
Chapter 17

The Role of Pile Diameter

on Earthquake-Induced Bending

George Mylonakis, Raffaele Di Laora, and Alessandro Mandolini

Abstract Pile foundations in seismic areas should be designed against two simul-

taneous actions arising from kinematic and inertial soil-structure interaction, which

develop as a result of soil deformations in the vicinity of the pile and inertial loads

imposed at the pile head. Due to the distinct nature of these phenomena, variable

resistance patterns develop along the pile, which are affected in a different manner

and extent by structural, seismological and geotechnical characteristics. A theoret-

ical study is presented in this article, which aims at exploring the importance of pile

diameter in resisting these actions. It is demonstrated that (a) for large diameter

piles in soft soils, kinematic interaction dominates over inertial interaction; (b) a

minimum and a maximum admissible diameter can be defined, beyond which a pile

under a restraining cap will inevitably yield at the head i.e., even when highest

material quality and/or amount of reinforcement are employed; (c) an optimal

diameter can be defined that maximizes safety against bending failure. The role

of diameter in seismically-induced bending is investigated for both steel and

concrete piles in homogenous soils as well as soils with stiffness increasing

proportionally with depth. A number of closed-form solutions are presented, by

means of which a number of design issues are discussed.
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17.1 Introduction

An increasing number of research contributions dealing with the behavior of piles

under earthquake action has become available in recent times. The topic started

attracting interest by researchers when theoretical studies (accompanied by a

limited number of post-earthquake investigations) revealed the development of

large bending moments at the head of piles restrained by rigid caps, even in absence

of large soil movements such as those induced by slope instability or liquefaction.

Nevertheless, the interpretation of available evidence – and thus its implementation

in design – has proven to be difficult due to the lack of simple analysis methods to

assess the specific type of pile bending. The simultaneous presence of kinematic

and inertial interaction phenomena (Fig. 17.1), whose effects are difficult to sepa-

rate, adds to the complexity of interpreting such data.

On the other hand, evaluation of kinematic moments is mandatory under certain

conditions according to most modern seismic Codes. For example, Eurocode 8 pre-

scribes that: “bending moments developing due to kinematic interaction shall be
computed only when all of the following conditions occur simultaneously: (1) the
ground profile is of type D, S1 or S2, and contains consecutive layers of sharply
differing stiffness; (2) the zone is of moderate or high seismicity, i.e. the product agS
exceeds 0.10 g; (3) the supported structure is of class III or IV”.

The first to propose a simple method for assessing the kinematic component of

pile bending appear to be Margason (1975) and Margason and Holloway (1977).

These articles can be credited as the first to recognize the importance of pile

diameter (to be denoted in the ensuing by d) and recommend using small diameters

to “conform to soil movements”, though without providing rational analysis

methods. While several subsequent studies investigated the problem (e.g., Kaynia

and Kausel 1991; Kavvadas and Gazetas 1993; Pender 1993; Mylonakis 2001;

Nikolaou et al. 2001; Castelli and Maugeri 2009; de Sanctis et al. 2010; Sica

et al. 2011; Di Laora et al. 2012; Anoyatis et al. 2013; Kampitsis et al. 2013),

only a handful of research efforts focused on the effect of pile diameter – mostly for

bending in the vicinity of deep interfaces separating soil layers of different stiffness

(Mylonakis 2001; Saitoh 2005).

Recently, Di Laora et al. (2013) explored the role of pile diameter in resisting

seismic loads at the pile head under a restraining cap, with reference to steel piles in

homogeneous soil. Identified key issues include a d4 dependence of kinematic

bending moment at the pile head, as opposed to a mere d3 dependence of moment

capacity. The first dependence results from pile and soil curvatures being approx-

imately equal at the pile head, while the second stems from fundamental strength-

of-materials theory. The discrepancy in the exponents suggests that moment

demand on the pile increases faster with diameter than moment capacity, thus

making yielding at the head unavoidable beyond a certain size (assuming pile is

always a flexural element). The value of the maximum diameter was found to

depend mainly on peak ground acceleration, soil stiffness and factor of safety

against gravity loading. Interestingly, this behavior is not encountered in the
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vicinity of deep interfaces – which is the topic most investigated in the literature

(Mylonakis 2001; Maiorano et al. 2009; Dezi et al. 2010), since in those regions

capacity and demand increase with the same power of pile diameter (d3). Di Laora
et al. (2013) also established that combining kinematic and inertial moment at the

pile head leads to a limited range of admissible diameters, with the upper bound

governed by kinematic action, and the lower one by inertial action.

Proceeding along these lines, the work at hand has the following main objectives:

(i) to investigate the relative importance of kinematic and inertial components of

seismic demand, and provide a number of closed-form expressions for kinematic/

inertial moment demand on piles (ii) to inspect the role of pile diameter on the seismic

performance of both steel and concrete piles for the soil types shown in Fig. 17.2; (iii)

to provide a number of closed-form solutions for the limit diameters defining the

admissible ranges; (iv) to assess the practical significance of the phenomenon through

pertinent numerical studies encompassing a wide range of parameters; (v) to define an

optimal diameter which maximizes safety against bending failure.

The study employs the following main assumptions: (a) foundation is designed

to remain elastic during earthquake ground shaking (i.e., the force modification

coefficients are set equal to one); (b) pile is long and can be idealized as a flexural

beam that behaves linearly up to the point of yielding; (c) soil restraining action can

be modeled using a bed of linear or equivalent-linear Winkler springs, uniformly

distributed along the pile axis; (d) pile axial bearing capacity is controlled by both

shaft and tip action; (e) perfect contact (i.e., no gap and slippage) exists between

pile and soil; (f) group effects on bending at the pile head are minor and can be

ignored from a first-order analysis viewpoint. In addition, for the sake of simplicity

partial safety factors are not explicitly incorporated in the analysis; a global safety

factor is employed instead. It is worth mentioning that the approach in (a) has been

questioned in recent years. Under-designing foundations, however, although con-

ceptually promising, is by no means an established design approach and will not be

further discussed in this work. Also, the Winkler assumption in (c) is not essential

for the subsequent analysis (a wealth of results from numerical continuum solutions

do exist as well), yet it is adopted here since it yields sufficiently accurate pre-

dictions for the cases examined and allows simple closed-form expressions to be

obtained.

Fig. 17.1 Kinematic and

inertial loading of pile

foundations. (a) Kinematic

loading (b) inertial loading
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17.2 Kinematic Versus Inertial Moment Demand

17.2.1 Kinematic Bending at Pile Head

In recent articles, de Sanctis et al. (2010) and Di Laora et al. (2013) showed that a

long fixed-head pile in homogeneous soil experiences a curvature at the top, (1/R)s,
which is approximately equal to soil curvature at the same elevation and, thereby,

can be computed as:

Mkin ¼ EpIp 1=Rð Þp ¼ EpIp 1=Rð Þs ¼ EpIp
asρs
Gs

ð17:1Þ

where (1/R)p, Ep and Ip are curvature, Young’s modulus and cross-sectional

moment of inertia of the pile (for a circular cross section, Ip¼ π d4/64), (1/R)p
and as are the soil curvature and horizontal acceleration at soil surface respectively,
and Gs¼Es/2(1 + νs) is the soil shear modulus, νs being the corresponding Poisson

ratio. For layered soil and shallow interfaces located within a few pile diameters

from the surface, (17.2) provides only a conservative estimate of kinematic bending

at the pile head.

Using rigorous elastodynamic Finite Element analyses, Di Laora and Mandolini

(2011) derived a fitting formula for kinematic bending in soils with stiffness

varying proportionally with depth:

Mkin ¼ 1:36asρs
Ep

Es

I

� �4
5

1þ νsð Þ ð17:2Þ

where Es is the gradient of soil Young’s modulus with respect to depth (Fig. 17.2).

Evidently, kinematic moment at the pile head increases with pile bending stiffness

and surface acceleration, and decreases with soil stiffness.

17.2.2 Inertial Bending at Pile head

Inertial forces transmitted to piles from an oscillating superstructure, are inherently

associated with structural mass. To relate this mass to the geotechnical parameters

involved in the problem at hand, it is convenient to assume that the weight carried

by each individual pile is a fraction of the pile bearing capacity against axial load,

WP. Considering a long floating cylindrical pile in fine-grained soil and neglecting

the contribution of base resistance, Wp can be expressed in terms of geometry, soil

properties and a global safety factor (Viggiani et al. 2011) as

Wp ¼ 1

SF
π αLd Su ð17:3Þ
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where d and L are the diameter and the length of the pile, Su is the undrained shear

strength of the soil material, α the pile-soil adhesion coefficient (typically ranging

from 0.3 to 1 depending on the value of undrained shear strength Su).
Assuming that the lateral load imposed at the pile head is proportional to the

corresponding axial gravitational load Wp, it is straightforward to show from

Winkler theory that the maximum seismic moment developing under a rigid cap

for soils having constant stiffness near the surface is:

Min ¼ 1

4

π qI
δ

� �1
4 as

g

� �
Ep

Es

� �1
4

Sa Wp d ð17:4Þ

δ being the Winkler stiffness parameter (which varies between approximately 1–2

for inertial loading – Roesset 1980; Dobry et al. 1982, Syngros 2004), qI¼ 1�
(1� 2 t/d )4 a dimensionless geometric factor accounting for wall thickness t of a
hollow pile, Sa a dimensionless spectral amplification parameter, and g the accel-

eration of gravity.

The inertial moment at the pile head for soils with stiffness varying proportion-

ally with depth may be calculated according to the formula provided by Reese and

Fig. 17.2 Soil profiles considered in this study. (a) Homogeneous profile (b) two-layer profile (c)

inhomogeneous profile
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Matlock (1956), based onWinkler considerations, which can be expressed using the

notation adopted in this paper as

Min ¼ 0:93
SaWpas

g

qIEpI

δEs

� �1
5

ð17:5Þ

17.2.3 Kinematic Versus Inertial Bending Moments

In light of the above solutions, it is straightforward to derive the ratio of kinematic

to inertial bending moments under the same seismic conditions. For a homogeneous

soil profile, it is possible to calculate the ratio between the two seismic demands by

dividing (17.4) and (17.5). For instance, considering a solid concrete pile (qI¼ 1)

and undrained conditions (νs¼ 0.5), one obtains:

Mkin

Min
¼ 0:2

Ep

Es

� �3
4 Es

Su

� �
ρs gSF

Es Sa αL
d2 ð17:6Þ

The above expression reveals that: (1) the relative magnitudes of kinematic and

inertial bending is independent of ground acceleration. Thus, the conditions

concerning importance of kinematic loads based on seismicity by the Eurocode

seems to be unjustified; (2) Soil stiffness plays a major role on the relative size of

the two seismic demands, with the contribution of the kinematic component

increasing with decreasing soil stiffness; (3) Kinematic over inertial bending

moment ratio increases with the square of pile diameter.

Equation 17.6 is depicted in Fig. 17.3 as function of soil Young’s modulus for

different values of spectral amplification Sa and different pile lengths and diame-

ters. Evidently, kinematic over inertial bending moment ratio decreases with

increasing soil stiffness and with decreasing pile diameter, and decreases with

increasing pile length. This must be attributed to the fact that while kinematic

bending of flexible piles is independent of pile length, inertial action is proportional

to pile length under constant safety factor for gravitational action.

Similar trends are observed for piles in soils with stiffness proportional to depth.

Equations 17.2 and 17.5 can be divided to provide the corresponding kinematic

over inertial moment ratio:

Mkin

Min
¼ 0:24

Ep

Es

� �3
5 Es

Su

� �
ρs gSF

Es Sa αL
2
d

7
5 ð17:7Þ

Compared to the homogeneous case, pile diameter exerts a weaker influence (d1.4

over d2 for the previous case), whereas pile length plays a more important role (L�2

over L�1 dependence).

Equation 17.7 is illustrated in Fig. 17.4 as function of soil Young’s modulus

gradient for different values of spectral amplification, pile diameter and pile length.
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Fig. 17.3 Kinematic/inertial moment ratio for a solid concrete pile in homogeneous soil, as function

of soil stiffness, for different values of spectral amplification, pile diameter and pile length

Fig. 17.4 Kinematic/inertial moment ratio for a solid concrete pile in inhomogeneous soil, as

function of soil stiffness gradient, for different values of spectral amplification, pile diameter and

pile length
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17.3 Pile Size Limitations Under Seismic Loads

The seismic performance of piles under combined kinematic and inertial loading

can be investigated by comparing the overall bending demand with the

corresponding yield moment of the cross section.

With reference to a cylindrical hollow steel pile, the cross-sectional yield

moment in the context of strength-of-materials theory can be computed from the

well-known formula

My ¼ EpIpεy
2

d
1� Wp

f yA

 !
ð17:8Þ

εy and fy being the uniaxial yield strain and the corresponding yield stress of the

steel material, and A the cross-sectional area. Note that for simplicity, no partial

factors accounting for material strength have been included in the calculation.

Note that for a pile in layered soil, another critical location for the assessment of

seismic demand is interface separating two consecutive layers of sharply differing

stiffness. Considering deep interfaces located below the active pile length, kine-

matic bending may be evaluated from the approximate formula of Di Laora

et al. (2012):

Mint
kin ¼ EpIp

2

d
εp=γ1
� �

γ1 ’ EpIp
1:86

d
γ1

Ep

Es1

� ��1
2 Es2

Es1

� �1
4

� 1

 !1
2

2
4

3
5 ð17:9Þ

where γ1 is the free-field soil shear strain at interface level in the first layer, εp/γ1 the
strain transmissibility parameter between pile and soil (Mylonakis 2001).

Clearly bending in such locations is essentially proportional to d3. As section
capacity increases with the same power of diameter, interface bending does not

govern the selection of pile diameter.

17.3.1 Steel Piles in Homogeneous Soils

For friction piles in soft soil, axial stresses at the pile top are typically well below

the structural capacity (i.e., the term Wp/fyA is small) so that section capacity is

practically proportional to d3. As kinematic demand is proportional to the fourth

power of pile diameter (d4), it follows that kinematic action prevails over section

capacity with increasing pile size. This suggests that there exists a maximum
diameter beyond which the pile is not able to withstand the kinematically imposed

bending moments in an elastic manner. On the other hand, inertial action increases

in proportion to d2 and, therefore, withstanding this type of bending requires a
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minimum diameter – the opposite to the previous behaviour (Fig. 17.5). Both cases

are investigated below.

17.3.1.1 Kinematic Loading

Setting the kinematic demand moment in (17.1) equal to the yield moment in (17.8)

and considering the axial load Wp given by (17.3), one obtains the following

dimensionless equation for pile size (Di Laora et al. 2013)

1

2εy

asL

V2
s

d

L

� �2

� d

L

� �
þ 4α

qA SF

Su
f y

¼ 0 ð17:10Þ

where qA ¼1� (1� 2 t/d)2 is a dimensionless geometric factor accounting for wall

thickness, t, of a hollow pile.

Equation 17.10 admits the pair of solutions

dkin ¼ 2εy
V2
s

as

"
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 2α

εy qA SF

V2
s

asL

� ��1
Su
f y

 !#vuut ð17:11Þ

the largest of which, corresponding to the (+) sign, defines the critical (maximum)

pile diameter to withstand kinematic action.

Fig. 17.5 Kinematic and

inertial bending moments

over corresponding capacity

as function of pile diameter
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If shear wave velocity under the square root is expressed in terms of soil Young’s

modulus Es and mass density ρs [νs¼ 0.5!Es¼ 2(1+ νs)ρsVs
2¼ 3ρsVs

2], the above

solution takes the form:

dkin ¼ 2εy
V2
s

as

1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� 6 ρs αasL

εy qA SF

Es

Su
f y

� �
� 1

s" #
ð17:12Þ

which has the advantage that the term in brackets does not depend on absolute soil

stiffness and strength, but only on their ratio, Es/Su.
In the ideal case of a pile carrying zero axial load (which implies infinite safety

against bearing capacity failure due to gravity; SF!1), the term in brackets in

(17.11) and (17.12) tends to unity and the solution reduces to the simple expression:

dkin ¼ 2εy
V2
s

as
ð17:13Þ

which can be obtained directly from (17.1) and (17.8).

17.3.1.2 Inertial Loading

Setting the right sides of (17.4) and (17.8) equal and employing (17.3), the follow-

ing solution is obtained:

din ¼ 8α

SF
L

Sa
εy

π

δ

� �1
4 as

g

� �
qI
Ep

Es

� ��3
4 Su

Es

� �
þ 1

2qA

Su
f y

 !" #
ð17:14Þ

Equation 17.14 defines a critical (minimum) pile diameter to withstand inertial

action. In the limit case of zero ground acceleration (as¼ 0), (17.14) degenerates to

din ¼ 4αL

SFqA

Su
f y

 !
ð17:15Þ

corresponding to the minimum diameter required to resist the gravitational loadWp.

The same result can be obtained by setting as¼ 0 in (17.10).
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17.3.1.3 Combined Kinematic and Inertial Loading

For the more realistic case of simultaneous kinematic and inertial loading, (17.1)

and (17.4) can be combined for the overall flexural earthquake demand at the pile

head through the simplified superposition formula

Mtot ¼ Mkin þ ekiMin ð17:16Þ

where subscript tot stands for “total” and eki is a correlation coefficient accounting

for the lack of simultaneity in the occurrence of maximum kinematic and inertial

actions. For simplicity and as a first approximation, eki¼ 1 is assumed here.

Setting the total earthquake moment equal to the yield moment in (17.8), one

obtains the second-order algebraic equation for pile size

1

2

asL

V2
s

d

L

� �2

� εy
d

L

� �
þ 4α

qASF

Su
Ep

� �
1þ 2

qA
qI

π qI
δ

� �1
4 as

g

� �
Ep

Es

� �1
4

Sa

" #
¼ 0

ð17:17Þ

Equation 17.17 can be solved analytically for the pair of pile diameters

d1, 2 ¼ εyV
2
s

as
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 24αρs asL

qA f y εy SF

Su
Es

� �
1þ 2

qA
qI

π qI
δ

� �1
4 as

g

� �
Ep

Es

� �1
4

Sa

" #vuut
8<
:

9=
;

ð17:18Þ

which correspond to a minimum value, d1, obtained for the negative sign, and a

maximum value, d2, obtained for the positive sign, respectively. Values between

these two extremes define the range of admissible pile diameters for the conditions

at hand. It will be demonstrated that d1 is always larger than din in (17.14), and d2 is
always smaller than dkin in (17.12) that is, the admissible range of pile diameters is

narrower over the hypothetical case of kinematic and inertial loads acting

independently.

17.3.1.4 Results

A schematic representation of the foregoing developments is depicted in Fig. 17.6,

in terms of pile diameter versus soil stiffness. Diameters lying inside the hatched

zone defined by (17.18) are admissible, whereas diameters lying outside the zone

are not. Evidently, upper and lower bounds are sensitive to soil stiffness, Es leading

to a wider range of admissible diameters as soil becomes progressively stiffer.

Naturally, the curves for purely kinematic and purely inertial action (shown by

continuous curves) in (17.12) and (17.14) bound the admissible range from above
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and below, respectively, suggesting that kinematic and inertial moments interact

detrimentally for pile safety. Whereas this effect becomes aggravated by the

simplifying assumption of simultaneous maxima in kinematic and inertial response

(eki in Eq. (17.16) equal to 1), the same pattern would be obtained for any linear

combination of individual moments involving positive multipliers eki.
It is worth mentioning that there is always a minimum soil stiffness for which the

admissible range collapses to a single point corresponding to a unique admissible

diameter (i.e., d1¼ d2). This diameter can be obtained by eliminating the term in

square root in (17.18), to get

d1 ¼ d2 ¼ εy V
2
s

as
ð17:19Þ

which, remarkably, is equal to exactly one half of the value obtained for kinematic

action alone under zero axial load (17.13). It is noteworthy that this diameter is

independent of pile Young’s modulus and wall thickness. Evidently, for stiffness

values smaller than critical, no real-valued pile diameters can be predicted from

(17.18), which suggests that it is impossible for the pile head to stay elastic under

the imposed surface acceleration as.
With reference to a hollow steel pile, numerical results for the range of admis-

sible diameters predicted by (17.18) is plotted in Fig. 17.7, as function of soil

stiffness Es, for different values of surface seismic acceleration (as/g) and pile

length L. The detrimental effect resulting from the particular load combination

becomes gradually more pronounced with increasing pile length and seismic

acceleration, as higher inertial loads are induced at the pile head. Note that for

piles in very soft soil such as peat, having Es less than 10 MPa, maximum pile

diameter may be less than 1m, thereby severely restricting design options.

Fig. 17.6 Range of

admissible diameters for

different types of loading
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17.3.2 Steel Piles in Inhomogeneous Soil

Kinematic and inertial demands for inhomogeneous soils in (17.2) and (17.5) may

be expressed for undrained conditions, through trivial algebraic manipulation, as:

Mkin ¼ 0:185asρs
qIEp

Es

� �4
5

d
16
5 ð17:20Þ

Min ¼ 1:6
Sa LαSu

SF

as
g

� �
qIEp

δEs

� �1
5

d
9
5 ð17:21Þ

Equation 17.20 reveals that the effect of pile diameter on peak kinematic

bending moment is weaker than in homogeneous soil, as the corresponding expo-

nent is 3.2 (¼16/5) instead of 4, due to Ip in (17.1). This can be explained

considering that an increase in pile diameter corresponds to an increase in pile

active length which, in turn, forces a larger portion of progressively stiffer soil to

control pile curvature at the head.

While the exponent of 3.2 still exceeds the corresponding exponent in capacity

(3 – see 17.8), this is unlikely to create a significant design constraint.

Fig. 17.7 Admissible pile diameters against soil Young’s modulus (Es/Su¼ 500, fy¼ 275 MPa,

Ep¼ 210 GPa, νs¼ 0.5, ρs¼ 1.7 Mg/m3, Sa¼ 2.5, FS¼ 3, t/d¼ 0.015, α¼ 0.7, δ¼ 1.2). Continu-
ous lines represent pure kinematic and inertial actions whereas dashed lines refer to combined

action
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In a similar fashion, (17.21) reveals that the effect of pile diameter on peak

inertial moment is weaker than in homogeneous soils with the power dependence

on d being 1.8 (¼9/5) instead of 2 in (17.4), and thereby size limitation in terms of

minimum diameter will be more critical than in homogeneous soil.

Equating seismic moment demand from (17.20) and (17.21) with section capac-

ity in (17.8), the following dimensionless algebraic equation for pile size is

obtained:

0:185
qIEp

Es L

 !4
5

d
L

� �16
5

� π

64

qIEp εy
as ρs L

0
@

1
A d

L

0
@
1
A

3

þ π

16

qIαSu
qA SFas ρsL

d

L

0
@
1
A

2

þ

þ1:6
Sa αSu
SF γL

qIEp

δEs L

0
@

1
A

1
5

d

L

0
@
1
A

9
5

¼ 0 ð17:22Þ

Due to the intrinsically non-integer nature of the exponents, no exact closed-

form solutions for pile diameter can be derived from (17.22). However, a Newton-

Raphson approximate scheme may be easily employed to obtain the roots (not

shown here) in an iterative manner.

Comparison between size limitations in homogeneous and inhomogeneous soil

is provided in Fig. 17.8, where the ranges of admissible diameters are compared for

the two cases. As can be noticed, beyond a certain diameter the ratio of demand

over capacity for the inhomogeneous case (solid line) becomes nearly constant.

Fig. 17.8 Kinematic, inertial and combined moment vs. capacity for a homogeneous and an

inhomogeneous soil profile. In both graphs, as/g¼ 0.35, Es/Su¼ 500, fy¼ 275 MPa, Ep¼ 210 GPa,

νs¼ 0.5, ρs¼ 1.7 Mg/m3, Sa¼ 2.5, FS¼ 3, t/d¼ 0.015, α¼ 0.5, L¼ 15 m, Es ¼ 2 MPa/m, Es¼ Es

L/2¼ 15 MPa
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This, however, does not indicate an overall weaker influence of kinematic interac-

tion on size limits, as minimum diameter is strongly affected by kinematic demand.

In addition, the graphs indicate that, contrary to common perception, kinematic

demand is higher than inertial demand starting from relatively small pile diameters.

To further explore the role of pile size, Fig. 17.9 depicts the bounds of the

admissible diameter regions for different values of problem parameters. As antic-

ipated, no controlling maximum diameter exists, so that the upper bound consists of

a nearly vertical line inEs – d plane. Pile size limitation thus reduces to establishing

a minimum diameter, which increases with increasing soil resistance due to the

larger mass carried by the pile under the assumption of a constant SF.
Figure 17.9a explores the role of design acceleration on pile size. Understand-

ably, the admissible region shrinks with increasing (as/g), as the latter affects both
inertial and kinematic loading, and moves towards larger diameters. It is noted that

for cases of moderate to strong seismicity (i.e., as/g¼ 0.25–0.35) and common

values of design spectral amplification (Sa¼ 2.5), piles in soft clay should possess

very high diameters (of the order of 2 m) to resist seismic loads without yielding at

the head. This result alone might explain the considerable number of failures at the

pile head observed in post-earthquake investigations around the world.

When a preliminary design carried out by axial bearing capacity considerations

does not satisfy seismic structural requirements, a solution is to decrease the weight

carried by the individual piles by increasing the safety factor SF. The influence of

Fig. 17.9 Admissible pile diameters for a tubular steel pile in soil with stiffness proportional to

depth. In all graphs, except specifically otherwise indicated, as/g¼ 0.25, Es/Su¼ 500, fy¼ 355 MPa,

Ep¼ 210 GPa, νs¼ 0.5, ρs¼ 1.7 Mg/m3, Sa¼ 2.5, FS¼ 3, t/d¼ 0.015, α¼ 0.5, L ¼ 30 m
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SF on seismic performance is illustrated in Fig. 17.9b, where the minimum diam-

eter decreases with increasing SF. Nevertheless, it should be kept in mind that

increasing the safety factor against axial bearing capacity leads to an increase in

foundation cost over the original design. Studying this aspect involves additional

factors which lie beyond the scope of this work.

In Fig. 17.9c, d the role of section capacity on admissible diameters is examined.

Figure 17.9c indicates that lowering the wall thickness may impose a significant

restriction on the size of the admissible region, whereas the choice of material

strength (Fig. 17.9d) seems to be less important.

17.3.3 Concrete Piles

The behavior of concrete piles is fundamentally different from that of steel piles, as:

(1) the moment of inertia of the pile cross section is typically higher; (2) the

material has negligible tensile strength, thereby moment capacity relies on steel

reinforcement. The impact of these differences on the phenomena at hand is

examined below.

In the same spirit as before, critical diameters may be assessed by equating

capacity (Cosenza et al. 2011), and demand obtained by summing up the contribu-

tions of kinematic and inertial interaction, as shown in the foregoing.

As an example, numerical results for concrete piles in soil with stiffness varying

linearly with depth are depicted in Fig. 17.10. This case leads to the narrowest

regions of admissible diameters compared to those examined earlier. As in the case

of hollow steel piles, maximum diameter in soils with stiffness varying proportion-

ally with depth is not particularly important, as the curves tend to be vertical at the

left side of the graphs. On the other hand, kinematic interaction has a profound role

in increasing the minimum admissible diameter. Like in the other cases, concrete

and steel strengths are of minor importance (Fig. 17.10c, d). On the contrary,

seismicity and geometrical parameters (Fig. 17.10a, b) have a considerable effect

in controlling the minimum admissible diameter.

A comparison among the four combinations of sections and soil profiles exam-

ined here is provided in Fig. 17.11, where admissible regions are plotted for steel

and concrete piles, embedded in homogeneous and linear soil profiles. It is noted

that curves corresponding to linearly-varying soil stiffness are somehow rotated

with respect to the homogeneous case, due to the different importance of pile

diameter in kinematic bending. As already mentioned, maximum diameter is of

concern only for homogeneous and very soft inhomogeneous soil, while in all other

cases a minimum diameter is of the main concern which may reach large values due

to the detrimental interplay of kinematic and inertial components.
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Fig. 17.10 Admissible pile diameters for a solid concrete pile in soil with stiffness proportional to

depth. In all graphs, except specifically otherwise indicated, as/g¼ 0.25, Es/Su¼ 500, Ep¼ 30 GPa,

νs¼ 0.5, ρs¼ 1.7 Mg/m3, Sa¼ 1.5, FS¼ 3, As/Ac¼ 0.015, fck¼ 25 MPa, fyk¼ 450 MPa, c¼ 5 cm,

α¼ 0.5, L¼ 30 m

Fig. 17.11 Admissible diameters for steel and concrete piles in homogeneous and inhomoge-

neous soil. For all cases, as/g¼ 0.25, Es/Su¼ 500, fy (steel)¼ 355 MPa, fyk (concrete

reinforcement)¼ 450 MPa, fck¼ 25 MPa, Ep¼ 30 GPa or 210 GPa (for concrete and steel,

respectively), νs¼ 0.5, ρs¼ 1.7 Mg/m3, Sa¼ 2.5, FS¼ 3, t/d¼As/Ac ¼0.015, α¼ 0.5, L¼ 25 m
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17.4 Optimal Pile Diameter

It has already been demonstrated that for a given set of seismicity, geotechnical and

structural properties, a pile possesses a limited range of admissible diameters. This

means that outside this range, a pile will yield (bending safety factor FSb¼Mrd/

(Mkin +Min)< 1), whereas inside the range it will stay elastic (FSb >1). Naturally,

the limits of the range correspond to FS¼ 1. It can be deduced that there exists a

particular diameter, falling within the admissible range, for which bending safety

factor is maximum, and thereby it represents an optimum choice from a safety

viewpoint.

To derive analytical expressions for the specific diameter for a steel pile in

homogeneous soil, we recall that the expressions of moment capacity, kinematic

moment and inertial moment can be cast in the simple form:

My ¼ A1 � d3 � A2 � d2
Mkin ¼ A3 � d4
Min ¼ A4 � d2

ð17:23a; b; cÞ

A1 to A4 being parameters that can be readily indentified from the foregoing

solutions.

Neglecting the contribution of axial load on section capacity (i.e., setting

A2¼ 0), the reciprocal of bending safety factor assumes the form:

1

FSb
¼ Mkin þMin

My
¼ 1

A1

A3 � d þ A4 � 1
d

� �
ð17:24Þ

Differentiating this expression with respect to diameter, one obtains:

d 1
FSb

� �
dd

¼ 1

A1

A3 � A4 � 1
d2

� �
ð17:25Þ

The optimal diameter dopt is thereby equal to:

dopt ¼
ffiffiffiffiffi
A4

A3

r
ð17:26Þ

In terms of physical parameters, we obtain the following expression:

dopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

3

πqIEp

δEs

� �1
4 Sa
SF

Su
Es

� �
αL

Epρg

� �s
ð17:27Þ

As evident from (17.26) and (17.27) optimal diameter, remarkably, does not

depend on seismicity and section capacity.
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Furthermore, from (17.23b, c) one obtains:

Mkin

Min

				
d¼dopt

¼ 1 ð17:28Þ

which means that a steel pile sized at d¼ dopt balances the kinematic and inertial

components of total moment demand.

Figure 17.12 provides a graphical representation of the optimal diameter, in the

context of the regions of admissible diameters described earliear, obtained both in

an approximate and an exact manner through (17.8) and (17.23a). Evidently, the

optimal diameter curve intersects the approximate admissible region at point

(Es,crit; dcrit). For stiffer soils, optimal diameter naturally falls within the admissible

region and bending safety factor is larger than one. For stiffness smaller than

critical, optimal diameter still exists, in the sense that it defines a maximum safety

factor below 1. On the other hand, critical diameter possesses the following

properties: (a) it leads to a unit safety factor and (b) it balances kinematic and

inertial moments. Moreover, the optimal diameter passes close to the critical point

predicted from the exact analysis, so that above observations hold regardless of the

method employed to evaluate the admissible regions. While, actual design choices

for d will naturally involve additional considerations, it is expected that they will lie
in the region between the maximum safety curve and the minimum admissible

diameter.

Fig. 17.12 Optimal pile diameter and admissible regions for a hollow steel pile in homogeneous

soil. (as/g¼ 0.4, Es/Su¼ 500, fy¼ 275 MPa, Ep¼ 210 GPa, νs¼ 0.5, ρs¼ 1.7 Mg/m3, Sa¼ 2.5,

FS¼ 3, t/d¼ 0.015, α¼ 0.7, L¼ 30 m)
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The optimal diameter may also be derived analytically for a steel pile in

inhomogeneous soil. To this end, kinematic and inertial demand may be expressed

as:

Mkin ¼ 0:185asρs
qIEp

Es

� �4
5

d
16
5 ¼ B1d

16
5 ð17:29a; bÞ

Min ¼ 1:6
Sa LαSu

SF

as
g

� �
qIEp

δEs

� �1
5

d
9
5 ¼ B2d

9
5

In the same vein, the reciprocal of FSb is:

1

FSb
¼ Mkin þMin

My
¼ 1

A1

B1 � d1
5 þ B2 � d�6

5

� �
ð17:30Þ

The optimal diameter dopt is obtained by differentiating the above expression

with respect to d, to get

dopt ¼ 6
B2

B1

� �5
7

ð17:31Þ

Contrary to the previous case, optimal diameter for the particular conditions

does not balance kinematic and inertial demands. The corresponding ‘equal

demand’ diameter is obtained from (17.29a, b) as:

dbal ¼ B2

B1

� �5
7

¼ 0:278 � dopt ð17:32Þ

Figure 17.13 depicts optimal and equal seismic demand diameters for inhomo-

geneous soil together with rigorous admissible regions corresponding to different

material strengths. As anticipated, these diameters are insensitive to seismicity and

material properties, so that the curves in the figure pertain to all regions.

17.5 Discussion

It has been shown that, contrary to perceptions reflected in seismic Codes, kine-

matic bending at the pile head may not be negligible compared to the overall

seismic demand, in soft soils and large pile diameters regardless of seismic inten-

sity. In certain cases, kinematic interaction may even be higher than the inertial

counterpart.

In addition, the simultaneous action of kinematic and inertial components of pile

bending leads to a limited range of admissible pile diameters to resist seismic
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action. For homogeneous soil, kinematic interaction requires a minimum admissi-

ble diameter whereas inertial interaction leads to a corresponding maximum. As

these actions interact detrimentally with each other, the range is reduced over the

ideal case of kinematic and inertial loads acting independently.

In very soft deposits, if soil stiffness close to the surface (i.e., within a depth of

few pile diameters) may be assumed to be nearly constant, kinematic interaction has

a dominant influence, thus leading to small maximum admissible diameter. In these

cases, inertial interaction leads to smaller pile bending compared to kinematic

interaction, yet may have an important effect in reducing the maximum admissible

diameter obtained solely for kinematic loading. In the context of the assumptions

adopted in this work, pile length has a profound effect in reducing the admissible

pile diameter and increasing critical soil stiffness below which no pile diameter is

admissible, so that modifications in design coed provisions might be needed.

For stiffer soils and especially for conditions involving linearly-varying stiffness

with depth, the limitation in pile size essentially reduces to establishing a minimum

diameter. In several cases, safety factors commonly used in classical geotechnical

design for axial bearing capacity do not guarantee safety for seismic action. To

overcome the problem, a solution could be to increase the number of piles, thus to

make the safety factor against gravitational action larger. An alternative is to

increase the capacity of the pile cross section by increasing wall thickness or

reinforcement. On the contrary, increasing material strength will not substantially

improve performance. In other words, for a given design acceleration, the geotech-

nical and geometrical properties appear to be more important than the structural

properties in controlling pile safety. It is worth stressing that these remedial actions

may increase foundation cost.

Fig. 17.13 Optimal pile diameter and admissible regions for a hollow steel pile and an inhomo-

geneous soil profile. (as/g¼ 0.25, Es/Su¼ 500, Ep¼ 210 GPa, νs¼ 0.5, ρs¼ 1.7 Mg/m3, Sa¼ 1,

FS¼ 3, t/d¼ 0.015, α¼ 0.7, L¼ 30 m)
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It was also demonstrated that among all admissible diameters for a specific set of

problem parameters, there always exists an optimal value that maximizes safety

against bending failure. This diameter could be of guidance in designing piles in

seismically prone areas. On the other hand, the diameter that minimizes foundation

cost requires taking into account additional parameters (including cost of materials

and construction methods) that lie beyond the scope of this work.

17.6 Conclusions

Kinematic and inertial interaction between a pile and the surrounding soil are of

different nature and, thereby, are affected by pile size in a different manner. In

layered soil, bending at deep interfaces is not affected by pile size, at least from a

first-order analysis viewpoint, as seismic demand and section capacity increase with

the same power of diameter. On the other hand, with reference to a pile head under a

restraining cap, it was shown that kinematic bending dominates over inertial

bending for large-diameter piles in soft soil regardless of variation of soil stiffness

with depth and, therefore, even in conditions for which Codes do not require

assessment of kinematic action.

In addition, (a) kinematic interaction provides a maximum diameter beyond

which the pile yields, and (b) inertial interaction provides a corresponding mini-

mum diameter. The simultaneous presence of these actions leads to a range of

admissible diameters which is narrower than that obtained for kinematic and

inertial actions considered independently.

The following general conclusions were drawn from this study:

1. Concrete piles possess a narrower range of admissible diameters to withstand

seismic action over hollow steel piles. This can be attributed to the higher

bending stiffness of the concrete pile cross-section (which attracts higher kine-

matic moments), as well as the inability of the concrete material to withstand

tension.

2. For soft soils of constant stiffness with depth, kinematic interaction dominates

seismic demand. As a result, admissible pile sizes are essentially overbounded

by a critical diameter which in some cases may be quite small (of the order of

1 m) and, hence, it may affect design. Under these circumstances, adding more

piles or increasing pile length would not improve safety, as these actions will not

affect kinematic demand.

3. In stiffer/stronger soils, inertial interaction is dominant due to the heavier loads

carried by the pile. This yields a minimum admissible pile diameter which, in

areas of moderate to high seismicity, may be quite large (of the order of 1 m or

so).

4. Stiffness varying proportionally with depth essentially enforces only a lower

bound in pile diameter; this may be rather large (above 2 m) especially for high

stiffness gradients. Note that the absence of an upper limit is not due to weak
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kinematic demand (which can be quite large), but due to a lack of dependence of

kinematic moment on pile diameter.

5. The range of admissible diameters decreases with increasing ground accelera-

tion, spectral amplification, soil strength and pile length, whereas it increases

with increasing soil stiffness, pile safety factor and amount of reinforcement

(or wall thickness for hollow piles). On the other hand, pile material strength

plays a minor role in controlling pile size.

6. There always exists a critical soil stiffness or a critical stiffness gradient below

which no pile diameter is admissible for a given ground acceleration. Below the

particular threshold, a fixed-head flexible pile cannot remain elastic regardless of

diameter or material strength.

7. There always exists an optimal diameter that maximizes safety against bending

failure. Analytical expressions for steel piles, embedded in both in homogeneous

and inhomogeneous soils, have been presented, which reveal that optimal

diameter is independent of seismicity and section material properties.

It has to be stressed that the work at hand deals exclusively with the role of pile

diameter in the seismic behaviour of piles themselves. The important complemen-

tary topic of the role of pile size in reducing seismic forces in the superstructure

through kinematic filtering of the seismic waves is addressed elsewhere (Di Laora

and de Sanctis 2013).

Despite the simplified nature of some of the assumptions adopted in this work,

issues of practical importance related to pile design in seismic areas were quanti-

tatively addressed. Nevertheless, some of the conclusions may require revision in

presence of strong nonlinearities such as those associated with high-amplitude

earthquake shaking, soil liquefaction and pile buckling. Additional research is

required to address issues of this kind.
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