Authenticated Key Exchange Compiler from Signature

4.1 Protocol Description

The compiler takes as input the following building blocks: a passively secure
key exchange protocol KE and a digital signature scheme (SIG.Gen, SIG.Sign,

New Modular Compilers for Authenticated Key Exchange 13

SIG.Vfy). Each party A is assumed to possess a pair of long-term keys generated
as (ska, pka) & SIG.Gen(1%). In the sequel, we will use the superscript ‘A’ to
highlight the message recorded at party A (resp. party B). The compiled pro-
tocol between two parties A and B proceeds as follows, which is also informally
depicted in Figure 2.

A B
(pka, ska) & SIG.Gen(1%) (pkp, skp) <& SIG.Gen(1%)
KE
- =
obtain k',Aand set obtain k and set
T{ := Tit||AllB TP = TiZ|| Al B
o :=SIG.Sign(ska, “17||T{) op = SIG.Sign(skg, “2”||TE)
gA
-2
oB
— -
accept if accept if
SIG.Vy(pkg, “2”||T, o) = SIG.Vfy(pka, “1”||T,0%) =
1 1

Fig. 2. AKE Protocol from Signature

1. First, A and B run the key exchange protocol KE. They obtain the secure
key k from the key exchange phase (as the session key of AKE) and record
the transcript as TR“E and TfE, where TfE consists of the list of all messages
sent and received by party D € {A, B}.

2. Asets T := T¢: || A || B, computes o4 := SIG.Sign(ska, “1” || T{) and
sends o4 to B. Meanwhile, B sets TP := T || A || B, computes op :=
SIG.Sign(skg, “2” || T{) and sends op to A.

3. Upon receiving signature on each side, A accepts if and only if SIG.Vfy(pkg,
“2" || T{, 04)=1. B accepts if and only if SIG.Vfy(pka,“1” || T ,05)=1.

Session States: In the following we assume that the ephemeral secret vector
esk used in each KE protocol instance will be stored in the variable STA.

4.2 Security Analysis

Theorem 1. Assume that the KE protocol without long-term key is (t,exe)-
passively secure (Definition 1), and the signature scheme SIG is deterministic
and (gsig,t, €sic)-secure (EUF-CMA), then the above protocol is a (t',€)-secure
AKE protocol in the sense of Definition 6 with t' =~ t, and . > d, and it holds
that

€ <20 €16 + dl(dl + 2) - eke.

We prove Theorem 1 in two stages. First, we show that the AKE protocol is a
secure authentication protocol except for probability €,,¢h, that is, the protocol
fulfills security property 1.) of the AKE definition. In the next step, we show that
the session key of the AKE protocol is secure except for probability €;,4 in the
sense of the Property 2.) of the AKE definition. Due to space restrictions, we
only provide a sketch of the proof.

14 Y. Li et al.

Lemma 2. If the KE protocol is (t,eke)-passively secure definition 1, and the
signature scheme SIG is deterministic and (gsig, t, €sic)-secure (EUF-CMA), then
the above protocol meets the security Property 1.) of the AKE security definition 6
except for probability with

€quth < dl- ek + L - €siG,
where all quantities are as the same as stated in the Theorem 1.

Proof. Let break((sl) be the event that there exists a 7 and a 7-fresh oracle m§
that has internal state & = accept and PID] = j, but there is no unique oracle

7r§ such that 7} and 7r§ have matching conversations, in Game 4.

GAME 0. This is the original security game. We have that

Pr[break(()l)] = €quth-

GAME 1. In this game, the challenger proceeds exactly like the challenger in
Game 0, except that we add an abortion rule. The challenger raises event aborteph
and aborts, if an ephemeral key epk; is computed by an oracle w7 but it has been
sampled by another oracle before with the same type of ephemeral key generator.
From the result of Lemma 1, we have that

Pr[breakg)] < Pr[break(ll)] + dl - eke.

GAME 2. This game proceeds exactly as before, but the challenger raises event
abortsig and aborts if the following condition holds:

— there exists a 7-fresh oracle 7§ that has PID{ = j and T}* = T;Z||ID;||ID;
and @7 = accept,
— m} received a signature o that satisfies SIG.Vfy(pkip,, “2” || T}"*, o%)=1,

but there exists no oracle 7T;- which has previously output a signature cr;

over transcript 77"

Clearly, we have
Pr[break(ll)] < Pr[breakg)] + £ esiG.

Note that the RegCorruptParty query does not affect security, since all registered
identities should be distinct to the identities of honest parties. So in Game 2 each
accepting oracle 77 has a unique ‘partner’ oracle 7T§» sharing the same transcript
T;. With respect to other queries, they will be simulated honestly as in the
previous game without any modification since those values are not used for

authentication. Thus, if 7] accepts, then it must have a matching conversation

to 7r§. So we have Pr[brea k(21)] = 0. Sum up probabilities from Game 0 to Game 2,
we proved Lemma 2.

New Modular Compilers for Authenticated Key Exchange 15

Lemma 3. If the KE protocol is (t, exg)-passively secure 1, the signature scheme
SIG is deterministic and (¢siq, t, €sig)-secure (EUF-CMA), then for any adver-
sary running in time t' = t, the probability of A to correctly answer the Test-query
is at most 1/2 + €;pq with

€ind < U-€sig + dl(dl + 1) - eke,
where all quantities are as the same as stated in the Theorem 1.

Proof. Let brea k((sz) denote the event that the A correctly guesses the bit b sam-
pled by the Test-query in Game §, and Test(wf*) is the 7-th query of A, and
771“ is a 7-fresh oracle that is co-revealed throughout the security game. Let
Adv; = Pr[break?)] — 1/2 denote the advantage of A in Game ¢. Consider the
following sequence of games.

GAME 0. This is the original security game. Thus we have that

Pribreak”)] = €;na + 1/2 = Advo + 1/2.

GAME 1. The challenger C in this game proceeds as before, which aborts if the
test oracle accepts without unique partner oracle. Clearly, we have

Advy < Advy + €auth < Advy 4 dl - exe + £ - €sic,

where €,,th is an upper bound on the probability that there exists an oracle that
accepts without unique partner oracle in the sense of Definition 6 (cf. Lemma 2).

GAME 2. This game proceeds exactly as the previous game but the challenger
aborts if it fails to guess the test oracle 77 and its partner oracle % such that
o

U

7 and 7r§* have matching conversations. We have that

Advy < (d€)? - Advy.

GAME 3. Finally, we replace the key k* of the test oracle wf* and its partner or-

acle 77? with the same random value k*. Exploiting the security of key exchange
protocol, we obtain that
Advgy < Advg + exe.

In this game, the response to the Test query always consists of a uniformly
random key, which is independent to the bit b flipped in the Test query. Thus
we have Advg = 0. Lemma 3 is proved by putting together of probabilities from
Game 0 to Game 3.

5 Authenticated Key Exchange Compiler from Public
Key Encryption
5.1 Protocol Description

The compiler takes the following building blocks as input: a passively secure
key exchange protocol KE, a public encryption scheme PKE, a collision resistant

16 Y. Li et al.

hash function CRHF and a one-time message authentication scheme OTMAC.
The compiled protocol between two parties A and B proceeds as follows, which
is also depicted in Figure 3.

A B
(pka, ska) & PKE.KGen(1%) (pkp, skp) & PKE.KGen(1%)
KE
—
obtain k and set obtain k and set
T{ = Tg||A|| B T = Tig||A|| B
N4 := CRHF(T{) Np := CRHF(TP)
K « OTMAC.KGen(1%) Kp < OTMAC.KGen(1%)
Ca & cp &
PKE.Enc(pks, Ka||Na) PKE.Enc(pka, K5||Np)
Ca
e —
KEIINE =

PKE.Dec(skg, C%)
reject if Nf # Np
Ty = TP ||CF||CB,
Rp := CRHF(TP)
MB =
OTMAC.Tag(K %, “2”||Rp)
Cp,Mp
T3 = T{|CalICE,
R4 := CRHF(T3Y)
reject if Mé #
OTMAC.Tag(Ka, “2”||Ra)
Kgl|INg =
PKE.Dec(ska, CH)
reject if Ny # Ng
My =
OTMAC.Tag(K 5, “17||Ra)
accept
Ma

accept if M}f =
OTMAC.Tag(K g, “17||RB)

Fig. 3. AKE Compiler from PKE and OTMAC

1. First, A and B run the key exchange protocol KE, then both parties obtain
the key k from the key exchange phase (as the session key of AKE protocol)
and record the transcripts as T,?E and TfE, where TKDE consists of the list of
all messages sent and received by party D € {A, B}.

2. A sets the transcript T{* := Tt || A || B and computes Ny := CRHF(T{%).
Then, it runs K4 ¢ OTMAC.KGen(1%) and computes a ciphertext Cy <
PKE.Enc(pkp, K4 || Na) under B’s public key pkp and transmits Cy to B.
Meanwhile, B sets TP := T5 || A || B and computes Np := CRHF(T2).
It runs Kp & OTMAC.KGen(1%) and computes Cp < PKE.Enc(pka, K5 ||
Np) under A’s public key pka.

3. Upon receiving the ciphertext C¥, B sets TP := T || C§ || Cp and com-
putes Rp := CRHF(TP). It decrypts C% (i.e. K§ || N¥ := PKE.Dec(sksg,

New Modular Compilers for Authenticated Key Exchange 17

C%)). Then B checks whether N¥ = Np. If the check is not passed, then
B rejects. Otherwise, it computes Mp := OTMAC.Tag(K%, “2” || Rg) and
transmits (Mp, Cp) to A.

4. Upon receiving messages (M7, Cg), A sets T5' := T{ || Ca || C4 and
computes R4 := CRHF(T3). A rejects if M§ # OTMAC.Tag(K4,“2” || Ra).
Then it decrypts the ciphertext C3 (i.e. K3 || Nj := PKE.Dec(skp, C3))
and checks whether Ny = Nj. If the check is not passed, then A rejects.
Otherwise, A computes M, := OTMAC.Tag(K#, “17 || Ra), and sends M4
to B. Finally, A accepts the session.

5. Uponreceiving M %, Bacceptsifandonlyif M¥ = OTMAC.Tag(Kp, “17||Rp).

Session States: We assume the ephemeral secret vector esk used in each KE
protocol instance and the random key K4 and Kp used by PKE.Enc will be
stored in the variable STA.

5.2 Security Analysis

Theorem 2. Assume that the KE protocol without long-term key is (t,exe)-
secure (Definition 1), the public key encryption scheme PKE is (qpke,t, €PkE)-
secure (IND-CCA2), and the hash function CRHF is (t, ecrur)-secure and the
one-time authentication code scheme OTMAC is deterministic and (t, eoTmac)-
secure. Then the above protocol is a (t',€)-secure AKE protocol in the sense of
Definition 6 with t' =~ t and qpre > d and holds that

€ < 2ecruF 4 dl - (20 - epke + 2e0Tmac + 2eke) + (d0)? - exe.

We prove the theorem 2 with two lemmas, similar to the proof of Theorem 1.
For space reasons we only provide two lemmas 4 5.

Lemma 4. Assume that the KE protocol is (t,exe)-passively secure (Defini-
tion 1), the public key encryption scheme PKE is (qpke,t, epke)-secure (IND-
CCA2), and the hash function CRHF is (t, ecrug)-secure and the one-time au-
thentication code scheme OTMAC is deterministic and (t, eormac)-secure. Then
the above protocol meets the security property 1.) of the AKE security definition 6
except for probability with

€auth < €CRHF + dl - (eke + £ - €PKE + €0TMAC);
where all quantities are as the same as stated in the Theorem 2.

Lemma 5. Assume that the KE protocol is (t,exe)-passively secure (Defini-
tion 1), the public key encryption scheme PKE is (qpke,t, epke)-secure (IND-
CCA2), and the hash function CRHF is (t,ecrug)-secure and the one-time au-
thentication code scheme OTMAC is deterministic and (t, eotmac)-secure. Then
for any adversary running in time t, the probability of A to correctly answer the
Test-query is at most 1/2 + €;nq with

€ind < €cRHF + dl - (GKE + 0 - epke + GOTMAC) + (d@)2 - €KE,

where all quantities are as the same as stated in the Theorem 2.

18

Y. Li et al.

Acknowledgements. We would like to thank the anonymous referees for their
valuable comments and suggestions.

References

10.

11.

12.

13.

14.

15.

Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In:
STOC, pp. 419-428 (1998)

Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232-249. Springer, Heidelberg
(1994)

Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (sts) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154-170. Springer, Heidelberg (1999)

Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453-474. Springer, Heidelberg (2001)

Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644-654 (1976)

Jager, T., Kohlar, F., Schége, S., Schwenk, J.: Generic compilers for authenticated
key exchange. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477, pp. 232-249.
Springer, Heidelberg (2010)

Jager, T., Kohlar, F., Schége, S., Schwenk, J.: Generic compilers for authenticated
key exchange (full version). IACR Cryptology ePrint Archive, 2010:621 (2010)
Jager, T., Kohlar, F., Schége, S., Schwenk, J.: On the Security of TLS-DHE in the
Standard Model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273-293. Springer, Heidelberg (2012)

Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. J.
Cryptology 20(1), 85-113 (2007)

Koblitz, N., Menezes, A.: Another look at security definitions. IACR Cryptology
ePrint Archive, 2011:343 (2011)

Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the tls protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429-448. Springer, Heidelberg (2013)

LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1-16. Springer, Heidelberg (2007)

Menezes, A., Smart, N.P.: Security of signature schemes in a multi-user setting.
Des. Codes Cryptography 33(3), 261-274 (2004)

Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models for
key agreement. IJACT 1(3), 236-250 (2009)

Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 474-484.
Springer, Heidelberg (2007)

	New Modular Compilers for Authenticated Key
Exchange

	1 Introduction
	1.1 Contribution
	1.2 The Security Model
	1.3 Related Work

	2 Security Assumptions
	3 Security Model
	4 Authenticated Key Exchange Compiler from Signature
	4.1 Protocol Description
	4.2 Security Analysis

	5 Authenticated Key Exchange Compiler from Public Key Encryption
	5.1 Protocol Description
	5.2 Security Analysis

	References

