

C. Stephanidis and M. Antona (Eds.): UAHCI/HCII 2014, Part I, LNCS 8513, pp. 224–235, 2014.
© Springer International Publishing Switzerland 2014

Accessibility through Preferences:
Context-Aware Recommender of Settings*

Andrés Iglesias-Pérez1,**, Claudia Loitsch2, Nikolaos Kaklanis3,
Konstantinos Votis3, Andreas Stiegler4, Konstantinos Kalogirou5,

Guillem Serra-Autonell6, Dimitrios Tzovaras3, and Gerhard Weber2

1 R&D Department, Fundosa Technosite
Technosite C/Albasanz 16, 3-B 28037 Madrid. Spain

aiglesias@technosite.es, andresip@gmail.com
2 Technical University of Dresden, Germany
claudia.loitsch@tu-dresden.de

3 Information Technologies Institute, Centre for Research and Technology Hellas, Greece
4 Stuttgart Media University, Germany

5 Hellenic Institute of Transport, Centre for Research and Technology Hellas, Greece
6 Barcelona Digital Technology Centre, Spain

Abstract. A proposal for merging context-awareness and user preferences in
the same software system is provided. Several modules from the on-going
CLOUD4All project (European Commission Seventh Framework Programme)
are enhanced with Context Awareness, including the Semantic Matching
Framework, the RuleBased Matchmaker (with new rules) and the Statistical
Matchmaker (with new features to be used as predictors). Some other compo-
nents are created exclusively to deal with context features, as the Context
Aware Server (to add context from motes) and the Minimatchmaker (to save
computation and network resources for well-known situations)

Keywords: e-Inclusion, Personalization,Context-awareness for universal access.

1 Introduction

Daily life in urban environments tends to force the user to interact with a plethora of
machines, each with its own User Interface (UI). Most probably even getting into the
workplace will involve checking the smartphone in the morning for email and ToDo
lists, getting a ticket to the metro or bus in a Ticket Vending Machine (TVM), reading
on a tablet while in transit and finally opening the desktop computer on arrival. Cur-
rently, the personalisation of all of these systems would delay users, so they are likely
to use systems under suboptimal conditions, because users rarely make any changes

* Results presented in this paper have been researched within the Cloud4all project. Cloud4all

is an R&D project that receives funding from the European Commission under the Seventh
Framework Programme (FP7/2007-2013) under grant agreement n° 289016.

** Corresponding author.

 Accessibility through Preferences: Context-Aware Recommender of Settings 225

on the UI, especially when the interaction becomes more complicated, as when noise
and light conditions vary.

Several approaches [1][2][3][4] have addressed the task of improving the interac-
tion between a user and a computer by means of adding knowledge about the
surrounding environment. However, not all of them employ the user needs and pref-
erences about the HCI as a source of data on its own. This hinders the possibility of
generating personalised UIs, which are especially important for people with disabili-
ties, as it involves auto-activating Assistive Technologies (AT). On the other hand,
researchers [6][7][8][9] have produced fruitful results when adapting the UI to the
user needs, whether in automatic or semi-automatic fashion, Nevertheless, in these
cases the adaptation of the UI is focused on user needs leaving the context reduced to
the device that the user is employing [10]. A good universal design [5] on the server
side plus the correct AT with the best configuration of settings on the client side will
allow individuals with disabilities to complete tasks without the intervention of third
persons, providing full accessibility even in environments that are not owned by
the user.

2 Related Work

Several approaches and projects investigated semantic context-aware reasoning tech-
niques towards accessibility in the past. [18] motivated the potential of semantic web
reasoning in terms of user interface adaptation recently. Beyond that, they propose a
general reasoning architecture to support adaptivity of web-based services. Thereby
abstract user interface design is translated into a concrete user interface by consider-
ing user (e.g. disability, web familiarity, language) and context attributes (e.g. input-
output devices, screen capabilities) as well as interaction data (e.g. user actions,
navigation paths) represented in OWL and OWL_DL ontologies. A reasoning module
and rule engine undertake decision-making about selecting appropriate and concrete
interaction elements. Accessible TV applications through adaptive user interfaces, for
instance, have been developing in the GUIDE[19] project. After initial adaptation
according to the user capabilities have been calibrated, run-time adaptation is per-
formed by rules. Capability-based reasoning, delivered by semantic information
has been recently proposed by [20] Ubiquitous devices, adaptable applications and
service-based content are targeted. Even if the reasoning approach fits into the mat-
chmaking approach described in this paper, details about the process are not given.
Kadouche`s [21] work based on semantic matching between an environmental model
(environmental effectors) and a user model (human factors) to provide assistive user-
environment interaction and services. Context information from sensors and a user
profile are processed to identify potential handicap situations for users by Description
Logic (DL) inference reasoning. The context query engine delivers environment ef-
fectors that lead to a handicap situation which can be resolved by assistive environ-
ment services. A further, not-directly linked domain knowledge approach is presented
by [22] Based on a user model (user capabilities), a UI model (information, content,
navigation, and styles) and existing guidelines (principles on web accessibilities

226 A. Iglesias-Pérez et al.

e.g WCAG2), represented as ICF and WCAG ontologies, semantic matching
through a GOAL model is created and specific guideline rationales are determined.
Accessibility rationales are considered within the user context, e.g. capabilities or
task. The approach does not perform personalization directly but is interesting as ori-
gin for specific contextual adaptations.

3 Methodology

The presented proposal bridges the gap between Context-Awareness and UI Persona-
lisation by orchestrating a layered matching between a) user needs and preferences
and b) device/platform settings. (a) is subdivided into a.1) common terms such as
brightness or volume level, a.2) preferred applications e.g.: choose NVDA over
JAWS, a.3) application-specific settings e.g.: choose voice “Jorge” when employing
Loquendo TTS Engine or place keyboard on top-left corner when employing Virtua-
lKeyboard ; whereas (b) deals with constrains “dpA” (device-platform-application)
like b.1) physical constrains of the device, e.g: screen-witdht, maximum volume level
or camera availability, b.2) type of architecture (Windows, MacOS, AOSP…) , b.3)
available solutions for that architecture. In the Figure 1 the “Preferences Server” deals
with (a) and the “Device Manager” and “Solutions Registry” deal with (b). The
source of knowledge represented as “Context Manager” is actually provided by two
modules that are the Minimatchmaker and the Context Aware Server, explained
below.

Fig. 1. Rule-based matchmaking strategy

Preferences
Server

Rule-based
matchmaker

Solutions
Registry

Solu-
tions

O l

Flow Manager

Semantic Infrastructure

Inference
Engine

Context
Manager

Device
Manager

Statistical
matchmaker

Matchmaking Infrastructure

PCP

 Accessibility through Preferences: Context-Aware Recommender of Settings 227

Matchmaking is then the process of adapting a user’s preference set to a given con-
text to configure the available solution in a way that matches the preferences of the
user [23]. Considering the different kinds of context that one could encounter, this
task becomes quite challenging [24].There are two matchmaking strategies working
together 14: a statistical approach to infer settings from previous uses of systems and
a rule-based approach that exploits the knowledge of the Semantic Framework [13] to
gain insights from experts on the domain of AT selection, both of them being able to
fetch data from the Preferences Server that users can update thanks to the Preferences
Management Tool (PMT) 15. In the device there is also a reasoning module that
stores what-if conditions to save computing and network resources. The Flow Manag-
er [16] is responsible for the communication between the modules. The Matchmakers
output is divided into

Decision+Interaction Help+Recommendation+OfflineSuggestion.

• Decision: some ATs are automatically applied to ensure accessibility.
• Interaction Help: decisions to automatically apply AT aims to ensure accessibility

but might entail difficulties in utilize, i.e. if the user is not aware of short cuts pro-
vided by a screen reader. Important operations are delivered to the user in addition
to a decision.

• Recommendation: the proposed AT setup is presented in the Personal Control Pan-
el (PCP), a module that acts as a PMT on the user’s device. E.g.: preferred speech
rate for screen readers.

• OfflineSuggestion: When new AT are available and could benefit a specific user,
the Matchmakers send an to inform about the new choices.

Fig. 2. Interaction help example

Although the system is designed to let the user apply the settings he/she agrees, the
Decision part seems to be unavoidable, as some AT (e.g., screenreader) have to be
applied to let the system ask for further conformance. The Recommendation is not

228 A. Iglesias-Pérez et al.

applied automatically, to let the user decide on this part, and the OfflineSuggestion is
performed only if the user consented through the PMT.

3.1 Rule-Based Matchmaker

The Rule-based matchmaker can resolve cases where the adjustments preferred by the
user cannot be directly applied due to limitations of the current system/device. Typi-
cal problematic cases include the following: a) user has application-specific prefe-
rences for a solution that is not currently available, b) user has application-specific
preferences for two or more different solutions of the same type (ex. screen readers)
and all of these solutions are currently available. In both cases, the Rule-based Mat-
chmaker exploits the knowledge and the inference capabilities of the Semantic Infra-
structure, in order to find the best alternative solution, or to select the most suitable
solution between the available solutions of the same type, respectively. The selected
set of solutions to be launched is then passed to the Flow Manager.

Beyond that a user feedback loop is triggered by passing information about mat-
chmaking results to the Flow Manager which will be presented to users allowing them
to keep control about automatically applied configurations, benefit from additional
recommendations, and get useful information as well as interaction help about assis-
tive solutions that have been launched and adjusted. Apart from information represen-
tations, users shall be able to alter and assess decisions or apply recommendations on
settings and solutions directly. Figure 2 illustrates interaction help information that
will be presented for solutions that user has never used before.

Table 1 shows an example of a Jena rule executed by the Rule-based MatchMaker.
According to this rule, if user has specific preferences for two different solutions of
the same type and the first solution is installed while the second is available but not
installed (e.g. it may be accessed through the internet), the installed solution is se-
lected as the most appropriate for launching. Context is embodied in the Rule-Based
Matchmaker as a set of rules to be executed before any other reasoning. This execu-
tion allows the final decision to take into account that under suboptimal conditions the
final access mode may differ from the one stated by the user in the “Preferences Serv-
er” hence the access mode is weighted to give a chance to other solutions that work
on different access modes. It also have a subset of rules dealing with perfomance, the
surrounding environment changes very often (light, noise conditions) but not every
little change in context drives a change on access mode, so some rules are needed to
stop checking for different solutions. Table 2 below shows a JENA environment rule,
when a sensors detects a change in the environment variable [25]. Two use cases were
defined at [26] highlighting the contextual changes: adquiring the contextual data
directly from the sensors embedded in the device or from ambient motes. As an ex-
ample of the first one the user Märta that has problems seeing the screen of the devic-
es she uses, when the luminosity changes, so when she logs in she will have a visual,
white on black scheme. So, when the luminosity changes, Märta would like to auto-
matically have some of the following changes at the interface of her devices. When
the brightness of the environment reaches a certain threshold, she will receive a black
on white scheme. When the brightness reaches another threshold (higher) she will
receive an auditory UI.

 Accessibility through Preferences: Context-Aware Recommender of Settings 229

Table 1. Jena rule example – Installed solutions have priority over available solutions

[InstalledSolutionsTakePriorityOverAvailableSolutions:

(?tmpUser rdf:type ns:TempUsers)

(?tmpUser ns:TempUsers_hasSpecificPreferencesForSolutions

?tmpSolutionsIDOneForWhichUserHasSpecificPreferences)

(?tmpUser ns:TempUsers_hasSpecificPreferencesForSolutions

?tmpSolutionsIDTwoForWhichUserHasSpecificPreferences)

notEqual(?tmpSolutionsIDOneForWhichUserHasSpcificPrferences,

?tmpSolutionsIDTwoForWhichUserHasSpecificPreferences)

(?tmpSolutionsIDOneForWhichUserHasSpecificPreferences

rdf:type ?tmpSolutionClass)

(?tmpSolutionsIDTwoForWhichUserHasSpecificPreferences

rdf:type ?tmpSolutionClass)

(?tmpEnvironment rdf:type ns:TempEnvironment)

(?tmpEnvironment ns:TempEnvironment_installedSolutions ?tmpSo-

lutionsIDOneForWhichUserHasSpecificPreferences)

(?tmpEnvironment ns:TempEnvironment_availableSolutions ?tmpSo-

lutionsIDTwoForWhichUserHasSpecificPreferences)

-> (ns:InstalledSolutionsTakePriorityOverAvailableSolutions

rdf:type ns:TempSolutionsToBeLaunched)

(ns:InstalledSolutionsTakePriorityOverAvailableSolutions

ns:TempSolutionsToBeLaunched_IDs ?tmpSolutionsIDOneFor-

WhichUserHasSpecificPreferences)]

Table 2. If sensors detect changes in the environment variables, then trigger a further step

[apply_New_Value_On_Trigger:

 (?tmpEnvironment rdf:type ns:TempEnvironment)

 (?tmpEnvironment ns:Temp_environment_ContextChange

 ?tmpContextChange)

 (?tmpEnvironment ns:Temp_environment_ContextProperty

 ?tmpContextProperty)

(?tmpContextProperty ns:Temp_environment_ContextProperty

?val1)

(?val1 rdf:type ns:Temp_environment_ContextProperty)

equal(?tmpContextChange,"true"^^http://www.w3.org/2001/XMLSche

ma#boolean)

 equal(?tmpContextProperty , ?val1)

-> (?val2 rdf:type ns:Temp_environemnt_ContextProperty)

(?tmpContextProperty ns:Temp_environment_ContextProperty

?vall2)]

230 A. Iglesias-Pérez et al.

3.2 Statistical Matchmaker

There is no simple way to automatically translate application specific settings into the
context of another application. While it would be possible to state a transformation of
a setting from one application to another, it is difficult to automatically find these
relations with algorithms. Font size, for instance, might be relatively easy to measure,
so it would be possible to create a transformation expressing that operating system A
always renders text five percent smaller than operating system B. Yet, both operating
systems come with individual metaphors and UI styles that a matchmaker should try
to maintain. Operating system B might always come with a relatively dense user in-
terface, so font size should be even larger to make the information easier to read and
separate. These subjective requirements cause an offset in the target configuration we
want to infer. The goal is not just to reconstruct settings of application A for applica-
tion B, but to infer settings for application B that make it ‘feel and look like’ applica-
tion A. The strong subjective influence of ‘feel and look like’ is hard to describe with
automated mathematical algorithms. Figure 3 illustrates this problem. A direct trans-
lation of user preferences from one application to another is possible if you can define
a mathematical mapping. A very simple example would be that the font size rendering
on Operation System A is 25 percent larger than rendering it on Operation System B
(ignoring other influences on the actual physical font size in this example, like the
display pixel density). Yet, those objective transformations will not always match
what a user desires, as there are other influences to the “perceived clarity” of text
items in an operation system. Operation System B might have a very clutter style, so
that a user might want a larger font size for representing the same information. This
also illustrates that those “subjective transformations” are user-specific.

Fig. 3. Application Settings Transformation. Step 1 represents a direct transformation. Step 2
visualizes the offset originating in subjective requirements.

The task of the statistical matchmaker is to find a transformation that is as close to
Step 2 in Figure 3 as possible. To solve this task, the statistical matchmaker deploys
statistical inference. This process is based on recommender systems [27] and consists
of several steps, subdivided in an offline and online section.The offline section of the
statistical matchmaker, called the Statistical Inference module, iterates over all prefe-
rences sets known to the system and clusters them. This step is necessary, as the runtime
section, running on a specific client device, might not have access to the preference
servers at all. Further, there are obvious security limitations in User A accessing the

 Accessibility through

preferences of User B.The id
tions of other users that ha
from above, the system mig
to find users that have simil
the library pc. Or, to put it m
rence sets of users that are
close to the unseen context.

Fi

The offline clustering ste
measure against.The system
smartphone (preferences bo
(Black on white context bo
to the known clusters of us
to Cathy’s preferences for
close to Cathy’s, those are
close to the target context. I
either use Anton’s prefere
transformation it required
library pc preferences and
ther process should genera
Cathy can interact with it an
for further inferences, just a

Context in the Statistical
dy. The simple part is that
ture vector. The complex o
bigger feature vector [28]
part of the predictor set [29

3.3 Context Aware Ser

The context mechanism for
use cases. A first case is w

h Preferences: Context-Aware Recommender of Settings

dea behind the statistical matchmaker is to benefit of adap
ave similar preferences. If we continue the library exam
ght be able to infer a meaningful transformation, if it is a
ar settings for their smartphone, but also include settings
more general: The statistical matchmaker tries to find pre
similar for seen contexts, but also include settings that
Figure 4 illustrates this process.

ig. 4. Statistical Preference Matching

ep takes care of reducing the amount of preference set
m starts with the preferences for user Cathy specific to
ottom left) and the target context it is supposed to infe

ottom right). In the first step, it compares the preference
ser preferences, trying to find a preference set that is cl
r the smartphone. From all these preference sets that
extracted that also contain preferences for a context tha
In this example, User Anton is found. It is now possible

ences directly for Cathy’s preference set, or to infer
to get from Anton’s smartphone preferences to Anto
apply the same transformation to Cathy’s preferences.

ate a preference set that brings the system into a state
nd adjust it. Her adjustments will then serve as preferen
as Anton’s just did.
l Matchmaker is both simpler and more complex to em
the context data is just added as more features in the f
ne is that the ability of predicting the correct settings fo
requires more samples or a better feature selection to
.]

rver

r fetching data from sensors might vary depending on
when the device that interacts with the user has itself

231

pta-
mple
able
s for
efe-
are

s to
her

er to
e set
lose
are

at is
e to
the

on’s
Ei-

e so
nces

mbo-
fea-
or a

o be

the
the

232 A. Iglesias-Pérez et al.

sensors – such as smartphones –, the second use case is when the device that the users
interacts with, has not sensors to gather data – such as ATM –, then data is provided
by motes around the device, collected and aggregated using a Context Aware Server
platform.

The Context Aware Server (CAS) is developed in NodeJs provides a platform that
collects, stores and process the data from sensors and when some triggers are fired it
sends the processed data to a client in JSON format. Configuration, Sensors and Users
are stored in MongoDb and new data is cached in Redis and it can be eventually
saved to MongoDb depending on configuration.

The CAS is designed to be fully compatible to RESTful architectural design. It’s
structured in four main APIs: Sensor API, Device API, User API and Configuration
API. The Sensor API offers the means for sending streams of new data from sensors
and getting data stored in the CAS, it also permits advanced searching of data and the
retrieval and search of sensors.

The CAS implements an adaptable and configurable triggering system that avails
the definition of basic collection, aggregation and triggering rules that are applied
when new user is in the system or when new data from sensor is received. All the
triggering system is configurable through the configuration API and the Trigger API
and it’s applied in real time. When new data arrives to the Context awareness server,
it fires an "onNewData" event. Afterwards, a listener gets the sensor configuration
from the database.

Table 3. Sensor RESTFul API (excerpt)

Command Parameters Response sample Description

GET
/sensors/:id

?populate {

 "__v": 0,

 "_id": "524abe89d34ac49f24000001",

"_last": {

 "value": 4,

 "at":"2013-10 03T14:18:49.554Z"

 },

 "devid": "1",

 "type": "light"

}

Gets sensor using the :id
from database. _last
references the last
retrieved data stream,
devid it’s the internal
sensor id (related to
device) and type it’s the
type of sensor.
?populate=true parameter
will populate the sensor
with _last data timestamp
and value.

GET
/sensors/:id/
data

None,

?all,

?new,

[{

“at": "2013-04-22T00:35:43.12Z",

"value": 1

},{

“at": "2013-04-22T00:55:43.73Z",

"value": 2

 }]

If the parameter is
?new, it retrieves new
data since last POST
operation from sensor :id,
otherwise or with ?all
parameter, retrieves all
data from sensor :id.

 Accessibility through Preferences: Context-Aware Recommender of Settings 233

3.4 Minimatchmaker

The Minimatchmaker is a component able to execute simple if-then-else software
code. It is named after the Matchmakers but it doesn’t share their computational pow-
er. The Minimatchmaker receives a series of “what-if” [30] rules from the real Mat-
chmaker that allow it to react to minor changes in the environment.

Recognised Environment:When the data sent by the Environmental Reporter can
be managed by the Minimatchmaker, there is no need for querying an external Mat-
chmaker. The information with the new adaptation is composed inside the Minimat-
chmaker and sent to the Settings Handler.

Unrecognised Environment: Sometimes the data sent by the Environmental Re-
porter cannot be managed by the Minimatchmaker. In these cases the Minimatchmak-
er communicates to the internal flow manager (The orchestrator) that it is not able to
find a set of settings to respond to the changes in the context, and the orchestrator
sends the same context data to the Cloud Flow Manager through a http proxy (HTTP
Client). What happens in the cloud is transparent to the components inside the user
device architecture, but nowadays the Flow Manager send the data to the Matchmaker
module, which is composed by a series of different Matchmakers, including a Rule
Based Matchmaker, a Statistical Matchmaker and a Flat Matchmaker. The response
from the http proxy is formed by the new settings plus a new set of rules to deal with
the context internally. The settings are directly sent to its handler (System Settings
Handler) while the rules are passed to the MiniMatchmaker. The MiniMatchmaker
erases any previous set of rules and stores those that are being received.

4 Results and Discussion

After a manual pre-load of the desired response of the MMM for the users, the lab
tests had the following setup: 1) two separate devices were held by the user’s assis-
tant, one configured with a visual-magnified UI and the other one with an auditory
UI. 2) the auditory one was given to the user, and he starts an interaction to get a trip
ticket from the UI. 3) the observer switches on a music player with loud volume;
when the MMM receives this noise, it produces a speech “switching to visual UI”. 4)
the assistant switches the mobile with the user, and the user ends the ticket purchase.

The test comprised a generic concept validation questionnaire and specific ques-
tions about the perceived usefulness of the solution and the level of satisfaction of the
user. One of our main concerns is to make sure that the adaptation capabilities of the
system developed does not conflict with Nielsen’s first usability heuristic (the user
has to be always in control of the interaction), specific questions were asked regarding
this issue. One out of three expressed their concern that the system autoadapting
without their permission may be annoying, and that changes in the UI should be con-
figured by users. Nevertheless, three users considered the autoadaptation capabilities
as useful (mean 4 in a 5-point Likert scale) and considered that, if they can configure
the adaptations they may use it in the long term (mean 3,67 in a 5-point Likert scale).

A prospective implementation on Android can be found at 17 though it lacks inte-
gration with the Flow Manager but served to ask users for general acceptance and

234 A. Iglesias-Pérez et al.

notion of control issues. These questions were refined during the second pilot stage of
the Cloud4all project and as soon as the processed responses are available, the mat-
chmaking mechanism will be updated accordingly.

The Context weighting mechanism has the drawback of a loss of performance,
tighter integration at the ontology level is being tackled to decrease response time.
Finally new algorithms are being explored to improve the hybrid approach that is
employed to decide which of the matchmakers provides the final output.

References

1. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing 5, 4–7
(2001)

2. Dey, A.K., Abowd, G.D., Salber, D.: A Conceptual Framework and a Toolkit for Support-
ing the Rapid Prototyping of Context-Aware Applications. Journal Human Computer Inte-
raction 16, 97–166 (2001)

3. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In:
Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007.
LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007)

4. Zimmermann, A., Lorenz, A., Specht, M.: Applications of a Context-Management System.
In: Dey, A.K., Kokinov, B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS
(LNAI), vol. 3554, pp. 556–569. Springer, Heidelberg (2005)

5. Stephanidis, C.: Designing for All in Ambient Intelligence Environments: The Interplay of
User, Context, and Technology. Intl. Journal of Human-Computer Interaction 25, 441–454
(2009)

6. Karim, S., Tjoa, A.M.: Towards the Use of Ontologies for Improving User Interaction for
People with Special Needs. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I.
(eds.) ICCHP 2006. LNCS, vol. 4061, pp. 77–84. Springer, Heidelberg (2006)

7. Gajos, K.Z., Weld, D.S., Wobbrock, J.O.: Automatically Generating Personalized User In-
terfaces with SUPPLE. Artificial Intelligence 174, 910–950 (2010)

8. INREDIS. Project website, http://wiki.inredis.es
9. ISO/IEC 24752-3:2008. Information technology – User interfaces – Universal remote con-

sole – Part 3: Presentation template (2008)
10. Iglesias-Pérez, A., Linaje, M., Preciado, J.C., Sánchez, F., Gómez, E., González, R.,

Martínez, J.A.: A Context-Aware Semantic Approach for the Effective Selection of an As-
sistive Software. In: Proceedings of IV International Symposium of Ubiquitous Computing
and Ambient Intelligence, pp. 51–60 (2010)

11. SERENOA. Project website, http://www.serenoa-fp7.eu
12. Iglesias-Pérez, A., Peinado, I., Chacón, J., Ortega-Moral, M.: Frontiers in Context Model-

ling to Enhance Personalisation of Assistive Technologies. In: Assistive Technology: From
Research to Practice – Proceedings of AAATE 2013. IOS Press (2013), doi:10.3233/978-
1-61499-304-9-829

13. Koutkias, V., Kaklanis, N., Votis, K., Tzovaras, D., Maglaveras, N.: An Integrated Seman-
tic Framework Supporting Universal Accessibility to ICT. Universal Access in the Infor-
mation Society. Special Issue: 3rd generation accessibility: Information and Communica-
tion Technologies towards universal access, Springer

 Accessibility through Preferences: Context-Aware Recommender of Settings 235

14. Loitsch, C., Stiegler, A., Strobbe, C., Tzovaras, D., Votis, K., Weber, G., Zimmermann,
G.: Improving Accessibility by Matching User Needs and Preferences. In: Assistive Tech-
nology: From Research to Practice – Proceedings of AAATE 2013. IOS Press (2013),
doi:10.3233/978-1-61499-304-9-1357

15. Melcher, V., Krüger, A., Chalkia, E.: Managing Preferences in the Cloud – Requirements
and UI Design. In: Assistive Technology: From Research to Practice – Proceedings of
AAATE 2013, IOS Press (2013), doi:10.3233/978-1-61499-304-9-1372

16. Clark, C., Basman, A., Markus, K., Zenevich, Y.: A Cloud-Scale Architecture for Inclu-
sion: Cloud4all and GPII. In: Assistive Technology: From Research to Practice – Proceed-
ings of AAATE 2013. IOS Press (2013), doi:10.3233/978-1-61499-304-9-1366

17. Iglesias-Pérez, A., Peinado, I., Chacón, J., Ortega-Moral, M.: Architecture for Adding
Context-Aware Capabilities to Preferences-Oriented User Interfaces. In: Proceedings of
DRT4All, 5th edn. Fundación ONCE, Madrid (2013)

18. Partarakis, N., Doulgeraki, C., Leonidis, A., Antona, M., Stephanidis, C.: User Interface
Adaptation of Web-Based Services on the Semantic Web. In: Stephanidis, C. (ed.) UAHCI
2009, Part II. LNCS, vol. 5615, pp. 711–719. Springer, Heidelberg (2009)

19. Jung, C., Hahn, V.: GUIDE–Adaptive user interfaces for accessible hybrid TV applica-
tions. In: Second W3C Workshop Web & TV (2011)

20. Atkinson, M.T., Bell, M.J., Machin, C.H.C.: Towards Ubiquitous Accessibility: Capabili-
ty-based Profiles and Adaptations, Delivered via the Semantic Web, pp. 2–6

21. Kadouche, Mokhtari, M., Giroux, S., Abdulrazak, B.: Semantic approach for modelling an
assistive environment using description logic, pp. 222–231 (2008)

22. Ponsard, C., Beaujeant, P., Vanderdonckt, J.: Augmenting Accessibility Guidelines with
User Ability Rationales. In: Winckler, M. (ed.) INTERACT 2013, Part I. LNCS, vol. 8117,
pp. 579–586. Springer, Heidelberg (2013)

23. Wassermann, B., Zimmermann, G.: User Profile Matching: A Statistical Approach. In:
CENTRIC, pp. 60–63 (2011)

24. Middleton, S.E., De Roure, D.C., Shadbolt, N.R.: Capturing knowledge of user prefe-
rences: ontologies in recommender systems. In: Proceedings of the 1st International Con-
ference on Knowledge Capture, K-CAP 2001, New York (2001)

25. Serra, G., Iglesias, A., Kalogirou, K., Montalvá, J.: Context-related profile adaptation algo-
rithms, Cloud4all deliverable, p. 52 (2013)

26. Iglesias, A., Peinado, I., Kalogirou, K., Chalkia, E.: Rule sets for the automatic adaptation
of the user profile to context-related features, Cloud4all deliverable, pp. 20–22, pp. 31–41
(2013)

27. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel Methods in Machine Learning. The An-
nals of Statistics 36(3), 1171–1220 (2008)

28. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In:
Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Hei-
delberg (2004)

29. Gomez-Verdejo, V., Martinez-Ramon, M., Arenas-Garcia, J., Lazaro-Gredilla, M., Moli-
na-Bulla, H.: Support Vector Machines With Constraints for Sparsity in the Primal Para-
meters. IEEE Transactions on Neural Networks 22(8), 1269 (2011)

30. Chaudhuri, S., Narasayya, V.: AutoAdmin “what-if” index analysis utility. In: Proceedings
of the 1998 ACM SIGMOD International Conference on Management of Data, SIGMOD
1998, pp. 367–378. ACM, NY (1998)

	Accessibility through Preferences: Context-Aware Recommender of Settings*
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Rule-Based Matchmaker
	3.2 Statistical Matchmaker
	3.3 Context Aware Server

	3.4 Minimatchmaker

	4 Results and Discussion
	References

