
Introducing an Experimental Framework in C#
for Fingerprint Recognition

Miguel Angel Medina-Pérez1, Octavio Loyola-González1,2,
Andres Eduardo Gutierrez-Rodrı́guez1,2, Milton Garcı́a-Borroto3,

and Leopoldo Altamirano-Robles1

1 Instituto Nacional de Astrofı́sica, Óptica y Electrónica. Luis Enrique Erro No. 1, Sta. Marı́a
Tonanzintla, Puebla, México, C.P. 72840

{migue,octavio,andres,robles}@inaoep.mx
2 Centro de Bioplantas, Universidad de Ciego de Ávila. Carretera a Morón km 9,

Ciego de Ávila, Cuba, C.P. 69450
{octavioloyola,andres}@bioplantas.cu

3 Instituto Superior Politécnico José A. Echeverrı́a. Calle 114, No. 11901, e/ Ciclovı́a y
Rotonda, Apartado 6028. Marianao, Habana, Cuba, C.P. 11901

mgarciab@ceis.cujae.edu.cu

Abstract. In this paper, a framework for fingerprint recognition is introduced.
The framework contains several algorithms for fingerprint matching and fea-
ture extraction, as well as the evaluation protocol for several fingerprint veri-
fication competitions. All the algorithms are implemented in C# providing the
source code which researchers can review, reuse or modify. In order to show the
framework relevance, an experimental comparison among different matching al-
gorithms is presented.

Keywords: biometrics, fingerprint matching, experimental framework.

1 Introduction

When starting a new research project, an important challenge is to find a framework,
SDK or library that could be reused to save coding time. While machine learning re-
searchers count with established tools like Weka [13], KEEL [1] and PRTools [9], re-
searchers in the area of fingerprint recognition [18] are more limited. Table 1 shows the
limitations of available fingerprint recognition tools according to the following criteria:

a) The users must pay for using the libraries or they must use the tools with time
limitations and/or limited amount of fingerprints. For example, “Free Fingerprint
Verification SDK” [23] is limited to ten records in the database while “VeriFinger
SDK” [23] is limited to a trial period of 30 days, after which users must pay for the
SDK.

b) The tools do not contain multiple fingerprint matching and feature extraction al-
gorithms. For instance, the users cannot test different combination schemes with
“NIST Biometric Image Software” [29] because it only includes one fingerprint
matching algorithm.

J.F. Martı́nez-Trinidad et al. (Eds.): MCPR 2014, LNCS 8495, pp. 132–141, 2014.
c© Springer International Publishing Switzerland 2014



Introducing an Experimental Framework in C# for Fingerprint Recognition 133

c) The users do not have free access to the source code so they cannot reuse any
component of the algorithms. For example, users cannot reuse the segmentation
algorithm included at “Fingerprint SDK” [12] without paying to access the source
code.

d) The users do not have control over the fingerprint databases and they cannot cre-
ate an experiment with a custom protocol for performance evaluation. For instance,
latent fingerprint identification is a very active research topic at present but users
cannot use their own databases with the “FVC-onGoing web-based automated eval-
uation system” [8] because the system does not allow the users to upload custom
databases.

e) The tools do not contain any protocol for performance evaluation. For example, to
test “SourceAFIS SDK” [31] in FVC2004 [17] databases, the users have to imple-
ment the performance evaluation protocol.

Table 1. This is a representative set of fingerprint recognition tools and their limitations

Limitations
Fingerprint recognition tools a b c d e
NIST Biometric Image Software [29] X X
FVC-onGoing web-based automated evaluation system [8] X X X
SourceAFIS SDK [31] X X
MCC SDK [4, 5, 10] X X X
VeriFinger SDK [23] X X X X
Fingerprint SDK [12] X X X X
BiometricSDK [27] X X
IDKit PC SDK [14] X X X X

To deal with all these limitations, this paper introduces a fingerprint recognition
framework containing matching algorithms, feature extraction algorithms, and exper-
imental protocols. This framework is implemented in .Net Framework using the C#

language for the following reasons:

– .Net Framework and C# have proved to be effective for developing fingerprint
recognition tools such as MCC SDK [4, 5, 10] and SourceAFIS SDK [31].

– The C# language is very easy to learn because of its similarities to C and C++ lan-
guages.

– .Net Framework includes a large pack of technologies, tools and class libraries
that saves coding time. Algorithms in this framework or algorithms developed by
researchers based on this framework can be easily included in systems developed
for real clients. Take into account that faster implementations may be required for
those applications that involve processing high amounts of fingerprints.

While designing the framework, the “high cohesion and low coupling” principle [2]
was applied, so users can creatively reuse most components in their own applications
without integrating the entire framework or modifying the existing architecture. The



134 M.A. Medina-Pérez et al.

framework contains tools for fingerprint matching evaluation where new algorithms
can be included using minimum effort without recompiling the framework.

This framework allows carrying out fingerprint matching experiments for several
databases according to the evaluation protocols of the Fingerprint Verification Compe-
titions (FVC) [6]. Additionally, users can include experiments with a custom evaluation
protocol or different databases.

There is no charge for the use of this framework or its source code and there are no re-
strictions regarding the amount of time or number of fingerprint used. Source code and
documentation are available at http://www.codeproject.com/Articles/
97590/A-Framework-in-C-for-Fingerprint-Verification.

In order to show the framework relevance, an experimental evaluation of matching
algorithms in the framework over eleven databases is presented. The results are summa-
rized using critical difference diagrams (CD diagrams) [7]. This kind of experimental
comparison is rarely found in previous research papers because of the limitations of
previous experimental frameworks.

This framework was used to create a new version of M3gl [20] which is among the
top ten algorithms according to the accuracy indicators in database FMISO-HARD of
FVC-onGoing [8].

2 Structure of Our Framework

The framework includes the algorithms that we have implemented in our research
projects. Some of these algorithms have hundreds of references according to Google
Scholar and, as far as we know, their source code is not available on the web. This
framework contains nine minutiae-based fingerprint matching algorithms distributed in
the following assemblies:

– [FR.Jiang2000] includes the algorithms JY [15] and MJY [21].
– [FR.Tico2003] includes the algorithms TK [30] and MTK [22].
– [FR.Parziale2004] includes the algorithm PN [24].
– [FR.Qi2005] includes the algorithms QYW [25] and MQYW [21].
– [FR.Medina2011] includes the algorithm MPN [19].
– [FR.Medina2012] includes the algorithm M3gl [20].

The framework contains four algorithms to extract the basic features (orientation
image, skeleton image and minutiae) distributed in the following assemblies:

– [FR.Ratha1995] includes the algorithms proposed in [26] to extract orientation
image, skeleton image and minutiae.

– [FR.Sherlock1994] includes the algorithm proposed in [28] to extract the orien-
tation image.

The rest of the tools contained in the framework are distributed in the following
assemblies:

– [FR.Core] contains the architecture of the framework.
– [FR.FMExperimenter] contains an application that allows conducting fingerprint

matching experiments.

http://www.codeproject.com/Articles/97590/A-Framework-in-C-for-Fingerprint-Verification
http://www.codeproject.com/Articles/97590/A-Framework-in-C-for-Fingerprint-Verification


Introducing an Experimental Framework in C# for Fingerprint Recognition 135

FR.Medina2012 

FR.Jiang2000 

FR.Core 

FR.Ratha1995 

ImageProcessingTools 

FR.Tico2003 

ROC 

FR.FVCExperiments 

FR.Qi2005 SHullDelaunayTriangulation 

FR.Sherlock1994 
FR.FMExperimenter 

FR.FeatureDisplay 

FR.Medina2011 

FR.Parziale2004 

Fig. 1. The package diagram of the fingerprint recognition framework

– [FR.FeatureDisplay] contains an application that allows visualizing fingerprint
features.

– [FR.FVCExperiments] contains the performance evaluation protocols of compe-
titions FVC2000, FVC2002 and FVC2004 [6].

– [ROC] contains tools to build ROC curves.
– [ImageProcessingTools] contains tools to process images.
– [SHullDelaunayTriangulation] contains the algorithm available at
http://www.s-hull.org/ to compute Delaunay triangulation.

Figure 1 shows the dependency relationships among the assemblies that comprise
the framework. It is worth mentioning, that assembly ImageProcessingTool is only
used by assemblies FR.Ratha1995 and FR.Scherlock1994 because these are the
only two assemblies that perform image processing.

3 Experimental Results

The algorithms are evaluated on databases DB1A, DB2A, DB3A, and DB4A of
FVC2002 [16]; databases DB1 A, DB2 A, DB3 A, and DB4 A of FVC2004 [17];
and databases DB2 A, DB3 A, and DB4 A of FVC2006 [3]. The algorithms evaluated
are: MCC [4, 5, 10] (SDK v1.4 available in http://biolab.csr.unibo.it/
mccsdk.html), M3gl [20], JY [15], TK [30], PN [24], QYW [25], MJY [21], MTK
[22], MPN [19], and MQYW [21].

http://www.s-hull.org/
http://biolab.csr.unibo.it/mccsdk.html
http://biolab.csr.unibo.it/mccsdk.html


136 M.A. Medina-Pérez et al.

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2002 DB1A

MQYW

MJY

MTK

MPN

M3gl

MCC
0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2002 DB2A

MQYW

MJY

MTK

MPN

M3gl

MCC

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2002 DB3A

MQYW

MJY

MTK

MPN

M3gl

MCC
0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2002 DB4A

MQYW

MJY

MTK

MPN

M3gl

MCC

Fig. 2. ROC curves with the performance of the compared algorithms in FVC2002



Introducing an Experimental Framework in C# for Fingerprint Recognition 137

The algorithms MJY, MTK, MPN, and MQYW are improved versions of JY, TK,
PN, and QYW respectively; visualizing the results of JY, TK, PN, and QYW is avoided
for the sake of clarity.

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2004 DB1_A

MQYW

MJY

MTK

MPN

M3gl

MCC
0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2004 DB2_A

MQYW

MJY

MTK

MPN

M3gl

MCC

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2004 DB3_A

MQYW

MJY

MTK

MPN

M3gl

MCC
0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2004 DB4_A

MQYW

MJY

MTK

MPN

M3gl

MCC

Fig. 3. ROC curves with the performance of the compared algorithms in FVC2004

All the algorithms are evaluated with their default parameters except for algorithm
M3gl, whose parameter c (i.e. neighbor count) is changed to 7 (see reference [20]). The
evaluation protocols proposed in [6] are used and the ROC curves with the performance
of the compared algorithms are shown in Figure 2, Figure 3, and Figure 4.

Figure 2, Figure 3, and Figure 4 show that MCC tends to achieve the lowest FNMR
for most of the values of FMR and it is only outperformed by M3gl for some values of
FMR.

To further study the differences among the algorithms, the performance indicators
proposed in [6] (EER, FMR100, FMR1000, ZeroFMR, and matching time) are used. 110
experiments (11 databases x 10 algorithms) are performed; so, there are 110 measures



138 M.A. Medina-Pérez et al.

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2006 DB2_A

MQYW

MJY

MTK

MPN

M3gl

MCC

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2006 DB3_A

MQYW

MJY

MTK

MPN

M3gl

MCC
0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

FN
M

R
 

FMR

FVC2006 DB4_A

MQYW

MJY

MTK

MPN

M3gl

MCC

Fig. 4. ROC curves with the performance of the compared algorithms in FVC2006



Introducing an Experimental Framework in C# for Fingerprint Recognition 139

of every performance indicator. Visualizing these results in a table of 5 columns (per-
formance indicators) and 110 rows (11 databases x 10 algorithms) interferes with their
interpretation. That is why the Friedman test [7] and Bergmann-Hommel dynamic post-
hoc [11] are used to compare the results. Critical difference diagrams (CD diagrams) [7]
are used to show the post-hoc results because CD diagrams compactly present the rank
of the algorithm according to one performance indicator. CD diagrams also show the
magnitude of differences between algorithms and the significance of the observed dif-
ferences [7]. In a CD diagram, the rightmost algorithm is the best algorithm, while the
algorithms sharing a thick line have statistically similar behaviors. Once again, visual-
izing the results of JY, TK, PN, and QYW is avoided for the sake of clarity.

Figure 5 shows that MCC achieves the best results according to EER, FMR100,
FMR1000, and ZeroFMR; but there is no significant statistical difference with M3gl.
This is a good result, taking into account that MCC is a patented algorithm for which
the source code is not available. Because of the proposed framework, the research com-
munity has access to the source code of an algorithm (M3gl) which is not statistically
different from MCC, which is one of the most accurate algorithms in state of the art
papers.

Figure 5 shows that MCC is the slowest algorithm because its SDK was provided by
its authors only for research purposes. A faster version of MCC is available but it is not
free.

1234

MTK MPN

MCC

56

M3glMJY

MQYW

EER

1234

MTK MPN

MCC

56

M3glMJY

MQYW

FMR100

1234

MTK MPN

MCC

56

M3glMJY

MQYW

FMR1000

1234

MTK MPN

MCC

56

M3glMJY

MQYW

ZeroFMR

1234

MTKMPN
MCC

56

M3gl MJY

MQYW

Time

Fig. 5. CD diagrams with the statistical comparison of the algorithms according to EER, FMR100,
FMR1000, ZeroFMR and matching time



140 M.A. Medina-Pérez et al.

4 Conclusions

The fingerprint recognition tools available on the web have several limitations. In this
paper, a framework is proposed to overcome these limitations. Several matching algo-
rithms are provided not only for experimental purposes, but also to create new applica-
tions. The source code for all of the algorithms is provided so users can reuse any part of
the code as well as any package of the framework. 110 experiments are performed and
the algorithms are compared according to the Friedman test and Bergmann-Hommel
dynamic post-hoc. The experiments show that one of the algorithms included in the
framework is not statistically different from a well-known patented algorithm. We hope
this work motivates more people to collaborate in order to implement other algorithms
and improve the fingerprint recognition framework for the benefit of programming and
research communities.

Acknowledgment. The authors would like to thank Rebekah Hosse Clark and MSc.
Dania Yudith Suárez Abreu for their valuable contributions improving the grammar and
style of this paper.

References

1. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garcı́a, S.: KEEL Data-Mining
Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis
Framework. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 255–287 (2011)

2. Booch, G., Maksimchuk, R.A., Engle, M.E., Young, B.J., Conallen, J., Houston, K.A.:
Object-oriented analysis and design with applications, 3rd edn. Pearson Education, Inc.
(2007)

3. Cappelli, R., Ferrara, M., Franco, A., Maltoni, D.: Fingerprint verification competition 2006.
Biometric Technology Today 15(7-8), 7–9 (2007)

4. Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: a new representation and
matching technique for fingerprint recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 32(12), 2128–2141 (2010)

5. Cappelli, R., Ferrara, M., Maltoni, D.: Fingerprint indexing based on Minutia Cylinder-Code.
IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5), 1051–1057 (2011)

6. Cappelli, R., Maio, D., Maltoni, D., Wayman, J.L., Jain, A.K.: Performance evaluation of
fingerprint verification systems. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 28(1), 3–18 (2006)

7. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research 7, 1–30 (2006)

8. Dorizzi, B., Cappelli, R., Ferrara, M., Maio, D., Maltoni, D., Houmani, N., Garcia-Salicetti,
S., Mayoue, A.: Fingerprint and on-line signature verification competitions at ICB 2009.
In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 725–732. Springer,
Heidelberg (2009)

9. Duin, R.P.W.: Prtools version 3.0: A matlab toolbox for pattern recognition. In: Proc. of
SPIE, p. 1331 (2000)

10. Ferrara, M., Maltoni, D., Cappelli, R.: Noninvertible Minutia Cylinder-Code representation.
IEEE Transactions on Information Forensics and Security 7(6), 1727–1737 (2012)



Introducing an Experimental Framework in C# for Fingerprint Recognition 141

11. Garcı́a, S., Herrera, F.: An extension on Statistical comparisons of classifiers over multiple
data sets for all pairwise comparisons. Journal of Machine Learning Research 9, 2677–2694
(2008)

12. Griaule Biometrics: Fingerprint sdk (2014),
http://www.griaulebiometrics.com/en-us/fingerprint_sdk
(accessed January 8, 2014)

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data
mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

14. Innovatrics: Idkit pc sdk (2014), http://innovatrics.com/products/
fingerprint-identification-sdk (accessed January 8, 2014)

15. Jiang, X., Yau, W.Y.: Fingerprint minutiae matching based on the local and global structures.
In: 15th International Conference on Pattern Recognition, vol. 2, pp. 1038–1041 (2000)

16. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: Fvc2002: Second fingerprint
verification competition. In: 16th International Conference on Pattern Recognition, vol. 3,
pp. 811–814 (2002)

17. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: Fvc2004: Third fingerprint
verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp.
1–7. Springer, Heidelberg (2004)

18. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of fingerprint recognition, 2nd
edn. Springer, Heidelberg (2009)

19. Medina-Pérez, M.A., Garcı́a-Borroto, M., Gutierrez-Rodrı́guez, A., Altamirano-Robles, L.:
Robust fingerprint verification using m-triplets. In: International Conference on Hand-Based
Biometrics (ICHB 2011), Hong Kong, pp. 1–5 (2011)

20. Medina-Pérez, M.A., Garcı́a-Borroto, M., Gutierrez-Rodrı́guez, A., Altamirano-Robles, L.:
Improving fingerprint verification using minutiae triplets. Sensors 12, 3418–3437 (2012)

21. Medina-Pérez, M.A., Garcı́a-Borroto, M., Gutierrez-Rodrı́guez, A., Altamirano-Robles, L.:
Improving the multiple alignments strategy for fingerprint verification. In: Carrasco-Ochoa,
J.A., Martı́nez-Trinidad, J.F., Olvera López, J.A., Boyer, K.L. (eds.) MCPR 2012. LNCS,
vol. 7329, pp. 147–154. Springer, Heidelberg (2012)

22. Medina-Pérez, M.A., Gutiérrez-Rodrı́guez, A., Garcı́a-Borroto, M.: Improving fingerprint
matching using an orientation-based minutia descriptor. In: Bayro-Corrochano, E., Eklundh,
J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 121–128. Springer, Heidelberg (2009)

23. NEUROtechnology Inc.: Verifinger (2014), http://www.neurotechnology.com/
(accessed January 8, 2014)

24. Parziale, G., Niel, A.: A fingerprint matching using minutiae triangulation. In: Zhang, D.,
Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 241–248. Springer, Heidelberg (2004)

25. Qi, J., Yang, S., Wang, Y.: Fingerprint matching combining the global orientation field with
minutia. Pattern Recognition Letters 26(15), 2424–2430 (2005)

26. Ratha, N., Chen, S., Jain, A.K.: Adaptive flow orientation-based feature extraction in finger-
print images. Pattern Recognition 28(11), 1657–1672 (1995)

27. Scott, R.J.: Biometricsdk (2013), http://biometricsdk.sourceforge.net/ (ac-
cessed March 8, 2013)

28. Sherlock, B.G., Monro, D.M., Millard, K.: Fingerprint enhancement by directional fourier
filtering. IEE Proceedings Vision Image and Signal Processing 141(2), 87–94 (1994)

29. The National Institute of Standards and Technology: NIST Biometric Image Software (2014),
http://www.nist.gov/itl/iad/ig/nbis.cfm (accessed January 8, 2014)

30. Tico, M., Kuosmanen, P.: Fingerprint matching using an orientation-based minutia descrip-
tor. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 1009–1014
(2003)

31. Vazan, R.: SourceAFIS SDK (2014), http://www.sourceafis.org/
(accessed January 18, 2014)

http://www.griaulebiometrics.com/en-us/fingerprint_sdk
http://innovatrics.com/products/fingerprint-identification-sdk
http://innovatrics.com/products/fingerprint-identification-sdk
http://www.neurotechnology.com/
http://biometricsdk.sourceforge.net/
http://www.nist.gov/itl/iad/ig/nbis.cfm
http://www.sourceafis.org/

	Introducing an Experimental Framework in C# for Fingerprint Recognition
	1 Introduction
	2 Structure of Our Framework
	3 Experimental Results
	4 Conclusions
	References




