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Abstract. In this paper, we discuss the long-term time series forecasting using a
Multilayer Neural Network with Multi-Valued Neurons (MLMVN). This is
complex-valued neural network with a derivative-free backpropagation learning
algorithm. We evaluate the proposed approach using a real-world data set de-
scribing the dynamic behavior of an oilfield asset located in the coastal swamps
of the Gulf of Mexico. We show that MLMVN can be efficiently applied to un-
ivariate and multivariate multi-step ahead prediction of reservoir dynamics.
This paper is not only intended for proposing a novel model of forecasting but
to study carefully several aspects of the application of ANN models to time se-
ries forecasting that could be of the interest for pattern recognition community.
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1 Introduction

An oilfield is described by a set of time series (TS) of fluids from petroleum wells
(oil, gas and water), which are characterized by different starting points and mutual
influence. Production performance is both controlled by the reservoir properties and is
affected by operational constraints and surrounding wells performance. Since the rock
and fluid properties of the reservoirs are highly nonlinear and heterogeneous in na-
ture, production TS comprise high-frequency multipolynomial components, represent
a long memory process and are often discontinuous (or piecewise continuous).

Several important tasks of petroleum reservoir engineering are concerned with the
forecasting of oil production from the reservoir. Usually, production prediction prob-
lem is considered within several different settings [1]: 1) prediction of existing wells
based on that well’s previous production data, ii) spatial prediction of a new infill
drilling well based on the reservoir’s model, and iii) backward prediction, known as
“backcasting”, for some brown fields with no record of the measured wells’ produc-
tion. In this paper, we limit the discussion to the former case.

Traditional methods of production prediction in petroleum engineering include de-
cline curve analysis (DCA), black oil model history matching, exploration analogies
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and exploration trend extrapolations. The main disadvantage of such tools is that they
are based on subjective data interpretation: to pick the proper slope, to tune the para-
meters of the numerical simulation model in such a way that they keep the reasonable
values, to interpret reservoir geology [2].

The underlying idea of TS forecasting is that patterns associated with past values in
a data series can be used to project future values [3]. In real-life dynamic systems the
task for a TS forecasting can be stated as follows: given measurements of one compo-
nent of the state vector, reconstruct the (possibly) chaotic dynamics of the phase space
and thereby predict the evolution of the measured variable [4]. The paper studies an
oilfield behavior reflected in the oil well’s monthly production TS analyzing both the
architecture and the parameters (time lag, memory size, etc.) which better describe
and are able to predict its dynamics on long time intervals.

Recently, we reported the application of pattern recognition techniques (the asso-
ciative model) to oil production prediction [5]. The Gamma model showed very com-
petitive behavior on short prediction horizons (up to one year) but, in the current state
of the development of forecasting algorithm, had some difficulties on longer intervals.
Several artificial neural networks (ANN) topologies have been studied in the literature
in their application to the prediction of oil and gas production both in univariate and
multivariate settings. Multi-layer perceptron (MLP) and recursive neural networks
(RNN), such as NARX, Elman and Jordan RNN, can be applied for multi-step-ahead
TS forecasting. In [1, 6] a forecasting model based on the use of MLP was suggested
to predict existing and infill oil well performance using only production data. Garcia
and Mohaghegh [8] used recurrent neural networks for forecasting natural gas produc-
tion in the United States. In [9] the NARX networks have been studied for univariate
forecasting of oil monthly production, Chakra et al. described higher order neural
networks (HONN) applied to forecast water, oil and gas production [10]. On relative-
ly short-term (6 - 18 months) forecasting intervals and rather small data sets (up to 10
TS) most of these models outperformed DCA results with mean absolute percentage
error (MAPE) about 14 — 16% [6], but long-term forecasting is still a challenge.

In this paper, we analyze the problem of long-term forecasting using a Multilayer
Neural Network with Multi-Valued Neurons (MLMVN) introduced in [11] and fur-
ther developed in [12, 13]. We illustrate the representation of TS patterns with
MLMYVN, several aspects of the prediction problem as the prediction horizon increas-
es (for up to 5-15 years) and compare the univariate and multivariate forecasting with
real data from an oilfield located in the coastal swamps of the Gulf of Mexico.

2 The MLMVN Neural Network in Time Series Forecasting

MLMVN [13] consists of multi-valued neurons (MVN) with complex-valued
weights, and this is its main distinction from a classical feedforward neural network.
Using complex-valued inputs/outputs, weights and activation functions, it is possible
to increase the functionality of a single neuron and a neural network, to improve their
performance, and to reduce the training time [13, 14].
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The discrete MVN was introduced in [15]. It implements a mapping between 7 in-
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puts and a single output. Let £, =e , where i is an imaginary unit, be the primi-

tive k-th root of unity. Let E, ={&l,&.¢/,...&"

} . An MVN input/output

mapping is described by a function of n variables f(x,...,x,), which can be either of
fiEl > E or f:0"—>E, (discrete MVN) or f:0" — O (continuous MVN),
where O is a set of points located on the unit circle. Such a function can be

represented using n+1 complex-valued weights as follows [13]:

fx,nx,)=Pw,+wx +..+wx,) (1)

where Xppoer X, (x_,- €E,j= 1,...,n) are neuron inputs and Wy , W, , .., W, are the

weights. P is the activation function of the neuron, which is for a discrete MVN:
P(z)=€"* if 2rj/k<arg z<2m(j+1)/k, 2)

where j=0, 1, ..., k-1 are values of the k-valued logic, z = Wy + WX, +...+w X, is the

weighted sum, arg z is the argument of the complex number z. Function (2) divides a
complex plane onto £ equal sectors and maps the whole complex plane into a subset
of points belonging to the unit circle.

The MVN learning is based on the error-correction learning rule [16]:

w
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where X is the vector of neuron inputs complex-conjugated, n is the number of neu-
ron inputs, D is the desired output of the neuron, Y = P(z) is the actual output of

the neuron, r is the number of the learning step, W is the current weighting vector,

W

., 18 the following weighting vector, C is a learning rate (it is complex-valued in

general, but in all simulations, which we have done in this work, we used C, =1),

and |zr| is the absolute value of the weighted sum obtained on the " learning step.

The use of MVN as a basic neuron in a MLMVN was suggested in [11, 16]. It’s
most important advantage is the derivative-free backpropagation learning algorithm

[11-13], which is constructed in the following way. Let W,-jx be the weight corres-
ponding to the i" input of the js™ neuron (j" neuron of the s" layer), Y, be the ac-
tual output of the /" neuron from the s™ layer (j=1.,...,m), and N, be the number of
the neurons in the s™ layer. It means that the neurons from the s+1* layer have exactly
N, inputs. Let X,...,X, be the network inputs. To obtain the local errors for all

neurons, the global error (& n = Djm - ij) must be shared with these neurons.

Hence, the errors of the m™ (output) layer neurons are:
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where jm specifies the /" neuron of the m™ layer; ¢, =N, ,+1. The errors of the

m-1

hidden layers neurons are calculated as follows:

N,

s+l

1 sl
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where js specifies the j1h neuron of the s layer (j=1,...,m-1);
t, =N_,+1, s=2,..,m is the number of all neurons in the layer s-1, and
t, =n+1 (n is the number of network inputs). The weights for all neurons are cor-
rected using the error-correction learning rule (3) adapted to MLMVN.

3 Time Series Prediction Using MLMVN

Time series prediction using MLMVN was first considered in [13], where univariate
forecasting of finacial time series was studied. It was shown that MLMVN learning
capability does not depend on the size of the network, a big network can be
successfully used for a long term time series prediction. We use here two natural
models, which are very suitable for MLMVN.

3.1  Univariate Forecasting Model

The model of a "classical time series" [17], is based on the assumption that the fol-
lowing series member depend only on a certain amount of its direct predecessors.

Suppose we have historical data for some TS X, x,...,X,_;,X,,X,, ;.-

., X, and there
exist some functional dependence among the series members, according to which the

n+1* member’s value is a function of the preceding n members’ values (6). Our task

X ppreee

known. According to our assumption, (6) holds for our TS, but f is unknown. How-

is to predict the following members of the series, that is x, , which are not

+1°?

ever, we can approach this function using some machine learning tool. This means
that we have to form a learning set from the known TS members. Since the first r
members of the TS are known, and according to (6) each following member is a func-
tion of the preceding » members, our learning set should contain the learning samples
and desired outputs. As soon as the learning process is completed, f can be imple-

mented as its approximation f , which is resulted from the learning process, and
future members of the TS can be predicted according to (7). The heat sign in (7)

means that the corresponding value is not a true value, but the predicted one.
3.2  Multivariate Forecasting Model

This model is a generalization of the first model for such a case when a TS member to
be predicted depends not only on the preceding members of the same series, but on
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the members of another TS. Let y, = y(z,)),y, = y(t,),...,y, = ¥(t,),... be another TS

changing and measured synchronously with the first one. Let us suppose that there
exist some functional dependence among the series members, according to which the
n+1% member’s value is a function of the preceding n members’ values of both series.

b= () ¢ = Flenn)
Kot = f(-xls-..,Xn)’ 55)#2 = f‘('xr—n+2""’xr"£r+l)’
Xpr2 = f('x2""’xn+l)’ ©) -7 2 (7)

j\:r-%—?) - f (xr—n+3"“’xr"£r+l’xr+2 ) ’

X, = f(xj,...,xw._l).

Suppose we have historical data for some TS Xx,,x,,....,x, |, X

n—1°"Vn> n+1,...,xr and
Voo Vioewos Yurts Vo> Yus1o--s ¥, - Suppose that there exist the functional dependence (8)
among their members. Our task is to predict the following members of the series, that

1S X ,,X , which are not known. According to our assumption, (8) holds for our

4l 42000

TS, but f is unknown. In the same way as for the first model, f can be imple-
mented as its approximation f , which is resulted from the learning process, and

future members of the time series can be predicted as in (9).
xn = f (XO’ yO""xnfl’ yn*l )
'xn+l:f(xl’yl"“’xn’yn)’ (8)

Xn=f (x2, YVareews Xy ynH)’

=
1]

r+l f('xr—nﬂ’yr—nﬂ""xr’yr)
r+2 f(xr—n+2’ yr—n+2""xr’ yr"£r+l’ yr+l)’ (9)

xr+3

=
1]

f(xr-n+3’ yr—n+3""’xr’ yr’xrﬂ’ yr+l’xr+2’ yr+2)

Knsj = f(xb/,yy,...,x,,ﬂ.fl,yw-,l).

4 Experimental Settings and Results

In order to test the proposed forecasting model, it was applied to the data set compris-
ing monthly production from 15 wells of an oilfield asset located in the coastal
swamps of the Gulf of Mexico. Both models (7) and (9) have been tested using
MLMVN software simulators. For the multivariate model only two dynamic inputs:
oil and gas-oil ratio (GOR) were used. From a number of experiments it follows that
n=60 is an optimal value in (7) and (9). Since the series members were measured once
in a month, then this means that a current member depends on the ones for the preced-
ing 60 months (exactly 5 years). The optimal length of the learning set corresponds to
120 months (exactly 10 years). This makes it possible to perform a long-term predic-
tion (5 years or even more) using both models. Thus, the wells from the data set meet
the following criterion: to have a production history for at least 15 years.
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4.1 Experimental Settings

The first model (univariate) was tested using MLMVN 60->2->32768->1 (60 inputs,
2 neurons in the 1™ hidden layer, 32768 neurons in the 2™ hidden layer, and 1 output
neuron). The second model (multivariate) was tested using MLMVN 120>8->1 (120
inputs - they still correspond to 60 months -, 8§ hidden neurons in a single hidden
layer, and 1 output neuron).

To transform TS values into numbers located on the unit circle (to be able to use
them as MLMVN inputs and outputs), the following transformation was used:

u_,.—a

uelabl=g,= (27-6)e[0,27-8 ;x, =" ;j=0,...n, (10)

—a

where u,,u,,...,u, is the original time series. If Uy, = Min u, and u, = max u,
j=0.L...n j=0.1,...n
ymin _0'125(ymax - ymin )’ ymin > 0
07 ymin = 0

andp=y +0,125(ymax - ymin). This extension of the range is important to avoid

then a and b were chosen in the following way g :{

closeness to each other of the numbers on the unit circle corresponding to minimal
and maximal values of a time series. For the same purpose, a shift § was used. In our
experiments, we used 6 = /4. Evidently, to return back to the original data scale,
the inverse transformation is necessary:

(/’(b_a)+a (11) xe "k u:s(b_a)+a (12)

xeQ,argx=@Q, u=
BX=o U= s k1

According to previous experimental results [13], the MLMVN software simulator
shows better accuracy when the standard deviation of the TS data is "squeezed" to a
value of order [0, 1,10.0]. To achieve this effect, the initial data were normalized by

division of all the series members by 10,000 or 100,000 depending on their initial
range. The resulting series members were multiplied by the same number accordingly.

Since the MLMVN software simulator supporting the multivariate model can pro-
duce only discrete output (the output neuron of the network is discrete, that is (2) is its
activation function), to approach the continuous output, the large number of sectors
(k=4096) was used. This makes a sector's angular size negligently small and the neu-
ron's performance is practically equivalent to the continuous case. To transform the
actual data into the format suitable for MVN/MLMVN and vice versa, the equations
(10) - (11) should be accordingly transformed into equation (12).

To control the learning process, the root mean square error (RMSE) was used. The
results are compared on two different error measures: the Mean Square Error (MSE)
and the adjusted Mean Absolute Percent Error, also known as symmetric (though
actually it is not symmetric since over- and under-forecasts are biased) MAPE
(SMAPE) normalized between 0% and 100%. These error metrics are computed as
shown in equations (13) and (14) respectively, where y; is the actual and J;- is the
predicted value.
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1< R 1 %
Bue=230- 30 (09 ESMAPE=;ZI‘,% (14)

4.2  Experimental Results

Experimental results are resumed in Table 1, which contains both the results for refer-
ence models (exponential smoothing — ES, ARIMA (1,1,2) and NARX neural net-
work [10]) and the errors for learning and prediction periods measured in a number of
time points. All the TS were used in all models but for different forecasting periods. It
is important to note, that reference models were used for much shorter prediction
periods than MLMVN (12 months for the NARX model and 24 months for smoothing
and ARIMA) since there accuracy drastically degrades with time when stationarity
hypothesis fails. It can be seen for W3, W7 and W13 cases (shadowed) on the ob-
served 2-years intervals. The NARX model gives competitive results on a one-year
period, but it requires more study to be applied for longer periods. In turn, the univa-
riate MLMVN model was studied on a 5-years period and the multivariate one — for
up to 15 years period. Fig. 1 illustrates the forecasting for two typical TS with low
(W1) and high (W11) errors.

Table 1. Experimental results

Mean | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W1l | W12 | W13 | W14 | W15

Period 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
SMAPE
(ES), % 26.02| 4.49] 5.14] 59.04] 28.98| 10.69| 7.58] 100 1.42| 8.91] 14.75| 2.39] 4.01] 100 7.08| 35.78
SMAPE

(ARIMA), | 17.28] 7.68| 5.30] 60.81| 8.38| 4.96] 6.98] 18.10| 1.85| 8.84] 5.31| 1.09| 1.61]91.82| 7.45| 28.96
%

Period 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

SMAPE
(NARX), 12.20| 6.08| 11.22| 18.57| 12.93| 10.88| 9.58| 38.42| 7.52| 10.63| 10.70| 4.61| 3.93] N/A| 9.29| 16.47
%

Period 120 122| 142| 113| 121} 145] 156 141] 163| 165| 156 130 52 44 63
MSE (LM) 4.30E| 3.32E| 1.25E| 4.25E| 4.64E| 6.40E| 2.39E| 9.87E| 2.19E| 9.33E| 3.98E| 6.87E| 4.76E| 1.32E| 1.37E
+08| +07| +08| +08] +08] +07| +07| +08| +08] +07| +08| +08] +06| +07| +08
(SII\:AA)‘P; 23] 1.97| 1.68| 2.41] 1.47| 1.53] 1.11] 6.32 3.87| 15.1] 3.12| 3.47| 8.28] 1.53| 7.43
, /0
Period 60| 61 61 61 61 61 61 61 61 61 61 61 41] 31 61
MSE 1.96E| 1.76E| 2.75E| 9.57E| 3.95E| 2.24E| 1.54E| 1.55E| 7.97E| 8.58E| 2.67E| 2.67E| 1.42E| 1.57E| 2.88E
(M1) +08| +09] +09| +08| +09| +10] +09] +09| +08| +08| +09] +07| +07| +08| +07|
(S,\'\//:SPE/ 25.99| 3.05| 25.05] 9.57] 25.65| 17.54] 33.16| 26.32| 44.84] 23.96| 26.62| 81.1| 4.48| 36.12| 8.72| 23.74
, %
Period 144 61 61 71 120] 144] 154 80| 102| 104 95| 129 21 13| 62
MSE 9.51E| 1.68E| 6.89E| 1.39E| 1.34E| 1.50E| 3.68E| 6.34E| 1.26E| 2.03E| 4.57E| 7.91E| 1.27E| 1.17E| 4.66E
(M2) +08| +08] +08| +09] +10f +09| +08| +08] +08] +08| +07| +07| +07| +09] +07
SMAPE

(M2), % 17.81) 7.87| 9.36| 28.54| 27.05| 29.84] 12.31] 10.51| 13.13| 14.92| 17.34| 6.14| 11.51] 25.78] N/A| 35.03
, %
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Fig. 1. Comparison of the univariate and multivariate forecasting results (in barrels per month):
TS W1 model 1, TS W1 model 2, TS W11 model 1 and TS W11 model 2
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Since only in one case (W3) the MSE and SMAPE showed the opposite results for
both models, we’ll use SMAPE for the rest of the discussion. As we can see the aver-
age SMAPE for the learning period is about 4%, being higher than 10% only for one
TS (W10). In general, multivariate forecasting showed better performance (average
SMAPE of 17% vs. 25%), though for several TS (W1, W3-W5, W12, W15) the un-
ivariate model showed better results (shadowed cells in Table 1). As we can see, the
average error of model 2 is comparable to the errors reported in the literature (see the
Introduction) for short-term forecasting models. Moreover, it permitted to considera-
bly reduce the error for a number of TS which used to be very difficult for univariate
forecasting (W2, W6-W11).

Let us consider the example of the W11 TS, showing extremely high error of 8§1%
for the univariate model. For the forecasting period (comprising 12 years) the GOR
pattern was relatively similar to the training period. As we can see from Fig. 1, for
longer periods, the univariate model doesn’t reflect properly the changes in the well’s
behavior: during the 10-years long training period till April 1998 the univariate net-
work learns the declined behavior of the well and predicts it’s shut-off for February
2000. Such prediction, by the way, is consistent with the DCA results for the same
period (if the last slop is selected). Nevertheless, the bivariate model behaves diffe-
rently and shows the SMAPE of 6.14% on a 12 years horizon. This example clearly
shows the difference between DCA and ANN forecasting for long-term intervals.

Both models showed considerable difficulties while learning from (W10) and pre-
dicting (W3-W5, W13-W15) TS with zero values of production, which unfortunately
is a typical situation when the wells are closed for some time for workovers or due to
an accident. An interesting observation is that for the wells with high errors (average
SMEPE 29%), the error of cumulative oil production for the tested period was as low
as 6%. Another advantage of the multivariate model is the ability of forecasting of
infill wells (mentioned as a second forecasting task in the Introduction), but this dis-
cussion is out of the scope of this paper.

Given that the network has up to 32768 neurons, it took about one hour to learn the
model on the Xeon X5550 CPU @ 2.67 GHz (CPU mark 5414) and 64 bits OS.

5 Conclusions

In this paper, the application of MLMVN to long-term TS prediction has been studied
on a real-life example of oil monthly production. Both univariate and multivariate
models were developed. Compared to DCA method the advantage of ANN forecast-
ing models is that prediction allows local variation instead of smooth curve projection
as in the DCA.

As the experimental results showed, both models can be efficiently used and
achieve results which are significantly better than prior published work in terms of the
predicted interval and enables long-term prediction for up to 15 years (see W7, model
2). When there are no "gaps" in the data or these gaps are minimal, the qualitative
long-term predictions are possible.
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