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Abstract. We extend a method for color weak compensation based on
the criterion of preservation of subjective color differences between color
normal and color weak observers presented in [2]. We introduce a new
algorithm for color weak compensation using local affine maps between
color spaces of color normal and color weak observers. We show how
to estimate the local affine map and how to determine correspondences
between the origins of local coordinates in color spaces of color normal
and color weak observers. We also describe a new database of measured
color discrimination threshold data. The new measurements are obtained
at different lightness levels in CIELUV space. They are measured for
color normal and color weak observers. The algorithms are implemented
and evaluated using the Semantic Differential method.

Keywords: Universal Design, Color-barrier-free Technology, Color-weak
Compensation, Riemann geometry.

1 Introduction

Presenting a color image to observers so that their perception of the image is
as similar as possible is a difficult problem. Methods to achieve this goal are
important in human computer interface and have received a lot of interest due
to recent rapid developments of visual media and wearable display technology.
One cause for the problems encountered is the wide variation among observers
from those with normal color vision over color-weak to near color blind observers.
A second problem is the fact that perception is not directly measurable and there
is therefore no objective criterion to measure the differences between the color
perception of different observers.

A fundamental information used to characterize color vision properties is color
discrimination thresholds and it is thus natural to compensate color-weak vision
based on these data. This was described in [2] and [4]. This method character-
izes color vision by using the fact that color spaces have a structure that can
be described with the help of Riemann geometry [3]. This is used to construct a
criterion for color-weak compensation that aims at the preservation of subjective
color differences between color-normal and color-weak observers. A map preserv-
ing color-differences or Riemannian distance between color spaces is called an
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isometry. Therefore the task to compensate color-weak vision becomes to built
a color difference preserving map or an isometry[2].

There are two ways to build an isometry between two color spaces when the
Riemann metric tensor in both spaces are available. One is shown in [2][4] to
build a set of local isometry maps at neighborhoods of sampling points in the
color spaces. The other is shown in [6][5] to build a Riemann normal coordinate
system using geodesics in both color spaces. The first one is easier to implement
since it only needs linear algebra manipulations at each neighborhood, while the
second requires to solve the second order ordinary differential equation to draw
geodesics. It also needs a smooth interpolation of the Riemann metric tensor.

However, two problems remained unsolved for the first method. Firstly, es-
timation of local isometries from observed data could result in ill-conditioned
linear equations. One also needs to establish the correspondence between neigh-
borhoods or the origins of local coordinates before estimating the local isometries
between them. Both problems are not trivial, in fact, as shown below, the first
estimation problem is underdetermined or there is no unique solution to find a
local isometry based on Riemann metric tensor information alone. The second
problem is directly related with unobservability of color perception. Besides, pre-
viously used discrimination threshold data were measured on the chromaticity
plane, so only 2D compensation was possible.

In this paper we build on these results and extend them in two directions:

1. The compensation is based on a function that maps the color spaces of the
color-weak and the color-normal observer in a way that preserves the color
differences as represented by the discrimination ellipsoids. We introduce a
new algorithm to determine such a local ellipsoid preserving function f. The
construction requires the solution of a nonlinear equation or a singular-value-
decomposition of a restricted form of f.

2. The constructed functions f are local and defined on patches. It is therefore
necessary to paste these patches together in order to construct a global
mapping. We do this by introducing a new algorithm to find correspondences
between the origins of local coordinates [1].

All these methods are based on the characterization of the color perception
properties in the form of color discrimination data. We also present a new
database of threshold data measured at lightness levels L = 30,40, 50, 60, 70
(CIELUYV). Previously such data was only available for one lightness level.

We will evaluate the proposed color-weak compensation methods based on the
new measurement database in experiments where the performance is evaluated
by the Semantic Differential (SD) method [9].

2 Geometry of Color Spaces and Color-Weak
Compensation

Color spaces can be modeled as Riemann spaces in which the Riemann metric
tensor is defined by the color discrimination threshold (MacAdam ellipsoids).
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At a point z in a Riemann space C, the length of the deviation Az from x is
computed as

|Az|? = AzT G(x) Ax. (1)

G(z) is a smoothly-varying positive-definite matrix, the Riemann metric tensor.
Color differences are distances in the color space and the color discrimination
threshold at x is the unit sphere at xz. G(x) is determined by color matching
psychophysical experiments. The distance between color vectors 1, zo is defined
as the length of the shortest curve connecting the two points.

d(z1,75) = /W |Az| = /W /AT G(@) Ax @)

For color spaces C, with Riemann metric Gi(x), (k = 1,2) a map f from C;
to Cs is a local isometry if it preserves local distance and map discrimination
ellipsoid at every x onto ellipsoid at y = f(x):

Gi(z) = (Dy(x))" Ga(y) Dy (x) 3)

with Dy the Jacobian of f [3].

A map preserving large color-differences is called a global isometry, which
means that the distance between any pair of points in one space is equal to the
distance between the corresponding pair of points or their images in the other
space. In fact a global isometry is also local isometry and vice versa[l].

If C,,C, are the color spaces of a color-normal observer and a color-weak
observer, and if we can match the thresholds at every corresponding pair of
points in the color spaces, such that the small color differences are adjusted
to be always the same everywhere, then the large color difference between any
corresponding pair of colors is also identical. The criterion of color-weak com-
pensation is therefore proposed to transform the color space of the color-weak
observer by an isometry so that it has the same geometry and therefore the same
color differences everywhere as in the color space of color-normal observers|2].

Until now, two ways are proposed to construct an isometry either as a lo-
cal isometry by discrimination threshold matching at every point [2] or as a
global isometry by construct the Riemann normal coordinates at each color
spaces|3][6][5]. In the following we will use only the first approach.

3 Compensation Algorithms

3.1 Compensation in 1D Spaces

The colorweak compensation algorithms [2,4] work in the 1D lightness compen-
sation case as follows.

Denote the color spaces of a color-weak and a color-normal observer by C,,,
Cy, and the isometry y = f(z) with f : C,, — Cy,. The discrimination thresh-
olds at z € Cy and y € C,, are a,(x), an(y). Denote the common reference
point in both Cy, and C,, as Q' .
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In this case we have: G1(z) = 1/a2 (), Ga(y) =
from the local isometry condition (3) that 1/a2 (z)
the isometry f from C,, to C), has Jacobian

= 1/a2(y) and then we find
= ch(x)/a%(y) Therefore,

an(y)

o (2) =1l-w() (O<w<l) (4)

Dy(x) =
Here w describes the degree of color-weakness: e.g. w = 1 is color-blind, w = 0
is color-normal.

Then the color-weak simulation map f can be uniquely obtained from the
integral of its Jacobian in C,,:

Q

Q"= 1(Q) = / (1 - w(a))de (5)

’

On the other hand, the inverse f~! of f, or the color-weak compensation map,
can be obtained from the integral in C),:

Q 1
r(1=w(y))

Assuming piecewise constant thresholds or a, (x), x in the k-th interval [x;_1, 2]

of C,, is a constant equal to o) := oy (1) on the right end of the interval (and

an,(y) is a constant in k-th interval in C, equal to a;’” := ay(Yr)), the color-weak
map (and the compensation map) can be realized by a sum of the discrimination

thresholds on direction of lightness:

P=f(Q) = / dy (6)

I

Q" = Z(l —w;)(Tig1 — ) Za(z) (7)
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Fig. 1. Local isometry: 1D colorweak map
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3.2 Color Weak Compensation in Higher Dimensions

Below, we show how to build the local isometry between color spaces. Such
a map from the color space of a color-weak observer to that of color-normal
observers is called the color-weak map w in the sense that it shows to color
normal observers what the color-weak observer actually sees, which therefore
will serve as color-weak simulation map. The inverse map of w, also an isometry,
will serve as the compensation map which shows to the color weak observer what
the color-normal observers see.

Assume we have a set of sampling points in the, three-dimensional, color space
C, of a color-weak observer: {z; = (2%, 2%, 28)T},i = 1,2, ... . They correspond
to the set of the images of the sampling points in the, three-dimensional, color
space C, of a color-normal observers: y = (z2,%2,22)7 = w(z) € Cp, {yi =
(yiv yéa yg’;)T}vi =1,..,N.

The colorweak map w : Cy, — C), is linearly approximated by the Jacobian
matrix vak) = Dy, (zk) in the neighborhood of each sampling point and its image
neighborhood.

This defines the local affine map between the neighborhood of xz; and the
neighborhood of its image yx = w(xy) given by

y—yr =D (z — ) (9)

The Jacobian matrix Dfuk) of w is determined again by the local isometry or
threshold matching condition (3):

G = (DY) G DY (10

and we will combine the above 1D algorithm in the direction of L with a 2D
isometry which compensates chromaticity differences.

Fig. 2. Local isometry: 3D colorweak map

4 Estimation of the Local Affine Isometry

4.1 Local Linear Isometry

We assume first that a pair of color stimuli z, y of two color spaces C7 and Cs cor-
responding to each other under a (global) isometry is given. The metric tensors at
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these two points are G1(z) and G2 (y). We show a method to determine a local lin-
ear isometry which maps x € C; to y € C5 which preserves the local geometry or
local color difference between the neighborhoods of x € C; and y € Cs.

The local linear isometry is the Jacobian of the global isometry at x or a
matrix Dy which preserves the Riemann metric G1(z), Ga(y). It is given as a
solution of the following equation:

Ga(y) = D} Gi(2)Dy (11)

This local linear isometry is not unique as can be easily seen. In the 2D
case, this equation involves symmetric matrices of size 2 x 2 which gives three
independent scalar equations. The matrix of the local isometry has however four
entries and thus multiple solutions. In 3D case one has six equations and a local
isometry defined by nine entries.

In the following we consider a restricted form of f which consists of scalings
of the long and short axes of the ellipsoids and a rotation.

cosf sinf a0 acosf bsinf
Dy =RA= (sin9 cos@) (O b) - (asin0 bcos@)
Now we denote X = acosf,Y =bsinf, Z = —asind, W = bcosf to obtain a
nonlinear equations in X, Y, Z, W as
XY +ZW =0. (12)

Further by choice of the local coordinates as the eigen vectors of G (z) one can
assume that G (z) is a diagonal matrix

3 0 @ (2

912" 922

Therefore the following nonlinear equation can be solved to obtain the entries
of Df.

M =g VX 209X 7+ g2 72
0=gPxY +20DxW+Y2)+ ¢ zW

Ao = gDV2 4 20V W 4 g5 W2
0=XY + ZW

Another way to solve equation (11) is to use the Singular Value Decomposition
(SVD) of a matrix. The SVD provides a decomposition of a matrix M as a
product M = UAV where U and V are rotation matrices and A is diagonal. We
apply this decomposition to the symmetric matrices G; = V{ A1V} and Gy =
V3 A2 Vs and the Jacobian Dy = Uy A;Vy and get

Vo AoVa = VIA; UV AsViU ApVy (13)

We see that we find a solution by first setting Vo = V3, Uy = V/. Using the fact
that these matrices are orthogonal we find Ay = AfA1 Ay = AlA? and therefore

Ap =/ AsAT",
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4.2 Estimation of Affine Shifts in the Local Isometries

Now we build the global isometry by stitching local affine isometries. These
local isometries are defined in the neighborhoods of every corresponding pair of
points in C, and C,,. Therefore they can be described as linear maps D; between
tangent spaces at x; € Cy, and y; € Cp, for ¢ = 1,...,N. So the D, is defined
with = and y as the origins in T,,C,, and T},C,,. However, the determination of
the correspondence between = and y is not trivial.

Here we use a method we call neighborhood expansion to estimate the correspon-
dence. We start with a known corresponding pair O,, € C,, and O,, € C,, and the
Riemann metric G(O,,) and G(O,,) are also given. Such a pair can be chosen as e.g.
D65. The two points are used as the origins in the local coordinates given above.

We then build a local linear isometry D between two linear spaces Top,, Cy
and Tp, C,, in the way presented in the previous section.

Next we choose the points x;,i = 1,..,I inside the neighborhood Np, of
O,, which are going to be used as the origins of local coordinates of the second
generation in C,. These neighborhoods then expand from the first neighborhood
of Oy . Their images in C;, under the local isometry D can be found as

Yi = Op + D(x; — Oy,) € To,,Cy

which are used as the origins of the local coordinates in (), corresponding to the
neighborhoods of x;.

Now for the second generation of these origins one builds local isometries
D;:Cy D Ny, — Ny, C Cy,i =1,..,I based on the Riemann metric Gy, (z;)
and Gy, (y;). This process is repeated to expand the neighborhoods and for every
new generation of origins to build Dj; : C1 D Ny, — N,,, C C2,i =1,..,N;
based on the Riemann metric Gi(z;;) and Ga(y;;). These local isometries will
then eventually define a global isometry from C, to C,.

5 Color Discrimination Threshold Data

We used pair comparison experiments to determine the color discrimination
thresholds. Measurement methods in psychophysical experiments vary from to-
tally random ordering to adjustments by the observers themselves. While the
totally random measurement is precise but time consuming, one wishes to avoid
bias due to anticipation and adaptation or learning effects of observers. There-
fore, we have chosen a randomized adjustment method as follows.

The observers include a D-type color weak observer and a color-normal observer.
Theillumination is Panasonic Hf premiere fluorescent light and a SyncMaster X1.24
by Samsung is used for display. The Background is neutral grey of N 5.5. The ob-
serving distance is 80cm, the two frames on the display are 14 x 14 cm squares, with
the left one as the test color and the right one is compared with the test color.

A session of color-matching starts with the display of a comparison color
on the right frame. The observer is asked to use either the mouse wheel or a
key touch to adjust the comparison color to the test color as close as possible.
An accepted match finishes the session. The comparison color of the test color is
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randomly chosen on straight lines in 14 directions centered at the test color, with
a random distance. The speed of the comparison color changes, responding to
the movement of the mouse wheel or the number of key touches are also random.
After 4 sessions, neutral gray is shown on the whole display for 7 seconds.

The sampling points in the CIELUV space are arranged on five planes of
L = 30,40, 50,60, 70. On each plane, a uniform grid of sampling points is selected
using the following number of gridpoints within the gamut of the lightness : 9
points in L = 30, 13 points in L = 40, 19 points in L = 50, 20 points in L = 60,
16 points in L = 70, therefore 77 points in the whole space.

The ellipsoids are then estimated from the observation data using the methods
in [2][7]]8].

Example threshold ellipsoids measured in 3D and L = 60 are shown in Fig. 3 to
Fig. 6.
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6 Experiments and Evaluation

Compensation and color-weak simulation of an image using the proposed algo-
rithms applied to the new data are shown in Fig.7,8,9.
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Fig. 7. ”Mountain”: Original

Fig. 8. "Mountain”: Color-weak simulation

Fig. 9. "Mountain”: Compensation
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Fig.11. Color-normal views
the original, color-weak views
the compensation of ”Moun-
tain”

Fig.10. Color-normal and
color-weak view the original
”Mountain”

Table 1. ”Moutain”: SD score

Correlation Distance
Before compensation -0.721866 0.558297
After compensation 0.238643 0.380957

The performance of the color-weak compensation is difficult to evaluate di-
rectly. Below we apply the Semantic Differential (SD) method [9] to evaluate the
results of the proposed method.

We choose 20 adjective pairs from the 76 pairs used in [9]. Objectives are
marked for every question in a seven score scale.

7 Summary and Conclusions

We used approaches from the theory of Riemannian manifolds to develop a
new method to construct mappings between color spaces of color weak and
color normal observers. We showed how the linear approximation of the local
mapping between the color spaces can be found by solving non-linear equations
or Singular Value Decomposition. We also presented a method that allows us to
stitch together these local solutions. Furthermore we described a new, extended
database containing the color discrimination data of color normal and color
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weak observers. We illustrated the results obtained with the new method and
evaluated it with the help of SD-evaluation.
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