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Abstract. Initial analysis of a first Remote Control Tower (RTO) field test with 
an experimental videopanorama system [1] [2] under quasi operational condi-
tions has shown performance deficits quantified by two-alternative aircraft  
maneuver discrimination tasks [3]. RTO-controller working position (CWP-) 
performance was compared with that one of the conventional tower-CWP with 
direct out-of-windows view by means of simultaneous aircraft maneuver obser-
vations at both operator positions, and it was quantified using discriminability 
d’ and Bayes inference. Here we present an extended data analysis using nonpa-
rametric discriminability A and we discuss the RTO performance deficit in 
terms of the information processing (IP) theory of Hendy et al. [4]. As initial 
working hypothesis this leads to the concept of time pressure (TP) as one major 
source of the measured response errors. We expect the RTO-performance defi-
cits to decrease with the introduction of certain automation features to reduce 
time pressure and improve the usability of the videopanorama system. A fit of 
the experimental data with a modified error vs. TP function provides some evi-
dence in support of the IP/TP-hypothesis, however more specifically designed 
experiments are required for obtaining sufficient confidence.  

Keywords: Remote Tower, videopanorama, field testing, flight maneuvers, 
two-alternative decisions, signal detection theory, information processing 
theory, time pressure. 

1 Introduction 

Since about ten years remote control of low traffic airports (Remote Tower Operation, 
RTO) has emerged as a new paradigm to reduce cost of air traffic control [1]. It was 
suggested that technology may remove the need for local control towers [5]. Control-
lers could visually supervise airports from remote locations by videolinks, allowing 
them to monitor many airports from a remote tower center (RTC) [2]. It is clear from 
controller interviews that usually numerous out-the-window visual features are used 
for control purposes [6]. In fact, these visual features go beyond those required by 
regulators and ANSP’s (air navigation service providers) which typically include only 
aircraft detection, recognition, and identification [7]. Potentially important additional 
visual features identified by controllers in interviews involve subtle aircraft motion. In 
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fact, the dynamic visual requirements for many aerospace tasks have been studied, but 
most attention has been paid to pilot vision (e.g. [8]). In this work we investigate a 
group of visual cues derived from flight maneuvers within the range of observability 
in the control zone. They might be indicative of aircraft status and pilots situational 
awareness which is important with the higher volume of VFR traffic in the vicinity of 
small airports. 

These considerations led to the design of the present validation experiment within 
the DLR project RAiCe (Remote Airport traffic Control Center, 2008 – 2012). The 
field test was  realized within a DLR - DFS (German ANSP) Remote Airport Coopera-
tion. Specifically dual-choice decision tasks (the subset of “Safety related maneuvers” 
in [9]) were used for quantifying the performance difference between the standard 
control tower work environment (TWR-CWP) and the new RTO controller working 
position (RTO-CWP) based on objective measures from signal detection theory 
(SDT)[10] and Bayes inference [3]. Here we confirm these preliminary results by addi-
tional data evaluation using the nonparametric discriminability index A [11] and 
present a new model-based analysis in terms of the information processing/time pres-
sure (IP/TP-) theory of Hendy et al.[4] for comparing the measured performance deficit 
of the RTO-CWP with the predictions of a theoretical error model.  

Experimental methods are reviewed in section 2 followed by the results in section 3 
(response times, Hit and False Alarm rates). Using these data in section 4 nonparame-
tric discriminability coefficients are calculated and error rates are fitted with a IP/TP 
based model. We finish with a conclusion and outlook in section 5. 

2 Methods 

In what follows we review the experimental design with two-alternative decision 
tasks as part of the remote tower validation experiment and present additional details 
relevant for the IP-theory based analysis. Further details of the full passive shadow 
mode validation trial are reported in [9].  

2.1 Participants 

Eight tower controllers (ATCO’s) from DFS were recruited as volunteer participants 
for the experiment. The average age was 30 (stdev 12) years with 10 (stdev. 10) years 
of work experience, and they came from different small and medium airports. They 
took part at the experiment during normal working hours and received no extra pay-
ment. They were divided into 4 experimental pairs for simultaneously staffing the 
control tower (TWR-CWP) and the RTO-CWP. 

2.2 Experimental Environment and Conditions 

The experiment was performed as passive shadow mode test under quasi operational 
conditions on the four days July 17 – 20 2012. The remote tower system used in the 
present experiment was located at the DFS-operated Erfurt-Weimar (EDDE) control 
tower. It was an improved version of the RTO-experimental testbed at Braunschweig 
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The set of five well defined flight-maneuvers as stimuli for decision tasks at given 
positions within the EDDE control zone is indicated in Fig.2 with a 3D plot of the 
logged on board GPS trajectory. Trajectory minimum altitude represents a runway 
overflight at about 30 m above ground. The two types of maneuver-stimuli could be 
observed either visually-only (e.g. landing gear down) or visually and by radar (alti-
tude change). During the experiment sometimes additional low volume normal traffic 
took place which now and then lead to delays in the traffic circle. Average duration of 
a full circle (= one run) was ca. 10 min yielding typically 140 min of experiment dura-
tion per participant pair for the nominally 14 full circles.  

Radio communication between D-CODE pilots and flight engineer and the experi-
menter at the tower was realized with a separate research frequency in addition to the 
standard A/C–TWR radio channel. The available time for participant’s responses to 
decision tasks was limited so that correct, incorrect and non-answers were possible.  

2.3 Experimental Design and Task 

Based on the fixed set of evaluated two-alternative events during a single circle (A, D, 
G1, G2, H1,2,3) the concrete event situation (stimulus alternative S1 = maneuver, S2 = 
no maneuver) for decision making were switched statistically between runs according 
to two mirrored scenarios with different task sequences. In this way during the 14 
circles per experiment / participant for each event about 7 answers per event alterna-
tive and per participant were obtained for the analysis (TWR and RTO CWP condi-
tion as independent variables). The within subjects design (TWR vs. RTO-CWP) 
yields about N = 56 answers and non-answers for averaging with the 8 participants. 

During one aerodrome circling the two participants at the TWR and RTO-CWP 
had to simultaneously answer 19 different types of questions concerning the D-CODE 
maneuvers (events), object detection, and weather status. For analysis with discrimi-
nability index A and IP/TP theory based error model the following subset of 5 of the 9 
event related questions is evaluated with regard to hit- and false alarm rates (in brack-
ets: maximum response time Ta = interval until next task / question): 1. Does A/C 
perform repeated bank angle changes? (event position A; Ta = 20 s), 2. altitude varia-
tion ? (by 300 ft, event pos. D; 20 s), 3. landing light-off? Report status, event pos. 
G1; 180 sec: switching-off not observable), 4. A/C on glide path?, event pos. G2; 90 s; 
5. Landing gear-down?; Report during final approach;event pos. H1,2,3, distance 1.5, 1, 
0.5 km; 10 s). A subjective certainty rating on a 5-point scale was not evaluated for 
the present analysis. 

Every pair of participants had to complete two experimental trials. For the first trial 
(duration approximately 140 min) in the morning till noon, the participants were ran-
domly assigned to one of the two CWP’s. Positions were changed for the second trial 
in the afternoon. The number of airport circles corresponding to the number of deci-
sions for each specific event was between 10 and 14. With two alternative stimuli (S1, 
S2) per task each pair of participants was exposed to 5 – 7 stimuli of the same kind in 
random succession for each event under TWR and the same number under RTO con-
ditions. The present data analysis is focused on deriving objective measures for the 
two-alternative decision tasks. Additional data evaluation was presented in a parallel 
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paper [9] addressing performance (answers given, response times, and sources of 
information) and subjective measures (debriefing, questionnaires). 

3 Results 

The response matrices of conditional probabilities p(y|S1) = hit rate H, p(n|S1) = 
misses M, p(n|S2) = correct rejections CR, p(y|S2) = false alarms FA, for the two al-
ternative situations (stimuli), S1, S2, structure the results of each of the five events. 
Because participant’s responses to event related questions were allowed to be posi-
tive, negative, and non-answers (no decision during the available time Ta), we analyse 
two types of response matrices: a) (optimistic) neglecting non-answers, b) (pessimis-
tic) interpreting non-answers as false decisions (M or FA). In this way we obtain for 
each of the decision tasks an optimistic and a pessimistic estimate with regard to deci-
sion errors. The percentage correct analysis in [9] and the preliminary SDT and Bayes 
inference analysis [3] had shown that neglection of non-answers suggested no signifi-
cant performance difference between TWR-CWP and RTO-CWP. The interpretation 
of the non-answers as erroneous responses appears to be justified due to increased 
uncertainty about the correct answer resulting in hesitation to respond at all because 
tower controllers work ethics requires decision making with high certainty. Figure 3 
shows the statistics of non-answers, separated for the TWR-CWP and RTO-CWP 
condition. 

 

Fig. 3. Relative number of non-answers for the five analyzed decision tasks, separated for the 
two conditions TWR-CWP(left two columns, blue, vertical lines), RTO-CWP(right columns, 
green, horizontal lines), normalized with regard to the two respective alternative situations S1 
(flight maneuver / stimulus, light colour), S2 (no flight maneuver / stimulus, dark colour)) 

Within the theoretical framework of SDT the two alternative stimuli S1, S2 for each 
event define independent statistical variables. Each set of decisions of a single subject 
for the 14 aerodrome circles with one of the events A, D, G1, G2, H represents a  
sample of the randomly presented S1- and S2-alternatives. For calculation of (parame-
tric) discriminability d’ the subjective responses are assumed to be drawn from  
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independent equal variance Gaussian (μ1,2, σ ) densities for familiarity with situations 
S1 and S2 [10]. Any discriminability difference between TWR and RTO may be quan-
tified by corresponding coefficients d’ = μ1 – μ2 = z(H) – z(FA), and subjective deci-
sion bias (criterion) c = 0.5(z(H) + z(FA)), with z() = z-score as calculated from the 
inverse cumulative densities. This SDT-analysis together with Bayes inference on risk 
of false decision was provided in [3] for the events A, D, G1, H. In section 4.2 we will 
confirm these preliminary results with an additional analysis using the non-parametric 
discriminability index A [11] (independent of Gaussian assumption). 

Table 1 lists the measured hit and false alarm rates (± standard deviations derived 
from binomial distributions) for the five events to be analysed with respect to A. In 
addition to H and FA, M = 1-H is required for calculating the total number of errors to 
be compared with a formal error model in section 4.3 

Table 1. Measured hit and false alarm rates (H = p(y|S1), FA = p(y|S2), ± stddev from 
Binomial distribution according to [10]) for five events and two conditions (TWR, RTO-CWP) 
with a) non-answers excluded  and b) non-answers added to error rates FA and M.  Ta = 
available decision time, Tr required average decision time with stderror of mean / seconds. 

Event with 
Alternatives  
S1 / S2  (Ta/s) 

Tr / s 
± stderr 

CWP 

a) Non-answers 
excluded 

b) Non-answers  
included 

p(y|S1) p(y|S2) p(y|S1) p(y|S2) 
A: bank angle 
var.: y / n (20) 

13.8±1.7 TWR 0.92±.04 0.08±.04 0.81±.06 0.20±.05 
14.0±1.1 RTO  0.93±.05 0.11±.05 0.60±.07 0.39±.07 

D: Altitude 
var.: y / n (20) 

8.8 ±1.4 TWR 0.80±.06 0.03±.03 0.77±.06 0.12±.06 

12.4±1.5 RTO 0.73±.07 0.03±.03 0.70±.07 0.06±.04 
G1: lights off: 
y / n  (180) 

27.0±6.6 TWR 0.94±.04 0.25±.07 0.94±.04 0.28±.07 
95.4±7.4 RTO 0.92±.06 0.63±.08 0.65±.08 0.72±.07 

G2: Glidepath 
y/n  (90) 

21.6±6.4 TWR 0.90±.04 0.32±.07 0.88±.05 0.33±.07 
34.2±8.1 RTO 0.92±.04 0.22±.06 0.88±.05 0.22±.06 

H: gear-down: 
y / n  (10) 

8.1±0.9 TWR 0.98±.02 0.06±.04 0.91±.04 0.22±.06 

9.2±0.5 RTO 0.98±.02 0.07±.05 0.77±.06 0.37±.08 
 
Comparing the measured hit and false alarm rates for all five events under TWR 

and RTO conditions with non-answers not considered (optimistic case a): left two 
data columns), the RTO-CWP exhibits no significant difference as compared to the 
TWR-CWP. If however, the non-answers are interpreted as erroneous responses and 
correspondingly attributed to rates FA and M (pessimistic case b): right two data col-
umns), significant differences TWR vs. RTO are obtained (smaller H(RTO), larger 
FA(RTO)) for event/task A (bank angle variation?), H (gear down?), G1 (lights off?), 
whereas for event/tasks D and G2 responses again exhibit no significant difference. 
The latter two tasks reflect the fact that altitude information could be read directly 
from the radar display and operators were free to select their appropriate information 
source. An extremely high FA difference TWR vs. RTO is observed for both case a) 
and b) for the “lights-off” event which is reflected also in a large difference of deci-
sion distance (correlated with response time).  
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4 Data Analysis and Discussion  

4.1 Technical Limitations 

Technical parameters of the reconstructed far view with videopanorama and PTZ 
[1][2] leads to predictions concerning performance differences under the two condi-
tions TWR and RTO-CWP. The measured performance also depends on the usage of 
the different available information sources, in particular  videopanorama, PTZ, and 
approach radar. The visibility limitations of the videopanorama are quantified by the 
modulation transfer characteristic (MTF), with the digital (pixel) camera resolution 
providing the basic limit (Nyquist criterion) for detectable objects and maneuvers: 
angular resolution was estimated as δα ≈ 2 arc min ≈  1/30° ≈ 0.6 m object size / km 
distance per pixel under maximum visibility and contrast (about half as good as the 
human eye (1 arcmin)). Reduced contrast of course reduces the discriminability ac-
cording to the MTF and the question arises how the discriminability difference TWR 
vs. RTO-CWP is affected. The gear-down situation at positions H1- H3 with wheel 
diameter 0.65 m, e.g. can certainly not be detected before the wheel occupies, say, 4 
pixels which for the 40” display (0.55 mm pixel size) means a viewing angle of ca 1 
mm/2 m ≈ 0. 5 mrad corresponding to the visual resolution of the eye (1 arcmin) un-
der optimum contrast. This estimate results in a panorama based gear-down detecta-
bility distance of < 500 m. It means that under RTO conditions this task requires 
usage of PTZ in any case for enabeling a decision. The same argument is valid for the 
detection of bank angle changes at position A following the overflight of the runway 
because it requires optical resolution of the A/C-wings. The “lights-off?”-decision 
(G1) has a somewhat different character because in situation S1 (lights-off, answer 
“yes” = hit) observers usually wait until they actually detect the A/C whereas situation 
S2 can be recognized at a larger A/C distance due to the higher contrast ratio of land-
ing-light-on/background luminance.  

4.2 Discriminability of Aircraft Maneuvers during Aerodrome Circling 

Based on the extended set of data as compared to [3], the focus here is on quantifica-
tion of the discriminability deficit of the RTO-CWP by means of the nonparametric 
sensitivity index A with corrected algorithms [11], and the derivation of initial evi-
dence for the IP/TP hypothesis [4] as formal framework for explaining the measured 
performance decrease. In [3] the (H, FA)-data of table 1 (without G2)  were analysed 
using parametric discriminability d’ and Bayes inference (see section 3). With deci-
sions based on visual observation using videopanorama and PTZ, both SDT and 
Bayes analysis showed consistently a significantly reduced discriminability for the 
three maneuvers A, G1, H, but not for altitude change D where radar provided the 
required information. Due to the d’ dependency on Gaussian distribution parameters 
we test here the reliability of the preliminary results with the nonparametric discrimi-
nability parameter A [11] which is calculated directly from H, FA. A is the average 
area under the minimum and maximum area proper ROC-isosensitivity curves (con-
stant d’, [3][10]) and varies between 0.5 (d’ = 0) and 1 (lim d’-> ∞) . Figure 4 (right) 
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depicts for analysis of case b) the A-values of the five tasks at A, D, G1, G2, H, for 
the two conditions TWR-CWP, RTO-CWP. Fig.4(left) shows one example of (A, b)-
parametrized isopleths determined by the two TWR and RTO-CWP datapoints.  

 

Fig. 4. Left: Isosensitivity curves (TWR, RTO) for maneuver A (solid lines, case b)-A-
isopleths) and decision bias (dashed, b-isopleths). Right: A as calculated according to [11] from 
H and FA rates in table 1 for case b): non-answers := false answers. D and G2 (dash-dotted 
lines connecting TWR – RTO data): decisions about altitude (variations). A, G1, H = visual-
only information (solid lines). Error bars = std. dev. based on binomial distribution [10]. 

The example (A, b)-isopleths for maneuver A (Fig. 4, left) shows zero decision bi-
as (b = 1), however a significant discriminability decrease for RTO-CWP (circle = 
data average; minimum A-isopleth = 0.5 = positive diagonal). In agreement with table 
1 and the d’ results in [3], discriminability indices A in Fig.4(right) exhibit no signifi-
cant  difference between TWR and RTO-CWP conditions for events D, G2 (event 
sub-set with altitude stimulus; altitude information provided by radar), whereas the A-
decrease for the visual-only subset {A, G1, H} is evident. Moreover even a reduction 
of the number of erroneous decisions by attributing a 50% chance to non-answers to 
be correct instead of assuming 100% wrong answers) leaves the RTO-performance 
decrease for visual-only tasks significant. The drop to chance level of RTO-CWP 
discriminability for case G1 is attributed to the RTO-resolution and contrast deficit 
which prohibits recognition of A/C even with lights on for short response times Tr: 
when participants at RTO-CWP after task initialization had waited some 10 s or so 
without recognizing landing lights they often simply guessed lights to be off or gave 
no answer, contributing to FA-errors. 

4.3 The Information Processing / Time Pressure Hypothesis 

In order to determine appropriate solutions for rising the RTO-CWP performance to 
at least the level of the TWR-CWP we have to find explanations for the measured 
discriminability deficits. The RTO-CWP performance for decision making using vis-
ual information only should be at least as good as that one based on radar used for the 
altitude related decisions (Fig. 4) so that users can be certain that replacement of the 
out-of-windows view has a potential of even improving their work condition. 
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A (algorithmically) simple theoretical model with some potential for explaining  
observed performance differences quantified in terms of decision-error probability, is 
based on the perceptual control/information processing theory (PCT/IP) of Hendy et 
al. [4]. Because our experiment was not initially designed for an application of this 
theory we can only expect a first impression on the relevance of the corresponding 
assumptions. The core idea is to formalize the information processed (as part of the 
total information required for a correct answer: Br / bits) as function of time pressure 
TP. TP is the ratio of required time Tr (to acquire Br) and the available time Ta: TP = 
Tr/Ta. Assuming constant cognitive processing rate (channel capacity C: Tr = Br/C) 
the rate of information processing demanded RID is related to TP via TP = RID/C, 
with RID = Br/Ta. Hendy et al. [4] derived simple algorithms for modeling dependent 
variables like operator workload (OWL), success ratio, and number of errors as func-
tion of TP. For the latter they suggested an exponential dependency for the increase of 
decision errors with TP, where TP increases linearly with the number N of objects to 
be analysed (in our case N = 1): TP = t0(1 + b1 N)/Ta, and t0 = minimal decision time 
for N = 0. For error probabilities we modify Hendy’s algorithm in order to use our 
maximum error probability perr = 0.5 = pmax (guessing, no information available) as 
boundary condition. Keeping the original assumption that errors start to grow expo-
nentially with TP but then level off at pmax we arrive at a logistic function with thre-
shold and sensitivity parameters as one possible model: 

௘௥௥݌  ൌ 0.5 ቀ1 ൅ ݌ݔ݁ ቄെ ቀ்௉ିఓఉ ቁቅቁିଵ (1) 

μ (0 ≤ μ ≤ 1) models the threshold where the observer starts shedding most infor-
mation due to increasing workload (stress due to TP increase). It fulfills the condi-
tions that lim(TP >> μ) perr  0.5 and lim(TP  0) perr  0. The latter condition is 
fulfilled as long as μ/β >> 1, i.e. steep slope (= error sensitivity dperr/dTP =1/2β at TP 
= μ and/or large threshold). Figure 5 shows the results of nonlinear fitting of the re-
spective two data points perr(TP) at TP(Tr(TWR)), TP(Tr(RTO)) with the two boun-
dary conditions (perr(TP  0, TP  ∞) using model-equation (1) for  the three visual-
only tasks. For characterising the experimental results in terms of (μ, β) we have to 
use the total number of errors for the full set (n(S1)+n(S2)) of trials per subject in-
stead of the conditional probabilities, misses and false alarm rates M=1-H, FA: perr = 
(n1 M + n2 FA)/(n1 + n2) as used for the discriminability calculation.  

The results indicate the principal applicability of the logistic error model because 
all three cases yield reasonable threshold (μ < TP = 1) and error sensitivity parameters 
1/β. The RTO-performance deficit always seems to correlate with some kind of time 
pressure. According to IP-theory decision errors should increase significantly due to 
increasing stress when Tr approaches Ta and to shedding of information when Tr > 
Ta (Tr/Ta > 1). This is reflected by our results only for event H (gear down) with the 
shortest Ta = 10 s. Variation of threshold μ with event(stimulus) can be explained by 
the fact that the three specific events provide quite different stimulus conditions for 
the decision making as described in section 3.The fact that only for the gear-down 
task an approximately exponential increase of errors at TP ≈ 1 is observed according 
to [4] with μ ≈ 1 whereas a sensitive threshold behavior at lower μ is suggested for 
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tasks A, G1, indicates at least one more performance limiting factor besides time 
pressure, such as PTZ-camera contrast/resolution and operator training. For lights-off 
decision the RTO-HMI contrast deficit should play a major role: the average response 
appears completely at random. Nevertheless also in this case a long waiting time after 
beginning to gather visual evidence might lead to increasing stress due to uncertainty. 

  

Fig. 5. Decision error probabilities for TWR and RTO-CWP vs. time pressure TP (±stderr of 
mean, n = n(error)+n(correct) = 80 …100) for tasks where visual / PTZ-information was used 
for decision making. Standard errors of p(error) are smaller than the circles of data points. 
Logistic error model (equ. (1)) derived from IP/TP-theory [4] for fitting perr(TP).  

5 Conclusion 

The present analysis of two-alternative decision making with safety related aircraft 
maneuvers confirms the previously reported [3] explanation of an observed discre-
pancy in the percentage correct analysis (pc, neglecting non-answers) [9] of the  
corresponding observation data, as compared to the subjective success criteria. The 
perceived safety was rated as insufficient by participants  which agrees with the  
objective data of the present analysis and [3]. Neglecting non-decisions during simul-
taneous decision making at TWR- and RTO-CWP yields mostly no significant differ-
ence of discriminability (i.e. suggesting sufficient RTO performance) whereas the 
interpretation of non-decisions as false responses (misses or false alarms) leads to 
significant error increase under RTO as compared to TWR conditions and correspon-
dingly reduced A and d’. The results indicate a usability deficit of the RTO-HMI (vi-
deopanorama and PTZ) due to time pressure as one possible reason. Data analysis 
with a modified version of the Hendy et al. information processing / time pressure 
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theory (IP/TP) [4] indicates additional origins of performance decrease due to thre-
shold behavior of decision errors significantly below the TP = 1 value. It is expected 
that increased automation (e.g. automatic PTZ-object tracking and data fusion with 
approach radar) will increase usability, and in combination with improved operator 
training could solve the performance problem. However further experiments are re-
quired for clarifying the role of time pressure and validating the effect of a higher 
level of automation system. They are preferably realized as human-in-the loop simu-
lations with appropriate design for time pressure variation, and forced choice tasks for 
avoiding non-answers. Because of the significant effort required for the HITL-
experiments and field tests, the initial results of the IP/TP-model suggest as interme-
diate step computer simulations for preparing corresponding HITL- and field experi-
ments. For this purpose the commercial tool IPME (Integrated Performance Modeling 
Environment [12]) appears useful which integrates the PCT/IP-based approach to-
gether with a resource based theory so that by means of simulations it would allow for 
further clarification of the influence of different performance shaping functions.  
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