

C. Stephanidis and M. Antona (Eds.): UAHCI/HCII 2014, Part II, LNCS 8514, pp. 513–524, 2014.
© Springer International Publishing Switzerland 2014

Learning through Game Making: An HCI Perspective

Jeffrey Earp, Francesca Maria Dagnino, and Michela Ott

Istituto per le Tecnologie Didattiche – Consiglio Nazionale della Ricerche, Italy
{jeffrey.earp,dagnino,ott}@itd.cnr.it

Abstract. One of the areas of Game-Based Learning (GBL) that has been at-
tracting considerable interest in recent years is digital game making, whereby
learners play games but also design, construct and share them as active partici-
pants in a learning community. Human Computer Interaction (HCI) is a critical
aspect of processes and tools within game making, and plays a key role in en-
suring that learning experiences are both engaging and educationally fruitful. In
this light, this paper examines two different game authoring environments from
an HCI perspective, taking account of certain interface characteristics can affect
and shape the authoring process and thus have a potential bearing on education-
al effectiveness. The investigation draws on findings from an EU co-funded
project called MAGICAL (MAking Games In CollaborAtion for Learning),
which is exploring the potential that game making offers for activating key
transversal skills such as problem-solving, creativity and ICT competency, par-
ticularly at primary school level.

Keywords: Game Making, Game-Based Learning, Technology Enhanced
Learning, Human Computer Interaction, Usability, Accessibility.

1 Introduction

In recent years, interest and enthusiasm for Game Based Learning (GBL) has streng-
thened considerably within the educational research community and GBL is now
gaining wider acceptance among educational policy makers, administrators, practi-
tioners and the public at large [1]. Some see GBL in practical terms as a way to kindle
– or rekindle – learner interest, and to get students in formal learning to engage
deeply with subject-related contents. From a more theoretical perspective, many GBL
advocates see interaction with digital games as a process of active, learner-centered
meaning making [2]. In this sense GBL is considered an alternative (or antidote) to
instructionist-style “talk & chalk” lecturing, aligning more closely to modern, con-
structivist visions of education and with the educational principles underpinning the
Knowledge Society [3]. It is held to motivate and engage players, immersing them in
a learning experience that combines playfulness, challenge and fun [4-5]

While enthusiasm for GBL is spreading, many educational researchers warn that
these hallmark characteristics do not per se generate effective learning outcomes, and
simply having learners play one or other digital game will not necessarily yield the
expected educational benefits [6]. Effectiveness depends on a range of factors that
includes the nature and suitability of the core digital GBL environment itself. To start

514 J. Earp, F.M. Dagnino, and M. Ott

with, this needs to blend educational and fun dimensions in a manner that is compli-
mentary, suitably balanced, and an integral part of gameplay. This critical factor is
summed up thus by a group of eminent UK educational researchers reporting for Nes-
ta [7]: “games that integrate the knowledge and skills to be learnt directly into the
structure of the game activity are both more fun … to play and more effective than
those where the game is used as motivation but without connection to the learning
content.” GBL environments proposing unconnected play and learning activities are
often dismissed as “chocolate-coated broccoli”; they provide little opportunity for
active meaning making and, as Luckin and colleagues [7] point out, are unlikely to
foster the sustained engagement needed to enhance learning processes.

Against this background, a growing number of researchers (and practitioners) are
taking GBL beyond the confines of game playing and encouraging learners to design
and make their own digital games, which they can subsequently share with peers in a
learning community. Indeed there is a steadily growing body of academic literature
advocating game making as a way to empower learners, letting them take the driving
seat in active, hands-on activities [8]. These activities are held to offer opportunities
for building a range of knowledge and skills, not just within specific subject areas,
such as language and math, but across them too. This covers skills like creativity,
problem solving and collaboration, which are commonly characterized as Twenty-
First Century Skills (21CS) and, as such, central pillars of modern education [9], [1].

A number of initiatives are currently emerging to investigate the adoption of game
making for learning. One of these efforts is an EU co-funded project called
MAGICAL (Making Games in Collaboration for Learning)1, which is conducting
school experiments to explore the potential that game making offers for activating key
transversal skills such as problem-solving, creativity and ICT competency, particular-
ly at primary school level [10].

Among the various activities undertaken in MAGICAL is investigation of different
digital environments that have been (or might be) used fruitfully to support learning
processes and educational objectives in game-making contexts. This effort has resulted
in the establishment of a community library of game making environments2, which
currently catalogues over fifty game authoring tools. These vary widely and in different
ways. For example, the games they can produce range from simple 2D arcade-style
platform games to quite elaborate 3D game worlds. The nature of user-system interac-
tion in the editing process also varies quite markedly. Some environments feature a
limited set of elementary game elements and properties, making them particularly suita-
ble for younger learners, for game makers with special learning needs (whether specific
or non-specific), and also for use in restricted educational time frames. Other authoring
tools have an extensive authoring palette that, amongst other things, offers game makers
the chance to create fairly sophisticated relations and interactions in games, opening the
way to the design of rich and complex gameplay experiences.

When it comes to selecting a game-making environment for educational purposes,
HCI aspects are particularly critical, especially where younger students are concerned.
Accordingly, adoption of a digital authoring tool calls for careful consideration
of usability and ease-of-use factors [11-12]. Furthermore, all-important efforts to

1 www. magical-project.net
2 http://amc.pori.tut.fi/game-building-tools/

 Learning through Game Making: An HCI Perspective 515

guarantee Universal Access to education demand that due attention also be devoted to
accessibility issues.

In the following, we examine two game authoring environments that have featured
in MAGICAL activities and that in certain respects exemplify different approaches to
game making. After providing an overview of their main features, we identify some
of the differences that these tools present from the viewpoint of adoption within digi-
tally-enhanced learning activities. The ultimate purpose of the comparison is not to
“evaluate” the tools or quantify their respective educational potential; doing so is a
very complex and contentious matter. Rather, the aim is to provide food for thought
on the aspects of HCI that are pivotal for the deployment of digital game making in
educational contexts, aspects which may have a decisive bearing on the success of
game making for enhancing learning outcomes.

2 Two Game Making Environments Under the Lens

The following section gives a general description of two popular game making envi-
ronments: Kodu3, a downloadable application for PC and console, and Sploder4, an
online browser-based tool. For details about these, readers should refer to the respec-
tive websites. In this contribution we concentrate on key differences in the authoring
interfaces, which exemplify different approaches to game making.

2.1 Kodu: A Code-Based Game Authoring Tool

Kodu presents a visual programming language specially designed to allow non-
programmers, and especially young children, to engage in code-based game authoring.
As a tool for learning through computer programming, it builds on the constructionist
philosophy and legacy of Seymour Papert and others, who developed the Logo visual
programming language for children in the 1960s. In the words of Microsoft, “the Kodu
language is designed specifically for game development and provides specialized primi-
tives derived from gaming scenarios.” To render programming concepts more readily
comprehensible to young game makers, the language is largely anthropomorphic:
behaviors are expressed metaphorically in the graphic interface in terms of real-world
physics and human senses like vision, hearing and touch.

Kodu presents a 3D world in which you can build games using its special visual
coding language. You can start from scratch with a near-empty 3D space or edit an
existing game(world) to make a new, personalized version. Either way, you can opt to
set your game in a minimalist-style 3D space with few embellishments or construct a
graphically richer fantasy world for the player to explore and interact in. The author-
ing mode (Error! Reference source not found. and Fig. 2 below) offers a palette of
easy-to-use graphics tools designed to support rapid generation of stylized 3D envi-
ronments, which can be enriched with stylized characters and props, as well as sound

3 http://www.kodugamelab.com/
4 http://www.sploder.com/

516 J. Earp, F.M. Dagnino, and M. Ott

and animation. The range of game making elements to choose from is reasonably
varied but, at the same time, is not so extensive as to overwhelm the game author with
myriad variations and endless choice.

Fig. 1. Lines of WHEN/DO visual code generated by a Kodu author (with contextual help)

Programming with Kodu is based on constructing WHEN>DO conceptual coup-
lets, each of which generates a condition>response instance in the Kodu world. These
building blocks of visual code can be strung together in a sequence to form a com-
plete program (Error! Reference source not found. above), which runs as an inter-
active 3D game in Kodu’s play mode. You start programming by selecting an element
that you’ve included in the 3D game-space and associating a WHEN>DO unit to it.
To make the unit, you choose two “atoms” (primitives) from the graphic library of
ready-to-use objects, behaviors and actions (Fig. 2 below). Coupling these atoms
together forms a WHEN condition, e.g. <player-clicks mouse>, <Kodu sees-target>.
This WHEN condition then needs to be paired with a corresponding DO response,
made by coupling two more atoms, e.g. <missile-fires>, <Kodu moves - to target>.
The resulting WHEN-DO molecule forms a logical condition-response instance: e.g.
<when player clicks mouse, missile is fired>, <when Kodu sees target, Kodu moves
to target>. The programming syntax also includes the possibility to attach a condition
to the WHEN-DO molecule, e.g. <when missile hits target, Kodu jumps once>,
<when missile hits target, score increases by 50>. These conditions allow you to gen-
erate the specific behaviors needed to create a functioning game. Much of the pro-
gramming logic involved in Kodu revolves around the application of these conditions,
which are selected from the same graphical object library containing all the other
atomic game elements.

So making a game in Kodu entails stringing together a sequence of these molecules
to form the complete code. This can be very basic, e.g., a single programmed mechan-
ic triggered, say, by the player’s mouse clicks, or a complex multi-level scenario with
gameplay that involves multiform interaction.

 Learning through Game Making: An HCI Perspective 517

Fig. 2. Selecting elements from Kodu’s visual programming library to generate lines of
WHEN/DO visual code: contextual help displayed

Very experienced users may attempt to string code lines together in a single sweep,
making a whole game “sight unseen” as it were; indeed Kodu allows cut-and-paste
editing of whole lines of code to facilitate the process. However, most users will find
themselves adding a molecule in Editing mode, then switching to Play mode to see
how it runs, and then switching back again to tweak code or add a further molecule.
Such progressive Edit-Play iterations allow you to check the result of coding on-the-
fly and also to monitor how the game you’re designing/making is unfolding.

2.2 Sploder: Creating Games through an Online Platform

Sploder in an online platform targeted largely at digital gaming enthusiasts. Along
with a set of game making tools, it features social networking functions designed not
just to promote game sharing but to support the formation and consolidation of a
game-oriented community. Sploder offers five different game making formats: Retro
Arcade, Platformer, Physics Puzzle, Classic Shooter and Algorithm Crew. These are
largely similar but provide some variation in theme, style of game play, authoring
palette and complexity of use. This overview concentrates on the Retro Arcade envi-
ronment (Fig. 3 below), which is fairly representative of Sploder’s game making ap-
proach. In Retro Arcade, you can generate tile-based, 2D scrolling platform games of
the type that rose to popularity with the advent - and ubiquity - of the first generation
game consoles. Like all the other Sploder formats, Retro Arcade allows you to build
multi-level game structures, with levels made up of different stages or scenarios. The
scenarios are built by selecting from the three ready-to-use game-world templates on
offer: Forest, Cave and Tech World. These worlds can be personalized and extended
using Retro Arcade’s graphic drawing tools, which have been designed expressly to
make game-world construction quick and simple. This allows the author’s efforts to
be channeled into the selection and integration of key game elements like characters,
interactions and mechanics. Each game-world template is complimented by more or
less the same palette of game-making elements and properties. In keeping with the
retro arcade theme, the palette offers a set of player avatars, enemy sprites, hazards,

518 J. Earp, F.M. Dagnino, and M. Ott

collectables, rewards, treasures, power-ups and the like. Some of these embed default
game behaviors, e.g. the animated “baddie” sprites are pre-programmed to engage
the player in battle until they are jumped upon and defeated. The player controls are
typical of platformer games, i.e. the keyboard’s arrow keys are used for moving hori-
zontally and for executing vertical jumps, whose amplitude is pre-set; gravity is also
preset and is fixed.

You can construct and integrate particular gameplay events using a linking tool
that establishes relations between elements placed in the game-world. Fig. 3 below
shows a simple example under construction in the authoring mode: links have been
set between a pair of ground-level on/off switches and a barrier, so that the player’s
passage will first raise and then lower the barrier, allowing the character to pass
(obviously the links are only visible while editing). You can cluster links together
to build relational chains, and these can be further refined by applying logical opera-
tors like And, Or, Not, which are also overlain graphically in the editing phase.
The editing environment features a game preview mode so you can check the game’s
development on-the-fly before publishing it.

Fig. 3. Sploder Retro Arcade authoring mode: construction of mechanics using links

A distinguishing feature of the Sploder platform is its social networking capabili-
ties. These support a community of game makers and players numbering over 25,000
members, allowing them to share games, graphics, ratings, reviews and comments.

2.3 The Two Game Authoring Environments: Comparison of Main Features

From the examination of the two game making environments presented above, we can
draw the following picture (Table 1 below), which provides a synoptic view of how
they differ in terms of specific HCI characteristics.

 Learning through Game Making: An HCI Perspective 519

Table 1. Main differences between the two game authoring environments considered

Kodu Sploder

Downloadable Online, browser-based

Code-based game authoring Object-based authoring

Visual programming language Logical linking in situ for building game
mechanics (drag & drop)

All behaviors user programmed Some object behaviors preprogrammed

3D world 2D platform

User controls camera point-of-view (via
mouse only)

Fixed point-of-view

Free movement of game characters in game-
world (to be programmed)

Automatic side scrolling

Step-by-step construction of detailed 3D
landscape, possibly from scratch

System-facilitated drag & drop construction
of highly simplified landscape templates

Point & click navigation of palette menu Drag-and-drop scrolling of palette menu

Single, open game type Choice of five preset game types

Possible to structure game by level (<10) Possible to structure game by level and sub-
level

Create game levels from scratch Create new (sub)levels using preset game-
world templates

Switch between authoring and play modes Switch between authoring and preview
modes

Palette of game-world graphics, objects &
behaviors

Palette of game-world graphics and objects
(some preprogrammed)

Closed set of graphics Editor for creating personalized graphics
and textures

Soft, “toy-like” GUI style: soft tones, con-
tours & shading; fluid/elastic motion;
“cute” objects and sounds

Hard, high-contrast gaming-style GUI:
pixel-style graphics, sharp motion and
sounds, objects inspired by classic console
games (nasties etc.)

Game-oriented behaviors: shooting, collect-
ing etc.

Game-oriented behaviors: shooting, collect-
ing, battles etc.

All animation to be programmed Animated sprites (some preprogrammed)

Games can be saved to 2 external websites
for sharing.

Integrated in native social networking plat-
form with high activity levels

No advertising Advertising present on website

520 J. Earp, F.M. Dagnino, and M. Ott

Some of the above are determining factors for these environments’ levels of acces-
sibility, usability and ease of use, key areas of HCI. One obvious example that illu-
strates this point is the employment of drag-and-drop control in both environments,
which poses a significant challenge for students with sensory disabilities of various
kinds [13]. Without an alternative control method, these environments’ accessibility is
compromised and, as a result, game-making activities performed with them are less
inclusive than they otherwise might be. Factors such as these not only impact on the
ultimate effectiveness of game-making as an innovative learning method deployed in
educational settings, they can have serious repercussions on practitioners’ (and ad-
ministrators’) inclination to approach and adopt game-making in the first place. So,
mindful of these considerations and their importance for MAGICAL’s mission to
support wider uptake of game-making for learning, we have carefully examined ac-
cessibility, usability and user experience issues.

2.4 The Two Game Authoring Environments: Accessibility and Usability

To begin with, the two environments were tested for accessibility according to the
specifications laid out in Italy’s law governing software applications destined for or
used by public institutions5 [14]; this law is largely based on Section 508 of the US
Rehabilitation Act [15];. Neither application proved to be fully compliant with key
accessibility requirements, as illustrated by the above-mentioned absence of any al-
ternative where drag-and-drop control is required. Another obvious accessibility issue
regards navigation of palette menus. In Kodu, the menus and items are quite clearly
shown on large, graphically bold wheels that pop up automatically and are point-and-
click controlled (Fig. 2). The nesting of menu levels is clearly apparent and readily
comprehensible through transition from the large main menu wheel to the smaller
sub-menu wheel at the point of juncture. While contrast and color differentiation be-
tween active/non-active menu items is far from optimal, the items themselves are
clearly represented both textually and graphically. In addition, contextual help is pre-
sented automatically via high-contrast roll-over text (this function can be disabled).
Sploder’s palette menu is accessed via the three small icons in the top right-hand cor-
ner of the screen (Fig. 3). These open the next level, presented as a vertical toolbar
that pops up to the right with much larger labeled icons (not shown in Fig. 3).
Although this needs to be scrolled vertically there is no scroll bar, only a text hint
displayed in a small help bar at the bottom of the editing window. If a toolbar item
contains other sub-items to navigate to, this is indicated by tiny, almost imperceptible
dots displayed under the icon. Navigating through these sub-items calls for a mouse-
controlled point-click-hold-swipe motion left or right. Graphically, the distinction
between active and non-active items is barely discernable. The browser’s zoom func-
tion and the F11 keyboard shortcut for displaying the browser window full screen are
often disabled; the authoring window does not rescale. The native zoom only zooms

5 Italian Law 4-2004, also called Legge Stanca

http://www.pubbliaccesso.gov.it/biblioteca/
quaderni/rif_tecnici/Quaderno_4.pdf

 Learning through Game Making: An HCI Perspective 521

the game world canvas, not the editing dashboard. By contrast, Kodu can be displayed
full screen and at various resolutions. To investigate the applications’ usability, we
refer to the eight Golden Rules proposed by [16]. Compliance with these varies consi-
derably in the two environments, as shown in Table 2 below.

Table 2. Usability Golden Rules and application in two Game Making Environments

Golden Rule Kodu Sploder

1. consistency
Employ uniform actions,
terminology, color, layout,
and text style. Limit excep-
tions like confirmation of
delete command.

Generally compliant Some noncompliance: color
codes of control panel but-
tons confusing and some-
times inconsistent. Palette
menu organized inconsis-
tently.

2. universal usability
Design for plasticity and
facilitate content transfor-
mation. Cater for differenc-
es in expertise, age,
(dis)abilities and technolo-
gy.

Some compliance: display
options for GUI buttons;
advanced options available
for experts; main key-
board/mouse controls dis-
played by default (text &
icon); menu items clearly
indicated, contextual help
displayed; Windows key-
board controls & shortcuts;
guided tutorials embedded
in editable games and
scaled in complexity

Very little compliance:
some limited contextual
help for toolset and dash-
board controls

3. informative feedback
Provide system feedback for
all user actions - modest
response for frequent / minor
actions, more substantial for
infrequent / major actions.
Visual presentation of ob-
jects of interest

See note below See note below

4. yielding closure
group action sequences into
beginning, middle, and end.
Give accomplishment feed-
back at completion of a roup

See note below See note below

5. (user) errors
Where possible block or
filter inappropriate user
actions or input; these should
leave system state unaltered
(no response). Provide sim-
ple, constructive, specific
recovery instructions.

Generally compliant:
invalid editing selections &
actions trigger no system
state change. Undo/redo
function available for re-
covery after user errors.

Generally compliant:
invalid editing selections &
actions trigger no system
state change.

522 J. Earp, F.M. Dagnino, and M. Ott

Table 2. (continued)

Golden Rule Kodu Sploder

6. easy action reversal
fosters sense of user control
and encourages exploration
of unfamiliar options

Compliant: Undo/Redo
button for back and forward
tracking. Access to com-
plete change history. Ma-
nual Save/Save- As for
versioning. Auto Save
prompt when closing edit-
ing sessions. Sessions au-
tomatically assigned a de-
fault version number to
foster versioning.

Editor has a toggling eraser
to remove objects that are
unwanted but no Undo
function. Each edit is auto-
matically saved. No ver-
sioning function.

7. internal locus of control
controllable, responsive
interface requiring little
menial effort or repetition.
No obstacles to desired
result.

Compliant: visual pro-
gramming designed with
features to reduce effort and
repetition.

Compliant: production of
game landscape and tex-
tures specifically designed
to reduce effort and repeti-
tion.

8. short term memory
load
no memorization required
between screens. Allow
sufficient training time.

Generally compliant: step-
by-step tutorials provided in
the form of real, editable
games

Non compliant: no tutorials
or online guide.

With regard to Shneiderman’s Golden Rule 3 on feedback and Rule 4 on closure,
authoring environments present some specificities, especially those devoted to the
production of more complex, interactive multimedia artefacts such as games. Firstly,
game authoring is generally performed iteratively in a sequence of user-driven alter-
nations between design/editing and preview/run phases. In a sense, core “system
feedback” and closure can only come when the author triggers a preview/run to check
the outcome of executed editing steps. So feedback and closure loops are actually
very long and loose, and their amplitude and frequency is user governed (although it
could be argued that allowing multiple-level game structuring, as Sploder does, en-
courages tighter looping to some degree). Furthermore, while the WYSIWYG prin-
ciple of editing does apply to some (static) graphic elements included in the editing
space, it cannot apply to the “programmed” interactions that are the hallmark of digi-
tal games.

Following the considerations in [17] related to the fact that “users approach new
software with diverse skills and multiple intelligence”, we acknowledge that the con-
siderations reported above need to be integrated with data from user experience..
Findings on these aspects are expected to emerge from the conclusive stages of the
MAGICAL project.

 Learning through Game Making: An HCI Perspective 523

3 Conclusions and Further Work

In this paper we have examined some different aspects of HCI in game authoring
environments that emerge from an investigation of two different game authoring envi-
ronments currently being used with and by young students. The general objective has
been to provide useful indications to support the implementation of game making for
learning, which is steadily gaining support in formal education, especially for trans-
versal skills development. The examination was carried out in the framework of
MAGICAL, an EU project on game making that incorporates teacher training actions
as well as school experiments. One of the main results expected of MAGICAL is the
production of MAGOS, an authoring environment specifically intended for collabora-
tive game making [18]. The design and development of MAGOS is grounded on a
thorough analysis of existing authoring environments, some aspects of which are
reported in this paper.

Issues of Human Computer Interaction are of particular significance in this sector,
as indeed they are in Games-Based Learning and Technology Enhanced Learning, the
wider fields to which digital game making belongs. Here, it is imperative that HCI
poses no hindrances to the cognitive processes underpinning learning, but rather sup-
ports these in the global effort to achieve efficacy. It is with these concerns in mind
that the work reported here was initiated and directed towards fulfilling two imme-
diate aims: informing the game-making experiments performed in schools in
MAGICAL’s partner countries (Italy, Finland, Belgium and UK); and providing input
for the development of the MAGOS environment. In both these areas valuable user-
experience data is currently being generating that will serve to validate and enhance
the initial findings reported in the paper. The authors intend to integrate that data so as
to form a clearer, more detailed picture of HCI within the design and making of digi-
tal games for learning. The ultimate aim is to generate HCI-related indications for
enhancing interface capabilities and affordances of authoring environments, and thus
contribute to the appeal, efficacy and, eventually, wider uptake of game making as an
educational practice.

References

1. Lizzy, B., All, A., Ilse, M., Dana, S., Van Looy, J., An, J., Koen, W., et al.: State of Play of
Digital Games for Empowerment and Inclusion: a Review of the Literature and Empirical
Cases. Publications Office of the European Union, Spain (2012)

2. Frossard, F., Barajas, M., Trifonova, A.: A Learner-Centred Game-Design Approach: Im-
pacts on Teachers’ Creativity. Digital Education Review (21), 13–22 (2012)

3. Lytras, M.D., Sicilia, M.A.: The Knowledge Society: a manifesto for knowledge and learn-
ing. International Journal of Knowledge and Learning 1(1/2), 1–11 (2005)

4. de Freitas, S., Neumann, T.: The use of ‘exploratory learning’ for supporting immersive
learning in virtual environments. Computers & Education 52(2), 343–352 (2009)

5. de Freitas, S.: Serious virtual worlds. A scoping guide. JISC e-Learning Programme, The
Joint Information Systems Committee (JISC), UK (2008)

524 J. Earp, F.M. Dagnino, and M. Ott

6. Arnab, S., Berta, R., Earp, J., de Freitas, S., Popescu, M., Romero, M., Usart, M.: Framing
the Adoption of Serious Games in Formal Education. Electronic Journal of e-
Learning 10(2), 159–171 (2012)

7. Luckin, R., Bligh, B., Manches, A., Ainsworth, S., Crook, C., Noss, R.: Decoding Learn-
ing: The Proof, Promise & Potential of Digital Education. NESTA, London (2013)

8. de Freitas, S., Ott, M., Popescu, M.M., Stanescu, I.: Game-Enhanced- Learning: Prelimi-
nary Thoughts on curriculum integration. In: New Pedagogical Approaches in Game En-
hanced Learning: Curriculum Integration. IGI Global (2013)

9. Dagnino, F., Earp, J., Ott, M.: Investigating the “Magical” effects of game building on the
development of 21st Century Skills. In: ICERI 2012 Proceedings, pp. 5778–5785 (2012)

10. Bottino, R.M., Earp, J., Ott, M.: MAGICAL: Collaborative Game Building as a Means to
Foster Reasoning Abilities and Creativity. In: 2012 IEEE 12th International Conference on
Advanced Learning Technologies, pp. 744–745. IEEE (2012)

11. Holzinger, A.: Usability engineering methods for software developers. Communications of
the ACM 48(1), 71–74 (2005)

12. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of informa-
tion technology. MIS Quarterly, 319–340 (1989)

13. Benigno, V., Bocconi, S., Ott, M.: Inclusive education: helping teachers to choose ICT re-
sources and to use them effectively. eLearning Papers (6), 4 (2007)

14. CNIPA, Italian Law 4/2004 Provisions to support the access to Information Technologies
for the disabled (2004), http://www.pubbliaccesso.gov.it/normative/
law_20040109_n4.htm (retrieved February 1, 2014)

15. USA Access Board, Section 508 of the US Rehabilitation Act (2011),
http://www.section508.gov (retrieved February 1, 2014)

16. Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Hu-
man-Computer Interaction, 5th edn., 606 pages. Addison-Wesley Publ. Co., Reading
(2010), http://www.pearsonhighered.com/dtui5einfo/

17. Shneiderman, B.: Universal usability. Communications of the ACM 43(5), 84–91 (2000)
18. Earp, J., Ott, M., Romero, M., Usart, M.: Learning through playing for or against each oth-

er? Promoting collaborative learning in digital game based learning. In: Proceedings of the
ECIS 2012. AIS Electronic Library, Paper 93 (2012),
http://aisel.aisnet.org/ecis2012/03

	Learning through Game Making: An HCI Perspective
	1 Introduction
	2 Two Game Making Environments Under the Lens
	2.1 Kodu: A Code-Based Game Authoring Tool
	2.2 Sploder: Creating Games through an Online Platform
	2.3 The Two Game Authoring Environments: Comparison of Main Features
	2.4 The Two Game Authoring Environments: Accessibility and Usability

	3 Conclusions and Further Work
	References

