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Abstract. In this paper, we present a comparative study on the appli-
cation of pattern recognition algorithms to the identification of bird in-
dividuals from their song. A collection of experiments on the supervised
classification of Cassin’s Vireo individuals were conducted to identify
the algorithm that produced the highest classification accuracy. Prelimi-
nary results indicated that Multinomial Naive Bayes produced excellent
classification of bird individuals.
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1 Introduction

Recent advances in sensor networks technologies hold the potential to transform
research in ecology. In effect, the use of sensor networks in natural habitats for
monitoring animal behavior and diversity is rapidly coming to be a vital tool in
ecology studies [14].

The effective use of sensor networks in ecology relies crucially on the ability to
identify relevant events from sensor data. Particularly, the accurate identification
of individual animals from sensor data is a necessary condition for analyzing their
behavior. Moreover, the identification task must be conducted efficiently given
the tight energy constraints imposed by battery-operated sensor networks.

Our research is currently focused on the acoustic monitoring of different
species of birds in several areas of the US and Mexico where they are abun-
dant [2]. Our long term goal is to understand the structure and function of bird
song. Particularly, the research described here aims at exploring the capabilities
and limitations of different pattern recognition algorithms for the identification
of Cassin’s Vireo individuals from their song.

Toward that goal, we have designed a collection of datasets from song record-
ings representing different properties of the songs, then we applied different pat-
tern recognition algorithms to identify the algorithm that produced the highest
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classification accuracy. In the experiments reported here, Multinomial Naive
Bayes produced the highest accuracy at the classification of bird individuals
among the collection of algorithms used in this study.

2 Methods

The Cassin’s Vireo (Vireo cassinii) is a small North American songbird which
inhabits the area ranging from British Columbia through the western costal
states of the U.S. During winter, the bird migrates, traveling from the Sonoran
Desert to the south of Mexico. The CaVi is an excellent and persistent singer,
with a repertoire of many different phrases strung together while singing.

2.1 Recordings

All recordings were performed on private land five kilometers north from the
town of Volcano in Amador County, California between April 25 and June 8,
2013 by Richard Hedley. Recordings were performed opportunistically, beginning
the recording when the researcher identified a bird singing and stopping when
either the bird stopped for a significant amount of time or changed position
becoming inaudible.

Recordings were subsequently segmented and tagged into phrase types -distinct
bursts of song of less than a second long, identifiable by its stereotyped delivery-
through visual inspection of their spectrograms using the Praat software [3]. Each
phrase type was assigned a unique two letter code (aa, ab, ac, etc.) and added
to a key file used for further phrase identification. Figure 1 shows spectrogram
representations of a small subset of the phrase types. A total of 110 distinct phrase
types were identified among the 7 different individuals in our study.

Fig. 1. Sample spectrogram
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3 Individual Classification

All available samples were divided into two data sets: one certain and one un-
certain. The certain data set contains samples with a high level of individual
identity certainty as defined by the recordist: the recordist was able to verify the
identity of the bird singing while performing the recording; the uncertain data
set contains the remaining samples, those with a low level of identification cer-
tainty, determined by the recordist through careful consideration of territories
and dates. The certain data set consists of 46 samples, while the uncertain one
consists of only 9. For the purpose of this paper, the uncertain data set was not
used.

Our approach for individual classification consisted of encoding each sample
into a vector using different criteria, labeling it as the appropriate individual, and
trying different supervised classification algorithms with 10-fold cross validation
to measure their accuracy. Table 1 shows the classification algorithms tested. All
algorithms were tested using the implementations found in the WEKA software
package [10] with default parameters.

Table 1. Classification algorithms tested

Classifier Description

Naive Bayes Probabilistic classifier with strong independence assump-
tions based on Bayes’ theorem. [11]

Multinomial Naive Bayes Naive Bayes classifier using a multinomial model. [13]

SVM Non-probabilistic linear or non-linear classifier. LIBSVM
implementation. [6]

Multilayer Perceptron Feedforward artificial neural network classifier learning
through backpropagation. [16]

IBK K-nearest neighbors classifier. [1]

K* Instance-based classifier using an entropy-based distance
function. [7]

Classification Via Regre-
ssion

Classes are binarized and one regression model is built for
each. [8]

PART Generates a PART decision list by separate and conquer,
building a partial C4.5 decision tree in each iteration and
choosing the best leaf to be made into a rule. [9]

J48 Generates a pruned or unpruned C4.5 decision tree. [15]

LMT Classifies by building classification trees with logistic regres-
sion functions at the leaves. [12]

Random Forest Constructs a multitude of decision trees (in our case 10). [4]

Songs were encoded into vectors using different attributes, from acoustical
properties of the song to more abstract representations of its structure.
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3.1 Classification through Song Acoustic Features

Audio samples were split into smaller files consisting of exactly one phrase per file
using the Praat software [3]. Using the Marsyas package [17], 124 audio features
were extracted from each phrase and arranged into single vectors.1

〈AF0, AF1, ..., AFN , I〉 . (1)

Where AFi represents an audio feature, and I stands for the individual identi-
fication.
Classification through acoustic features was conducted at two different levels: by
song and by phrase type.

– Song level: All available vectors were arranged into a single data set.
– Phrase level: Vectors were divided according to their phrase type. The phrase

ch was chosen for experimentation being the most used phrase type shared
by all individuals; this way the largest amount of data possible was available
for training and it was possible to asses its suitability for classifying all the
individuals.

Results. Experimentation showed that applying a Principal Components filter
[10] to the data set, reducing the vector’s dimensionality by choosing enough
eigenvectors to account for 95% of the variance in the original data, significantly
improved the results. Both song and phrase approaches achieved poor results
overall managing less than 70% accuracy, with the best results obtained by
SVM and LMT for song and phrase respectively (see Figure 2). The main
limitation of this approach is its high sensibility to noise in the recordings, as
well as the great number of variables (recording equipment, terrain, proximity,
weather conditions, etc.) resulting from field recordings.

3.2 Classification through Repertoire

Each sample song was encoded into a single vector.

〈P0, P1, ..., PN , I〉 . (2)

Where each Pi represents a different phrase type, and I stands for the individual
identification.

Repertoire analysis was performed at two different levels: phrase usage and
phrase frequency. For phrase usage, each Pn holds a binary value of 0 if phrase
Phn is not used in the song and 1 otherwise. For phrase frequency, each Pn is
given by Equation 3.

Pi =
|Phi|
|song| . (3)

Where |Phi| is the number of occurrences of phrase Phi in the song, and |song|
is the length (number of phrases) of the song.

1 For a complete list of the features extracted, check the Marsyas documentation
(http://marsyas.info/documentation)

http://marsyas.info/documentation
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Fig. 2. Classification through song acoustic features. Comparison of results.

Results. Of the methods tested, the combination of the Multinomial Naive
Bayes classifier with the binary repertoire vector produced the highest accuracy
with 100% correctly classified instances. For the frequency repertoire vector, the
multilayer perceptron proved the best match with a 95.65% accuracy (see Figure
3). Previous research suggests CaVis are capable of learning new phrase types
from other individuals [5], changing their repertoires over time as a result of this
learning process. Repertoire analysis seems sufficient to identify different individ-
uals, however close interactions among neighboring individuals could potentially
lead to near identical repertoires diminishing the accuracy of this method.

3.3 Classification through n-Gram Repertoire

Each song sample was encoded into a single vector.

〈NG0, NG1, ..., NGN , I〉 . (4)

Where I stands for the individual identification, and each NGi represents a
different n-gram. An n-gram is defined as a combination of n phrases occurring
consecutively in a song.

N -Gram analysis was performed at two different levels: n-gram usage and n-
gram frequency. For n-gram usage, each NGn holds a binary value of 0 if n-gram
Phn is not used in the song and 1 otherwise. In the case of n-gram frequency,
each NGi is given by Equation 5.

NGi =
|NGi|

|n− grams| . (5)
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Fig. 3. Classification through repertoire. Comparison of results.

Where |NGi| is the number of occurrences of different n-gram NGi in the song,
and |n− grams| is the number of n-grams in the song.

Results. N -gram analysis provides the benefit of retaining information about
an individual’s repertoire, while also encoding basic extra information about the
song’s structure. However, the amount of attributes required to represent it can
grow exponentially when compared to just repertoire. For our experiments, we
only considered bigrams (combinations of two phrases). As expected, the Multi-
nomial Naive Bayes classifier achieved 100% accuracy (see Figure 4), however
the dimensionality of the vector (1347 attributes) proved extremely large for
certain algorithms like the multilayer perceptron.

We consider this approach not very useful considering the relatively little
amount of extra information gained versus its huge impact on the representa-
tion’s size.

3.4 Classification through Song Structure

Directed graphs were created from each sample song, with nodes representing
different phrases and edges signifying adjacency between phrases in the song.
Figure 5 shows a graph representation of a sample song. Songs were then encoded
into vectors.

〈GP0, GP1, ..., GPN , I〉 . (6)

Where I stands for the individual identification, and each GPi represents a graph
derived property for each phrase type:
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– Degree. The total number of edges to and from a node.
– Degree Centrality. The degree of a node, normalized by dividing by the

maximum possible degree of the graph.
– Eccentricity. The maximum distance from one node to all other nodes.
– Clique number. The size of the largest maximal clique containing the node.
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Fig. 4. Classification through bigram repertoire. Comparison of results.

ah

ai

aj

ak

au

cb

cd

ck cl

dd

df

ea

em

en

fc

fg
hi

Fig. 5. Graph representation of sample song. Nodes denote distinct phrase types, edges
denote adjacency between phrases in the sample song.
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Results. Vectors derived from graph analysis have the benefit of containing
repertoire information plus extra information about the song’s structure with-
out exploding in the size needed to encode them. Once again, the Multinomial
Naive Bayes classifier achieved the best results, with 100% accuracy, for all
our approaches except for graph centrality, for which the multilayer Perceptron
proved to be the most effective (see Figure 6).
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Fig. 6. Classification through song structure. Comparison of results.
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4 Discussion

In this study, we conducted a series of experiments on the classification of bird
individuals from their song. We conducted a comparative study on the classifi-
cation performance of different pattern recognition algorithms using a collection
of dataset representing different properties of the bird song. See Figure 7 for a
comparative view of the best results achieved per approach.

Preliminary experimental results indicated that Multinomial Naive Bayes out-
performed the other pattern recognition algorithms employed in this study, in-
cluding more sophisticated and highly regarded algorithms, such as SVMs.

Most notably, being a simple algorithm the generalization capabilities of
Multinomial Naive Bayes proved to be highly accurate in contrast to the results
produced by the other, more complex, methods. These impressive capabilities
have been replicated by this method in other domains such as document clas-
sification, among others [18]. All in all, Multinomial Naive Bayes seems to be
an excellent candidate algorithm for implementing real time recognition of bird
individuals in sensor networks.

Similarly, the dataset encoding attributes extracted from the graph represen-
tation of the song allowed the highest accuracy in classification, suggesting that
the organization of phrases in songs provides informative attributes that are
useful to increase the accuracy of classification of Cassin’s Vireo individuals.

Further experiments are required to assess the validity of the results reported
here, including experiments on larger datasets and different species of birds. We
expect that those experiments would contribute to increase the usefulness of
sensor networks in ecology studies, generally.

Acknowledgments. This work was supported by the US National Science
Foundation under Award Number 1125423 and by Consejo Nacional de Ciencia
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