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Abstract. Computer Networks are usually balanced appealing to personal expe-
rience and heuristics, without taking advantage of the behavioral patterns em-
bedded in their operation. In this work we report the application of tools of 
computational intelligence to find such patterns and take advantage of them to 
improve the network’s performance. The traditional traffic flow for Computer 
Network is improved by the concatenated use of the following “tools”: a) Ap-
plying intelligent agents, b) Forecasting the traffic flow of the network via  
Multi-Layer Perceptrons (MLP) and c) Optimizing the forecasted network’s  
parameters with a genetic algorithm. We discuss the implementation and expe-
rimentally show that every consecutive new tool introduced improves the beha-
vior of the network. This incremental improvement can be explained from the 
characterization of the network’s dynamics as a set of emerging patterns in 
time. 
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1 Introduction 

Computer networks are frequently balanced appealing to heuristics or, simply, the 
experience of the administrator of the network [5, ch. 1], [27, ch. 3]. This typical prac-
tice suffers from the severe inconvenient of not taking into consideration the beha-
vioral patterns which may be discovered if the appropriate tools are used. To begin 
with, it is very convenient to consider a dynamic link between the elements of the 
network. If this is achieved, it is possible to apply machine learning and optimization 
techniques to improve their performance. This realization is the main motivation to 
merge, in one scheme, the following tools: statistical protocol adaptation, intelligent 
agents, MLPs and genetic algorithms (GA). The main purpose is to improve the chan-
nel utilization and all related computer network resources. It should also consider the 
impact of these tools under steady and error regime conditions (see below). It is true 
that there are solutions [1], [9] based on well-known algorithms [2], [3], [4]. These, 
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however, do not consider congestion problems. The Traffic Engineering Performance 
Objectives are described in [10]. They are either 1) Traffic oriented or 2) Resource 
oriented. The key traffic oriented performance objectives include minimization of 
packet loss, minimization of delay and maximization of throughput. Minimization of 
packet loss is one of the most important traffic oriented performance objectives. The 
routing algorithms typically consider link state [3] or distance vector [2] to select 
routing paths based on static link weights or costs. These, however, do not allow us to 
use all alternate and available paths leading to the same destination. This fact increas-
es the probability of congestion traffic as mentioned in [1] since the routing algorithm 
does not change in time as the traffic flow does. In this paper we will prove that the 
use of the appropriate computational intelligence tools minimizes packet loss and 
maximizes channel utilization. To achieve this, the behavior of the traffic flow along 
the full network must be known. Such global knowledge allows us, in principle, to 
attempt accurate forecasting. If this is achieved then it is possible to establish the best 
values of the variables involved such that the traffic is maximized. We have selected 
an implementation of the Bellman-Ford distance vector algorithm [2, 5] as a ben-
chmarking standard with which to compare our algorithm and we have set the mini-
mization of the number of lost packets as the routing metric. In Section 2, the neces-
sary concepts and definitions are introduced; in Section 3 we present a brief explana-
tion of the method applied. In section 4 we present the experimental results. Finally in 
section 5 we present our conclusions. 

2 Preliminaries 

Suppose that there is a computer network in which there are N routing devices and L 
links which correspond to the communication channels. We denote the sources of the 
traffic by G; d is the bandwidth of the channel; p is the packet size; qt is the percen-
tage utilization of the channel and t is the number of the sample; λ is the network 
traffic flow given in packets per second [24]; rn is the n-th adaptive routing device; 
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time. S(p) is the single path routing algorithm; ( )pM  is the adaptive path routing 
algorithm. 
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3 Adaptive Process on Computer Network 

The adaptive model’s performance is incrementally improved through consecutive 
application of: a) Agents [17, 22], b) MLPs [18] and c) GAs [14]. Along this paper, 
the results refer to the network illustrated in Fig. 1: 

 
Fig. 1. Schematic architecture of the Computer Network 

From Figure 1 we have: G = {g1( λ ), g2( λ ), g3( λ ), g4( λ ), g5( λ )}; N = {ru, rv, rz}; 
L = {l1, l2, l3}; every ri on the network is fully connected by a link lk, ru, z are con-

nected to gk( λ ) by link ( )

( )

i

g k
l ; ru, z are the external nodes connected with gk( λ ); 

v
r is 

an internal node. For convenience we use M(p) instead of S(p) [2], [5] (since S(p) 
does not allow the ad hoc use of all available paths). S(p), thus, increases the proba-
bility of traffic congestion. In our model each ri is provided with tools such as: a) A(r) 

[set of intelligent agents (daemons) running in ri]. A(r) = {a1,...,ak}; k = |A| where ka is 

the k-th agent in ri; b) NN is a MLP and c) ega which is the GA-based [26] optimiza-
tion algorithm. The use of the tools and adoption of M(p) allows us to consecutively 
improve the network’s performance. In what follows we will describe the different 
tools applied in every stage. 

3.1 Agents 

The initial adaptive model implements wlb, a simple initial statistical load balancing 
method which distributes traffic to all routing nodes. When ri detects traffic, A(r) is 
started; before this, the agents have not been active. It is here that they get ready to 
sample the channel’s behavior. This they do until they have enough data, at which 
point an optimization task is started. Each ri on the network works as an autonomous 
entity which takes its own decisions derived from the knowledge other agents give. 
Channel’s sampling is described by Equation (1):  

 
1 2

( ) { ( ), ( ), ..., ( )}r n
A s u t u t u t=  (1) 

Where ui(t) = {q1,.., qn}; ui(t) is resource sampled in ri,. Once A(r) has sufficiently 
sampled the channel (as per s ={u1(t), u2(t),…,un(t)}) it forecasts the future channel’s 
utilization from linear extrapolation, whose detailed equations are:  
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Fig. 2. Example of an Agent’s sampling process 

In Figure 2 we illustrate how the adaptive model based on linear prediction acts on 
ri to find a more efficient load balancing via simple statistical load balancing. The 
next step of the adaptive model is based on MLPs. 

3.2 MLP’s 

Our aim is to improve on the basic linear prediction by discovering the behavioral 
patterns in the data of the channel. It is well known [25] that MLPs are universal ap-
proximators which, as argued in [18], are accurate regardless of the probability distri-
bution function of the variables under observation. If we want to get the future values 
to prevent potential network traffic problems, MLPs are a proven reliable choice. 
Therefore, once enough data have accumulated, we are able to take ad-vantage of the 
embedded behavioral patterns (uncovered by the MLP) and replace linear forecast 
with the superior MLP forecast. We denote our BMLP (Backpropagation Multi-Layer 
Perceptron) model with NN(i). In Figure 3 we illustrate a possible MLP architecture. In 
our model each adaptive routing device has an associated MLP to perform forecast-
ing. Given samples s ={u1(t), u2(t),…,un(t)} provided by each A(r) in a previous time 
step, we want to find U(τ) = {u1(t), u2(t),…,un(τ)} (described in [13]) such that: 

 ( ) ( ( ), ..., ( ))  for  1, ..,i i i nu u t u t i nfτ = =  (2) 

τ = t + k where t represents time and k is time displacement relative to future period to 
characterize. Forecasted values will be denoted by u’i(τ). Such values will have an 

expected approximation error
i

ε such that ' ( ) ( )
i i i

u uτ τ ε= ±  

 

Fig. 3. A Neural Network Model 
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Taking in consideration all of above we denote the forecasted values with u’i(τ) and 

 
( ) 1

' ( ) ( ( ), ..., ( ))
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u NN u t u tτ =  (3) 

MLP’s error is ε(NN(i))t. Then we can compare it with the previous one ε(LR(i))t found 
by  A(r) without an MLP.  A(r) selects the smaller one for every ri.  

3.3 Genetic Algorithm 

EGA [26] gets values from u’i(τ) to optimize traffic flow. For convenience, traffic 
flow is given in mbps (megabits per second). In Fig. 4 is shown a typical genome for 
this application. 

 

Fig. 4. Representation of the Genome 

Henceforth we use the following equation to transform u’i(τ) into suitable units. 
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Where ω is the traffic flow at time i; r is the bandwidth lk and (4) allows us to com-
pute forecasted values at time τ. To exemplify, assume that our fitness function 
(which we want to maximize) is determined by ega(ω) and has the following form: 
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In Equation (5) (Fitness function) i and o represent the incoming and outgoing chan-
nels. When ega(ω) has optimized from the forecasted values it supplies them to A(r) 
which will communicate parameter’s values to all the agents. 

 
Fig. 5. a) Output Traffic Flow, b) Input Traffic Flow, c) Accumulated Traffic Flow 
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Figures 5a, 5b, 5c show how the adaptive model optimizes using all available re-
sources from the network. The learning process can be summarized as in Figure 6 
which shows the adaptive model with all the stages working in unison. 

 

 

Fig. 6. Adaptive Routing with all stages working in unison 

4 Results 

We have performed experiments which show that the performance of our model is 
better than typical ones under similar conditions [2], [3], [5]. We have extensively 
simulated the behavior of various networks on OMNET++ [23]. The behavior of the 
system was performed for 25 simulated seconds (corresponding to processing 
~57,000 packets; roughly 2,300 packets per second). By Steady regime we mean that 
the network is stable (no errors occur); while the Error regime corresponds compo-
nent errors being considered. 

Packet loss may occur from network congestion and overflow at queues in routers 
and/or switches. It results in wasted bandwidth. Recalling that one of the key traffic 
oriented performance objectives is the minimization of packet loss, the evident supe-
riority of our method is shown in Table 1. 

Table 1. Difference betweeen packets generated and packets arrived 

Routing  Strategy  Packet Received Relative Loss Packet Lost Relative Efficiency 

Distance Vector 39,662 23.56% 17,544 46.75% 

Adaptive with Agents 40,257 21.73% 16,949 48.39% 

Adaptive with MLP 41,088 19.27 16,118 50.88% 

Adaptive with EGA 49,005 0.00% 8,201 100.00% 

 
Notice the outstanding improvement resulting from optimal routing assignment which 

is achieved from a) The values delivered by the EGA; this attests to b) The successful 
forecast which the MLPs yield; c) Clearly, were it not for the efficient update of the 
network’s status (via Agents) the MLP-EGA stages would not perform adequately. 

If errors (due to assumed malfunction of the components) are included, the be-
havior of the network varies accordingly. To this effect, exponentially distributed 
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component failures were induced. Error recovery times were also assumed exponen-
tially distributed, although the parameters of the exponential distributions for both 
error and recovery times were different for every router. A performance comparison 
of the network in steady and error regimes is shown in Table 2. 

Table 2. Comparative of the Routing Protocol Performance 

Routing  Strategy  Packet Lost (Stable Regime) Relative Efficiency (Error regime) 

Distance Vector 4,355 21,854 

Adaptive with Agents 2,911 5,427 

Adaptive with MLP 0 3,101 

Adaptive with EGA 0 3,101 

 
The experiments based on the adaptive model display a degradation both when 

MLPs and/or GAs are included if a relatively large number of network failures is sim-
ulated. This is due to the fact that the underlying patterns (which are the basis for 
adequate forecasting) tend to vanish because of the simulated errors. However, our 
method automatically folds-back to the simple routing algorithm in such a case. We 
have also included a graph that shows how load balancing methods are ap-proaching 
the optimal one with our proposed model. Optimality was calculated by exhaustive 
enumerative analysis. 

Figure 7 illustrates a classification of the number of lost packets. 
Several comparisons between the network’s behavior under the different options 

are possible. For reasons of space we are unable to annotate them all. We wish to 
point out, however, that introducing agents (and, thus, making the global information 
available to all routers) yields immediate benefits. For example, let us consider node u 
when connected to a 34.2 Mbps channel (l1) and simultaneously connected to a 12.5 
Mbps channel (l2). Two alternative methods are considered: a) Statistical (no agents) 
and b) Agents. With method (a) 2.91 Mbps are transported on l1 and 6.85 Mbps on l2; 
with method (b) 68.76 Mbps are transported on l1 and 179.91 on l2. This is a 
remarkable improvement of 23.54:1 for l1 and 26.26:1 for l2 when agents are 
considered. 

 
Fig. 7. Routing strategies classifications (Steady Regime) 
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Fig. 8. Routing strategies classification (with errors) 

Table 3. Comparative among Load Balancing Methods 

Method  34.2Mbps Transported Load (%) 12.5Mbps Transported Load (%) 

Theoretical load  balancing 0.7323 0.2670 

Statistical load balancing 0.7015 0.2984 

Intelligent Load balancing 0.7234 0.2765 

5 Conclusions 

We used a new approach to improve a computer’s network resources. We worked 
with a) Agents, b) Neural Networks, c) Genetic Algorithms. We have shown that our 
model minimizes the number of packets lost, increasing the network’s performance. 
We have shown that every time that a new component is added to the adaptive model, 
it further improves the network’s performance. On the other hand, when fail-ures are 
considered, the MLP attempting to forecast from the network’s past behavior is 
unable to uncover (the non-existent) patterns. Regardless of this, the adaptive model 
still behaves reasonably well because agents are still effective in attempting to 
globally optimize the system. 

We have presented preliminary simulation results based on a rather simple archi-
tecture. But the principles are the same regardless of the network’s complexity. In 
fact, more complex architectures are prone to exhibit more intricate patterns and the 
tools we implemented have been repeatedly shown to be very efficient in detecting 
patterns in complex environments. 

This is a prime example of computational intelligence working in an on-line simu-
lation environment. Given all of the above considerations we think that reliable fore-
casting and optimization can be improved working, to be sure, with non-chaotic  
data. A very practical conclusion is that it is possible to improve traffic flow at no 
software/hardware cost when network balance is based on this approach. 
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