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Abstract. We report on the procedures followed in order to acquire a multi-
modal sensory corpus that will become the primary source of data retrieval, data 
analysis and testing of mobility assistive robot prototypes in the European 
project MOBOT. Analysis of the same corpus with respect to all sensorial data 
will lead to the definition of the multimodal interaction model; gesture and  
audio  data analysis is foreseen to be integrated into the platform in order to fa-
cilitate the communication channel between end users and the assistive robot 
prototypes expected to be the project’s outcomes. In order to allow estimation 
of the whole range of sensorial data acquired, we will refer to the data acquisi-
tion scenarios followed in order to obtain the required multisensory data and to 
the initial post-processing outcomes currently available. 

Keywords: assistive robot, natural HRI, multimodal communication model, 
multisensory data acquisition. 
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1 Introduction 

Mobility disabilities are prevalent in our ageing society and impede activities impor-
tant for the independent living of elderly people and their quality of life. The MOBOT 
project1 aims at supporting mobility and thus enforcing fitness and vitality by devel-
oping intelligent active mobility assistance robots for indoor environments that pro-
vide user-centred, context-adaptive and natural support. The driving concept here 
envisions cognitive robotic assistants that act (a) proactively by realizing an autonom-
ous and context-specific monitoring of human activities and by subsequently reason-
ing on meaningful user behavioral patterns, as well as (b) adaptively and interactively, 
by analyzing multi-sensory and physiological signals related to gait and postural sta-
bility, and by performing adaptive compliance control for optimal physical support 
and active fall prevention.  

Towards these targets, a multimodal action recognition system is currently under 
development which needs to monitor, analyze and predict user actions with a high 
level of accuracy and detail. The main thrust of our approach is the enhancement of 
computer vision techniques with modalities such as range sensor images, haptic in-
formation as well as command-level speech and gesture recognition. In the same 
framework, data-driven multimodal human behavior analysis will be conducted and 
behavioral patterns of elderly people will be extracted. Findings will be imported into 
a multimodal human-robot communication system, involving both verbal and nonver-
bal communication and will be conceptually and systemically synthesized into mo-
bility assistance models taking into consideration safety critical requirements. All 
these modules will be incorporated in a behavior-based and context-aware robot con-
trol framework aiming at providing situation-adapted optimal assistance to users.  

In this framework, end user data become a crucial starting point for the design and 
implementation of the robotic platforms and also for the definition of the foreseen 
communication model. The recording sessions for the acquisition of the MOBOT 
multimodal sensory corpora took place in the rehabilitation centre Agaplesion Betha-
nien Hospital/ Geriatric Centre at the University of Heidelberg.  

In the field of human-action recognition several datasets with rich sets of activities, 
complex environments representing real-world scenarios have been published. Such 
datasets that combine video and mocap systems in a systematic way by collecting 
synchronized and calibrated data include the HumanEva I and II datasets [1]. The 
creation of HumanEva datasets were motivated mainly by the need for having ground 
truth that can be used for quantitative evaluation and comparison of both 2D and 3D 
pose estimation and tracking algorithms. Although the HumanEva datasets have been 
extensively used in establishing the state-of-the art in human action recognition, their 
application areas remain limited to evaluation of 2D and 3D motion and pose estima-
tion based on video and mocap data only. There are a number of other multimodal 
datasets that enhance the standard mocap-video data with additional modalities, such 
as magnetic sensors or microphones. The TUM Kitchen Dataset [2], which consists of 
activities in a kitchen setting (i.e., subjects setting a table in different ways), for  
example includes also RFID tag and magnetic sensor readings in addition to the  
                                                           
1 www.mobot-project.eu/ 
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multi-view video and mocap data. Similarly, the CMU Multimodal Activity (CMU-
MMAC) Dataset [3] contains multimodal measures captured from subjects perform-
ing tasks such as meal preparation and cooking. The set of modalities utilized in this 
dataset is rather comprehensive, consisting of video, audio, mocap, internal measure-
ment units (i.e., accelerometers, gyroscopes and magnetometers) and wearable  
devices (i.e., BodyMedia and eWatch). These two datasets are the first examples of 
publicly available multimodal datasets with a rich selection of various modalities. 
Finally, the Berkeley Multimodal Human Action Database (MHAD) is currently the 
only to-date dataset that systematically combines multiple depth cameras with multi-
view video and mocap that are geometrically calibrated and temporally synchronized 
with other modalities such as accelerometry and sound [4]. The specific dataset con-
sists of multi-view video, depth and color data from multiple Kinect cameras, move-
ment dynamics from wearable accelerometers and the accurate mocap data with the 
skeleton information. In addition, ambient sound during the action performance was 
recorded and synchronized to reveal discriminative cues for human motion analysis. 

2 MOBOT Database: Sensors Used and Types of Data Collected  

The MOBOT database was acquired by means of a sensorised passive rollator (Fig.1) 
comprising multimodal input from (i) laser range finder sensors, (ii) force/torque 
sensors, (iii) RGB and RGB-D cameras and (iv) microphones. In addition a motion 
capture system was used to record human limb movements as well as the rollator and 
subject’s absolute positions in space. 

 

Fig. 1. Instrumented rollator 

A diagram of the data acquisition setting implemented during the record-
ing/measurement sessions that took place in Bethanien/Agaplesion Geriatric Hospital 
is presented in Fig. 2, while details on sensors employed are next provided.  
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2.1 Laser Range Finders  

Two laser range-finder sensors were mounted on the passive rollator platform: One 
laser scanning range-finder sensor of type Hokuyo UTM-30LX was mounted at the 
front of the rollator platform facing towards the motion (normal walking) direction, to 
provide full scanning angle of the walking area. This sensor, also known as Hokuyo 
Top-URG, provides a 30m and 270° scanning range, and is suitable for robots with 
high moving speed because of its long range and fast response (~40 scans per 
second). One laser scanning range-finder sensor of type Hokuyo UBG-04LX-F01 was 
mounted at the back of the rollator platform facing the user legs, scanning a horizontal 
plane at the lower limbs (below knee) level, aiming to provide data on the gaiting of 
the user during typical walking operation with the rollator. This sensor, also known as 
Hokuyo Rapid-URG, provides a detection range of up to 5m with a 28 msec/scan 
time, and has a superior accuracy of +-10mm in short range (up to 1m) measurements. 
 

 

Fig. 2. Diagram of the MOBOT data acquisition setting in Bethanien Geriatric Hospital 

2.2 Force/Torque Sensors  

Two 6 DOF HR3 force/torque sensors of type JR3 45E15 were placed at the handles 
of the sensorised passive rollator. They are characterized by a force measurement 
range of 400N in x and y direction and 800N in z-direction as well as 50Nm around x 
and y and 500Nm around the z axis. 

2.3 RGB and RGB-D Cameras 

HD Cameras. For the recording of the scenarios and the required data collection four 
High Definition technology cameras with sensitive sensors were used. Three of the 
cameras were mounted on tripods and were static. 

The central camera was placed as to record the patient when walking throughout 
the recording area. The aim was to record the whole body or the largest possible part 
of it. However, the presence of the rollator in most scenarios has hidden the posture of 
the torso and legs. So, it was necessary to place another camera in front and at an 
angle (side) to cover any optical gaps and provide further information of motion and 
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posture of the patient as well as details of maneuvering and possible human interac-
tion with a carer. Moreover, this camera could capture any difficulties in walking or 
causes in case of stumbling.  

An HD camera (GoPro) was mounted on the passive rollator. The main criterion 
for the choice of this particular camera was the ability to record close and at a con-
stant distance the patient's torso, arms and all its movements and in some cases also 
the head. Because of its small size and weight and its wide angle lens it was placed on 
top of the upper Kinect camera (for details see next subsection) mounted on the rolla-
tor.  Due to the obligatory presence of the expert team in the field of view of the  
cameras during data capturing, a fourth HD camera was added to avoid or eliminate 
"visual noise". This camera was always on one side to supplement and give informa-
tion that was missing or that was not visible from the other cameras. The location was 
not predefined and its position changed in-between the different scenarios so as to be 
placed in the optimum position in order to give the best viewing angle. 

Kinect Cameras. Before data acquisition, the acquisition team experimented with 
different sensor choices and sensor placements, with the goal of placing the sensors in 
a configuration that achieves the broadest possible coverage of the human body, while 
being at a short distance from it. In particular position constraints did not allow 
placement of the sensors at a distance larger than 60 centimeters from the typical 
body position, as this would make the platform difficult to manipulate by elderly us-
ers. We therefore focused on solutions that would allow recording the human body 
from a short distance (Fig.3). We converged on using two Kinect-for-Windows 
(KFW) sensors, that are equipped with the ‘near mode’ option, which is absent in the 
more common Kinect-360 sensors. A considerable amount of effort was invested in 
order to obtain consistent data streams from the two KFW. We opted for placing the 
two Kinect sensors to be facing towards complementary directions so as to achieve 
broad coverage and to avoid interference between the two Kinects. The first sensor is 
facing horizontally towards the patient, aiming at capturing the area of the torso, 
waist, hips and the upper part of the limbs. The second sensor is facing downwards, 
capturing the lower limb motion information, with the aim of enabling the estimation 
of 3D limb positions and eventually also the analysis of gait abnormalities.   
 

 

Fig. 3. RGB stream from Kinect 

2.4 Microphone Array 

As audio capturing device a microphone array has been chosen. Microphone arrays–
instead of single sensors– are currently being explored in many different applications, 
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most notably for sound source localization, beam-forming, and far-field speech en-
hancement and recognition. For data collection purposes, an 8-microphone MEMS 
array was mounted on the horizontal bar of the MOBOT rollator in a linear configura-
tion (with a 4cm uniform spacing) in front of the user.   

2.5 Motion Capture System 

For motion capture a Qualisys system2 was used, with eight cameras mounted on 
tripods around the recording area. Passive reflective markers were installed on the 
bodies of patient and carer to measure their human limb movements as depicted in 
Fig.4. Several limiting factors regarding the informants’ population as well as sup-
porting areas on the human body which should stay free of markers were taken into 
account. Two additional markers were placed on the head of the carer to identify 
his/her role. Visual markers were also placed onto objects like the door, the door 
frame, the rollator and the obstacle used in the recordings setting. 

3 Multimodal Sensory Corpus Collection 

3.1 Introduction: Aims, Scope 

Data acquisition sessions were planned and organized to serve the corpus creation 
goal. In order to secure that the recording sessions would provide all necessary infor-
mation for the post processing analysis, the scenarios to be recorded were carefully 
designed and executed. Scenarios include actions, gestures and other close to real life 
situations such as obstacle avoidance, interaction with other persons, simple everyday 
life operations (open/close door, switch on/off switch etc.) that needed to be repro-
duced by the participants in the recordings. 

The MOBOT corpus creation was based on the grounds of human action recogni-
tion and context-aware robot control. The identified need was for data acquisition that 
would promote, as much as possible, natural interaction between (elderly) users and 
mobility aids along with the assistance or not, in some cases, of carers. In order to ob-
tain the multi-sensory recordings, several recording scenarios had to be put in action 
and tested so that a maximum set of actions and movements would be well represented 
in the recordings and hence provide significant input from different modalities. 

In the recordings, elderly human individuals (of varying age, gender, motor and 
cognitive abilities) performed a variety of assistance requiring cues in dialogues in-
volving human carers and the passive rollator. Information on the individuals that 
participated in the recordings, the performed scenarios and their relation to the differ-
ent modalities and combinations used in natural communication (language-based 
interaction, gesture-based interaction, multimodal instruction, but also silence in 
combination with specific body postures) as well as more technical aspects of the 
recordings such as settings and limitations, is provided in the following sections. 

                                                           
2 http://www.qualisys.com/ 
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Fig. 4. Used marker set for recordings 

3.2 Recording Scenarios 

Aims and Scope. The recording scenarios are the outcome of careful design, initially 
based on an extended pre-described use case list of actions that a user might need to 
perform in real life situations [5]. The use cases list of actions defines goal-oriented 
sets of interactions between users and the system. In view of the recording sessions 
the use case list of actions had to be narrowed down as well as adapted to the record-
ing environment. The envisioned goal was to incite a variety of actions, movements, 
gestures and functions within the restricted recording setting, in order to obtain 
enough and representative data as these would set the foundation for the technological 
development of the assistive device. Previous experience on the design of multimodal 
corpora [6-7], and multisensory acquisition data [8-9] was proven a valuable back-
ground asset, scientifically as well as methodologically. 

Use Case Adaptation to the Actually Produced Scenarios. The use case list of 
actions that defined the goal oriented sets of interactions between users and the sys-
tem functioned as a super set of real life tasks and/or situations that range from a sin-
gle-short movement to repetitive long-lasting movements. The idea lying behind this 
list of action use cases is that mobility-assistants should support moving in different 
rooms, walking to various spaces as well as to stimulate activity through simplifying 
and reducing physical and cognitive load. Mainly, these action use cases were based 
on frequent situations while walking, partly including transfer situations, such as the 
sit-to-stand movement that is highly frequent. Critical situations or potential barriers 
due to insecurity, cognitive or physical impairment, as well as the risk of falling –
which even though occurs rarely, it is crucial for the importance and usefulness of the 
device to the user– were taken into account.  

A subset of this extensive action use case list [5] was implemented for the scenario 
creation that would be used in the recording sessions; the chosen action use cases 
were those that fulfilled all necessary criteria regarding the safety of the informants 
and were most suitable to technical specifications that the recording environment 
imposed. In some cases modifications in the course of the scenarios had to be per-
formed leading to simpler acquisition versions of the scenarios than the extremely 
rich ones originally designed; this was done mainly in order to minimize the fatigue 
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effect of the participants that were of advanced age and hence eliminate to a certain 
extend the risk of less participation or incomplete sets of recording sessions. For the 
above mentioned reasons, and in order to acquire data of actions important for all 
sensorial devices, several conventions were adopted: 

1. Three types of variants in each scenario were proposed:  

a. Assisted by a carer 
b. Assisted by the passive rollator only & 
c. Unassisted  

2. The number of trials per scenario and per variant presented variation, as there was 
a minimum set of repetitions required –one or two in most cases– and a maximum 
set, that was desired and was undertaken only in rare cases, depending on the pa-
tient’s condition.  

In all scenarios performed, data capturing took place from all sensors mounted to 
the passive rollator. However, in the design of each scenario a specific set of action 
data was targeted giving priority to different sensors at time. In the descriptions that 
follow, we focus only on the most important sensorial data with respect to the per-
formed task’s goal, while detailed descriptions (scenarios, variants, tasks contained, 
number of trials etc) can be found in [10]. 

Scenario 01 was designed to gather information regarding transfers “sit-to-stand” 
and “stand-to-sit”, with or without the use of the sensorised passive rollator, enabling 
the acquisition of data from the force-torque sensors mounted on the handles of the 
rollator as well as the capturing data from the Kinect cameras. 

Scenario 02 was designed to gather information regarding the gait patterns of the 
patients while they were walking with the rollator and the force-torque applied to it; 
the patient used the rollator while walking straight with a constant velocity and then 
was asked to maneuver while moving back to the start position. Data were captured 
from the sensors mounted on the handles, the high definition cameras, the Kinect 
cameras as well as from the infrared cameras placed around the area.  

In Scenario 03 the patient had to perform sit-to-stand transfers and maneuvers in 
order to avoid an obstacle placed in the testing area, while accelerating and decelerat-
ing his/her gait pace. Variants were included to incorporate several audio-gestural 
commands for communication with the rollator or with the carer, different maneuver-
ing manners, and use or not of the sensorised passive rollator. 

Scenario 04 was designed to capture the interaction of the patient while opening, 
closing a door and passing through a door passage with the use of the rollator. Data 
were captured by the high definition video cameras and by a camera that was placed 
on the side of the door to capture the patient’s door passing. The total interaction of 
the patient with the rollator and door were captured by the Kinect cameras as well as 
the infrared cameras placed around the whole recording area. 

Scenario 05 was designed to gather information by closely observing the patient 
performing a manipulation task that occurs in his daily life, like handling a switch 
(switching on/off). Data were captured by two separate high definition cameras to 
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have an overview of how the patient behaves in a daily task and how he/she interacts 
with carer or the environment. The data captured by the Kinect cameras were target-
ing a. the gait of the patient (lower Kinect) and b. any performed gestures (upper Ki-
nect camera). The microphone array was capturing the verbal commands. For this 
kind of scenario a manipulation task could only occur if the patient either was using 
only one hand to grasp the rollator or not holding the rollator at all. In all scenarios, 
the mounded sensors on the handles of the rollator were capturing force and torques 
that came from the patients. An indicative example of external and on rollator cam-
eras’ views of Scenario 05, can be viewed in Fig. 5. 

 

 

Fig. 5. Scenario Five: Performing a task. Views from external HD cameras and on rollator one. 

Scenario 06 was designed to gather information from isolated gestural and verbal 
commands in order to train a model of human-robot communication. It included audio 
and gestural commands, uttered simultaneously, repeated a number of times, prefera-
bly having the patient in both sitting and standing position. 

3.3 Patient-Subjects: Recruitment Strategy and Metadata 

As regards patient-subjects’ recruitment, the original goal was to recruit at least 10 
patients, this being the lowest participation limit, yet opting for at best 15 patients. Due 
to high commitment and additional recruitment strategy procedures, our final subjects’ 
number was raised to 18 patients. This was the result of a recruitment strategy which 
consisted into increasing the recruitment potential of the rehabilitation wards by  
including an associate sport club and by screening patients in acute care geriatric hos-
pital. All participants met the inclusion criteria as all were acute patients in the reha-
bilitation wards either in the past or will be admitted in the rehabilitation centre in the 
near future. Inclusion criteria can be found in [5]. In actual figures, altogether 354 per-
sons were screened and contacted within a two week assessment period. The screening 
process included a personal contact, consulting the patient’s charts and contacting care 
or therapeutic personnel. In case a patient met the inclusion criteria, he/she was in-
formed on the testing and a written consent was asked on his/her behalf, while a  
personal contact to relatives was also necessary. Participants’ metadata consist of in-
formation about the gender, age, height, weight and knee height of each subject as well 
as his/hers cognitive and mobility score (with the aid of the diagnostic tool MMSE  
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[11-12] and their subsequent classification into a cognitive and mobility category) as 
detailed in [10]. We briefly report here that both genders have participated in the  
recordings, 5 male and 12 female subjects, the age range being 74-87 years old.  

3.4 Corpus Quantitative Data  

Synchronization of multimodal data streams was achieved by recording all the data to 
a ROS-Robot Operating System3 bag. For this purpose ROS nodes were programmed 
for the two laser range finders, the two Kinects and the microphone array. Since the 
two force/torque sensors and the two wheel encoders of the rollator will be part of the 
real-time code of the overall control architecture to be realized, and given that low-
level drivers for reading these sensor signals from the respective I/O cards were al-
ready available as blocks in Matlab/Simulink, a slightly different procedure was 
adopted for the recording of this type of data: An additional Simulink s-function block 
was programmed based on roscpp and tlc code to publish ROS topics directly from 
Simulink after having compiled the diagram using the prt.tlc target implementing a 
Preempt-RT real-time executable. This allowed seamless integration of the 
force/torque sensor and encoder data into the overall ROS bag. Motion capture data 
from Qualisys was recorded in raw format as it requires significant post-processing. 
Data recordings of this data type were synchronized with the rest of the recordings via 
a digital synchronization signal output in TTL format from the Qualisys system. In 
doing so, a cable was used to connect the synchronization output of one of the Qua-
lisys cameras to the I/O card of the rollator. The synchronization signal was read us-
ing the respective Simulink block and passed further to the overall ROS bag via the 
implemented publisher block. Motion capture data will be post-hoc added to the ROS 
bag as soon as data has been post-processed. 

A special launch file was written in ROS to start the different ROS nodes and thus, 
also the publishing of sensor data. In order to start recording from all the available 
sensor data topics, a special program was written, which first opens the respective 
ROS bag, subscribes to the different ROS topics and then waits for a trigger signal to 
start recording to the ROS bag. This was necessary as opening a ROS bag and sub-
scribing to topics takes several seconds of time, which would have impeded an imme-
diate storage of the data when the trigger signal arrives. The recording was started 
with a trigger button, which activated the Qualisys recording. As at the same time a 
synchronization signal was send from Qualisys to the ROS system, also the recording 
of the ROS bag was triggered and started at the same time.  

The amount of ROS bag data collected altogether summarises up to 1.3 TB. The 
amount of data collected from the two HD cameras and the GoPro camera mounted 
on top of the passive rollator is approximately 250 GB (437 files), whereas a rough 
estimation of video data duration is 10 hours for global video duration and 8 hours for 
useful one (not containing preparations time, meaningless poses etc). Exact quantita-
tive data will be available after post-processing of the acquired corpus, which is  
required prior to annotation. 

                                                           
3 www.ros.org/ 
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4 Data Post Processing 

In order to end up with a corpus of properly annotated video data, the audiovisual 
materials from the cameras are initially being post-processed to ensure synchroniza-
tion of video streams from the different capturing devices, prepare data for storage, 
and also eliminate possible problems or recover defects created during capturing. 

Synchronization involves manual video editing to rework the streams and define 
their common starting point. The streams are being rendered independently and to-
gether in a single stream “picture in picture” (PiP) to have all the information accu-
mulated (Fig. 5). Video processing consists mainly in adjusting brightness, especially 
regarding the camera on rollator and muting noise and external sounds, while ampli-
fying and normalizing useful sounds and speech interactions. There is also an initial 
need for cleaning the data from visual artifacts due to reflections prior to annotating 
the markers in Qualisys, followed by the actual post-processing procedure that will 
allow for the creation of the human biomechanical model in Visual3D. Finally, a 
common naming convention of the individual files has been adopted to allow for a 
concise organization of the acquired corpus. 

For the annotation process compressed files to mp4 will be used. The annotation of 
the visual data will be performed in the ELAN environment (ELAN 4.6.24), being an 
annotation environment specifically designed for the processing of multi-modal re-
sources [13]. Annotation is time aligned; each channel of information will be anno-
tated into a separate annotation tier which may consist of several sub tiers according 
to the level of fine-grained information that is needed. The output of the annotation 
procedure is exported into .xml files. A preliminary inspection of the audio-visual 
data made necessary for the creation of at least 5 different major annotation tiers de-
scribing the scenario, the predefined tasks in each scenario, the actually performed 
actions, information from the audio channel (noise, oral commands), information 
form the visual channel (noise, gestures, pauses, stumbling etc).  

5 Conclusion 

Multi-modal sensorial data is a fundamental prerequisite for defining an effective 
human-robot communication model when developing a multimodal action recognition 
system. Here we reported on creation of the MOBOT dataset, which enhances the 
state-of-the art in the field of human-action recognition dataset creation with rich sets 
of activities in complex environments representing real-world scenarios. 
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