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Methods for Testing Immunological
Factors

In Vitro Methods

Inhibition of Histamine Release from
Mast Cells

Purpose and Rationale
Hypersensitivity reactions can be elicited by var-
ious factors: either immunologically induced,
i.e., allergic reactions to natural or synthetic
compounds mediated by IgE, or non-
immunologically induced, i.e., activation of
mediator release from cells through direct contact,
without the induction of, or the mediation through
immune responses. Mediators responsible for
hypersensitivity reactions are released from mast
cells. An important preformedmediator of allergic
reactions found in these cells is histamine. Spe-
cific allergens or the calcium ionophore 48/80
induce release of histamine from mast cells. The
histamine concentration can be determined with
the o-phthalaldehyde reaction.

Procedure

Preparation of Mast Cell Suspension
Wistar rats are decapitated and exsanguinated.
Fifty ml of Hank’s balanced salt solution
(HBSS) is injected into the peritoneal cavity, and
following massage of the body, the abdominal
wall is opened. The fluid containing peritoneal
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cells is collected in a centrifuge tube and
centrifuged at 2,000 rpm. The cells are
resuspended in HBSS. Then the cell suspension
is brought to a final concentration of 105 mast
cells/100 μl.

Test Compound Administration and Induction
of Histamine Release
1 ml test drug (concentration range between 10�4

and 10�8 Mol) is added to the mast cell suspen-
sion (105 cells/100 ml) and the mixture is incu-
bated at 37 �C for 15 min. The cells are made up to
a volume of 3 ml with HBSS, an equal volume of
calcium ionophore (10�6 g/ml), compound 48/80,
or specific allergen is added. The suspension is
incubated at 37 �C for 30 min followed by centri-
fugation at 2,500 rpm.

The Following Control Solutions Are Needed
• Spontaneous histamine release: contains only

mast cells and solutions used to determine the
baseline

• Histamine release: contains mast cells and
solutions and calcium ionophore (10�6 g/ml)

• Test compound control: contains solutions and
test compound to test the compound for native
fluorescence

• Solution control: contains only solutions used
in the test to determine the baseline

Extraction of Histamine
One ml of the top layer is transferred to a tube
containing 300 mg NaCl and 1.25 ml butanol. The
sample is alkalized to extract the histamine into
butanol by adding 1 ml 3 N NaOH. Following
mechanical shaking, the sample is centrifuged for
5 min. One ml of the top layer (butanol) is pipetted
into a 5-ml tube containing 2 ml of n-heptane and
0.4 ml of 0.12 N HCl. The tube is mixed by
inverting it several times. Following separation
into aqueous and organic phases, 0.5 ml of the
aqueous phase is transferred to another tube.

Induction of o-Phthalaldehyde Complexing
Reaction
To each sample, 100 μl 1 N NaOH is added under
constant stirring immediately followed by

administration of 100 μl 0.2 % o-phthalaldehyde
solution. After 2 min, the o-phthalaldehyde
complexing reaction is stopped by addition of
50 μl 3 N HCl.

Determination of Histamine Release
The total sample is transferred to an autosampler
vial, and the histamine concentration is deter-
mined by a fluorescence detector (using excitation
and emission wave lengths of 350 and 450 nm,
respectively).

Evaluation
Percent histamine release (hist. rel.) can be
expressed by the following formula:

Sample hist: rel:� Spontaneous hist: rel:

100% hist: rel: � Spontaneous hist: rel:
� 100

The statistical evaluation is carried out using the
Student’s t-test (comparison of 100 % control to
experimental group).

Critical Assessment of the Method
Disodium cromoglycate has been reported to
inhibit the release of histamine and the degranu-
lation of rat mast cells (Orr and Cox 1969; Orr
et al. 1971; Johnson and Bach 1975; Church and
Young 1983). However, this effect of disodium
cromoglycate and its analogues does not parallel
the clinical efficacy (Kay et al. 1987).

Modifications of the Method
Johnston et al. (1978) studied the increased super-
oxide anion production by immunologically acti-
vated and chemically elicited macrophages.

Flint et al. (1985) found a significant inhibition
of histamine release by disodium cromoglycate in
human mast cells recovered by bronchoalveolar
lavage.

Ali et al. (1985) investigated the histamine
release from rat peritoneal mast cells, human
basophil and neutrophil leukocytes, and mast
cells from mesentery of the lung and heart of rats
and guinea pigs by the skin irritating constituents
thapsigargin and thapsigargicin from the resin of
the umbelliferous plant Thapsia garganica.
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Eady (1986) studied the reactivity of mast cells
in bronchoalveolar lavage fluid of macaques
repeatedly infected with Ascaris suum.

Wells et al. (1986) compared release of hista-
mine, LTC4, and PGD2 from primate
bronchoalveolar mast cells with that of rat perito-
neal mast cells.

The release of β-hexosaminidase from mouse
or rat bone marrow-derived mast cells and from
rat peritoneal mast cells was studied by Broide
et al. (1986).

Peretti et al. (1990) recommended flow
cytometry to investigate mast cell degranulation.
Peptides, including substance P and bradykinin
analogues, release histamine from human skin
mast cells (Lawrence et al. 1989).

Williams et al. (1991) studied the vancomycin-
induced release of histamine from rat peritoneal
mast cells and a rat basophil cell line (RBL-1).

Kase et al. (2009) studied the inhibitory action
of roxithromycin on histamine release in mast
cells and Yazid et al. (2013) provided further
support for antiallergic activity of chromones.

A sensitive colorimetric assay for the release of
tryptase from human lung mast cells in vitro has
been described by Lavens et al. (1993).
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Mitogen-Induced Lymphocyte
Proliferation

Purpose and Rationale
Cultured lymphocytes can be stimulated to a pro-
liferative response and to DNA synthesis by var-
ious mitogens. Measurement of DNA synthesis
can be accomplished by pulse-labeling the culture
with tritiated thymidine (3H-thymidine), a nucle-
oside which is incorporated into the newly

synthesized DNA. Immunomodulating properties
can be detected either by pretreatment of the ani-
mals in vivo or by adding the test drug to the
cultured lymphocytes.

Procedure
Mice of NMRI strain weighing 18–20 g or rats of
Lewis strain weighing 180–200 g are used.

Materials
Sheep red blood cell (SRBC)-specific antigen
and/or the following mitogens:

• Lipopolysaccharide 10–0.1 μg/ml.
• Dextran sulfate 30–7.5 μg/ml.
• Phytohaemagglutinin 0.5–0.12 % stock

solution.
• Concanavalin A 0.5–0.12 μg/ml.
• As standards, levamisole, cyclosporine A,

prednisolone, or leflunomide are used.

Ex Vivo
Animals receive the test compound once a day for
5 days. Thereafter, they are sacrificed, spleens are
removed, and a single cell suspension of 5 � 106

cells/ml is prepared. Mitogens are titrated (four
replicates/group) in 0.1 ml/well and 0.1 ml of the
cell suspension is added. Plates are incubated at
37 �C in 5 % CO2 in air for 48–60 h and for
another 8 h after addition of 0.25 μC 3H-thymi-
dine per well. Cells are harvested on glass fiber
filters, and after drying the degree of radioactivity
is determined using a β-counter.

In Vitro
Animals are sacrificed and their spleens removed.
A single cell suspension of 107 cells/ml is pre-
pared and 0.05 ml placed in each microtiter well
(four replicates/group). Then the test compound
(four times concentrated) is added in 0.05 ml. At
last 0.1 ml of the double concentrated mitogen is
added. Plates are incubated and processed as
described above.

Evaluation
Stimulation index = proliferation ratio according
to positive control, either with or without mean
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spleen weight. Statistical evaluation is carried out
using the Student’s t-test (comparison of positive
and/or negative control to experimental group).
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Inhibition of T Cell Proliferation

Purpose and Rationale
Activation and/or proliferation of clonal
populations of T cells are critical for the initiation
of an antigen-specific immune response. Thus,
inhibition of T cell activation provides a potent
means for suppressing specific immune response.
A number of immunosuppressive agents exhibit
the ability to suppress T cell activation.

Procedure

Purification of Peripheral Blood Leukocytes
and T Cells
Peripheral blood leukocytes from normal donors
are separated on Ficoll-Hypaque (Pharmacia,
Piscataway, NJ). Leukocyte suspensions are
washed in HBSS and are resuspended in RPMI
1664 medium (Gibco, Grand Island, NY)
containing 10 % heat-inactivated fetal bovine
serum and 100 U/ml penicillin/streptomycin. Leu-
kocyte suspensions are resuspended in RPMI 1664
containing 10 % heat-inactivated pooled human
serum. Highly enriched T cells are obtained by
passing leukocytes through a nylon wool column
to remove macrophages and B cells and then
depleted of NK and monocytes with anti-Leu 11 b
(Becton Dickinson,Mountain View, CA) plus com-
plement (Pel-Freez, BrownDeer,WI). These highly
enriched Tcells are approximately 95%CD3+ cells,
the remaining cells being B lymphocytes.

Mixed Lymphocyte Reaction
Peripheral blood leukocytes are incubated at
2 � 105/well with equal numbers of gamma-
irradiated (3,000 rads) allogenic peripheral blood
leukocytes and various concentrations of test
compounds. Assays are performed in triplicate in
96-well, U-bottom plates. After 6 days of
coculture, the cells are pulsed for 6 h with 1 μC
of [3H]thymidine per well. [3H]Thymidine incor-
poration is then measured by scintillation
counting. Data are presented as
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% inhibition ¼ CPMexpt � CPMbckgrd

CPMctrl � CPMbckgrd

� 100

where CPMexpt is mean counts per min of exper-
imental cultures; CPMbckgrd is mean counts per
min of background well, unstimulated cultures;
and CPMctrl is mean counts per min of uninhib-
ited, stimulated cultures.

Lymphocyte Stimulation and Proliferation
Peripheral blood leukocytes and isolated T cells
are cultured with anti-CD3 (5 ng/ml) plus PMA
(5 ng/ml), anti-CD28 (1:5,000 dilution) plus PMA
(5 ng/ml), or 100 U/ml rhuIL-2 in RPMI 1644
containing 10 % fetal bovine serum. Peripheral
blood leukocytes or Tcells are cultured at 2 � 105

cell per well in a total volume of 200 μl/well.
Assays are performed in quadruplicate in
96-well, U-bottom plates. [3H]Thymidine (1 μC)
is added to each well after 48 h of coculture, and
after a 20 h pulse of [3H] thymidine, the cells are
harvested, and the amount of [3H]thymidine
uptake is quantitated on a scintillation counter.

ELISA Assays
Supernatants/well (100 ml) are harvested 24 h
after initiation of cultures of peripheral blood leu-
kocytes or T cells stimulated with anti-CD3 or
anti-CD28 plus PMA. IL-2 in the coculture super-
natant is quantitated using a commercially avail-
able IL-2 ELISA kit. All experiments are
performed in duplicate.

IL-2R Assays
The expression of IL-2R on T cells stimulated for
48 h with anti-CD3 or anti-CD28 plus PMA is
determined using FITC-conjugated anti-CD25
mABs (Becton Dickinson, Mountain View, CA).
T cells are washed in HBSS and then stained with
phycoerythrin-conjugated anti-CD3 mAB and
fluorescein-conjugated antiCD25 mAB. The per-
cent of cells coexpressing CD3+ and CD25+ is
determined from 2,000 cells using an EPICS C
flow cytometer (Coulter, Hialeah, FL).

Evaluation
Dose–response curves of inhibition of one-way
mixed lymphocyte reaction and of IL-2 in the

supernatant after stimulation with antiCD3 or
anti-CD28 are established.

Modifications of the Method
Zielinski et al. (1993, 1994) studied the influence
of leflunomide on expression of lymphocyte acti-
vation expression markers (IL-2 and transferrin
receptors) as well as on cell cycle and on IL-2
receptor gene expression.

Calcineurin was found to be a key signaling
enzyme in T lymphocyte activation and the target
of immunosuppressive drugs (Clipstone and
Crabtree 1993).

The viability and function of T lymphocytes
has been explored using different cellular isola-
tion techniques (Klein et al. 2006). A number of
different vehicles have been shown to inhibit T
cell proliferation which include the natural prod-
uct silymarin (Morishima et al. 2010), heavy
metals and polychlorinated biphenyls (Frouin
et al. 2010), alternatively activated macrophages
(Huber et al. 2010), type I interferon (Marshall
et al. 2011), mesenchymal stem cells (Zinocker
and Vaage 2012), and the programmed cell death-
1 receptor (Patsoukis et al. 2015).
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Chemiluminescence in Macrophages

Purpose and Rationale
The stimulation of macrophages by antigen, com-
plement, phorbolesters, etc., leads to elaboration
of O2

� and other oxygen metabolites. Superoxide
ion (O2

�) and other highly reactive oxygen
metabolites (radicals) form the basis for an effi-
cient microbicidal system in vivo. Yet, when these
radicals are released in response to self-antigens,
tissue damage is often the result. Inhibition of this
process can be regarded as a measure for
immunomodulating effects of compounds. The
oxygen metabolites can produce light-emitting
reactions (chemiluminescence), which is measur-
able if amplified with suitable agents, such as the
cyclic hydrazide luminol.

Procedure
NMRI mice weighing 30 g or Sprague–Dawley
rats weighing 250–300 g of either sex are used.

Positive Control
1. Sensitized mice, receiving vehicle
2. Mice, developing an autoimmune disease,

receiving vehicle
3. Rats, developing adjuvant arthritis, receiving

vehicle

Negative Control
1. Mice not sensitized, receiving vehicle
2. Mice, not developing an autoimmune disease,

receiving vehicle
3. Rats without adjuvant arthritis

Materials
• 5 � 108 SRBC (sheep red blood cells)/0.5 ml

0.9 % NaCl solution (for sensitization)
• Phorbolester: Stock solution of 1 mg/ml

phorbolmyristenacetate. This stock solution is
diluted with Hank’s balanced salt solution to a
final concentration of 3.5 μM (working solu-
tion). For the induction of chemiluminescence,
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the working solution is diluted in the test tube
1:4, resulting in a final phorbolester concentra-
tion of 0.875 μM.

• Luminol (5-amino-2,3-dihydro-1,4-
phthalazinedione, Sigma) final concentration
25 μg/ml

Ex Vivo Experiment
Groups of six animals are treated for 6 days orally
or subcutaneously with test compound or the
standard (prednisolone acetate or leflunomide).
They are decapitated and exsanguinated. Macro-
phages are obtained by flushing the peritoneal
cavity with 10 ml saline, containing 250 IU hep-
arin. The cells are pooled, washed several times,
and suspended again at a final concentration of
2 � 106/200 μl.

For measurement in the luminometer, the fol-
lowing mixture is prepared:

200 μl macrophages (2 � 106)
100 μl luminol solution (100 μg/ml)
100 μl phorbolmyristenacetate solution (3.5 μM)

Each sample is mixed thoroughly without the
phorbolmyristenacetate solution, put into the
luminometer, and counted at 2 min intervals for
10 s. The addition of the phorbolester induces the
reaction.

In Vitro Experiment
To 100 μl of macrophage suspension
(2 � 106 cells) is added 100 μl of the solution of
the test compound and incubated for 15 min
at 37 �C.

Then, 100 μl of luminol solution (100 μg/ml)
and 100 μl of the 3.5 μMphorbolester solution are
added and the luminescence measured in the
luminometer.

Evaluation
The time of maximal counts for the positive con-
trol is recorded. For all groups, the ratio of counts
per 10 s is determined at that time, compared to
the positive control counts per 10 s, and the per-
cent change is calculated. For statistical evalua-
tion, the experimental group is compared with the
positive control group using Student’s t-test.

Modifications of the Method
Bird and Giroud (1985) described a technique of
polymorphonuclear leukocyte chemilumines-
cence as a means to detect compounds with
anti-inflammatory activity. Inflammatory poly-
morphonuclear leukocytes were obtained by
injecting rats intrapleurally with 1 ml of a 1 %
solution of calcium pyrophosphate and collection
of the pleural exudate 4 h later. Chemilumines-
cence responses were measured using a Packard
Picolite chemiluminometer and opsonized zymo-
san as the stimulus.

Seeds et al. (1985) found an independent stim-
ulation of membrane potential changes and the
oxidative metabolic burst in polymorphonuclear
leukocytes.

A microtechnique for studying chemilumines-
cence response of phagocytes using whole blood
was described by Selvaraj et al. (1982).

Traykov et al. (1997) investigated the effects of
phenothiazine compounds on activated
macrophage-induced luminal-dependent chemi-
luminescence, and Szliszka et al. (2013) studied
the anti-inflammatory activity of artepillin C, a
constituent of the resinous green propolis. Van
Dyke et al. (2003) explored the use of lucigenin-
based chemiluminescence assay to interrogate
various inflammatory stages.
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PFC (Plaque-Forming Colony) Test
In Vitro

Purpose and Rationale
Identification of antibody-producing cells is
based on the ability of the secreted IgM

antibody to fix complement and thereby lyse
the indicator erythrocytes. Spleen cells or
peripheral blood lymphocytes, previously
incubated with antigen, are mixed with sheep
red blood cells (SRBC). After addition of
complement and incubation, plaques (clear
areas) caused by the lysis of SRBC appear in
the otherwise cloudy layer. Antibody-forming
cells can be detected by the appearance
of plaques. The number of plaques
obtained is proportional to the number of
antibody-producing lymphocytes in the cell
population.

Procedure
NMRI mice weighing 16–18 g or Lewis rats
weighing 180–200 g of either sex are used.

Materials
• Absorbed guinea pig complement
• SRBC stored in Alsever’s solution

Positive Control
Spleen cells incubated with antigen and medium

Negative Control
Spleen cells incubated with medium alone. The
animals are decapitated and the spleens are
removed from the peritoneal cavity. A single cell
suspension of 15 � 106 cells/ml is prepared. For
the induction of PFC, a 0.5 ml splenocyte suspen-
sion is added to 0.5 ml of a suspension of SRBC,
previously washed in medium and diluted to
8 � 106 cells/ml. Thereafter, 1 ml of the solution
of the test compound is added, and the
limbrowells are incubated at 37 �C in a CO2

incubator for 5 days. Per group 3 limbrowells are
set up. On day 5, the three wells of each group are
pooled and washed in medium, and the number of
cells is determined. For each cell pellet, 875 μl of
washed SRBC and 125 μl absorbed guinea pig
complement are added. The suspension is mixed
thoroughly and filled in chambers constructed of
microslides. The chambers are placed in the incu-
bator at 37 �C for 90–120 min. The plaque-
forming colonies are counted immediately after
incubation.
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Evaluation
The activity of test compounds can be determined
using the following formula:

1. PFC/3 wells:

x ¼ plaques� 100

μl

2. % change in the number of plaques:

x ¼ plaques� 100

plaquespos: control

d% ¼ x� 100

3. % change in number of cells:

x ¼ number of cells � 100

number of cells pos: control

d% ¼ x� 100
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Inhibition of Dihydroorotate
Dehydrogenase

Purpose and Rationale
Dihydroorotate dehydrogenase catalyzes the
fourth committed step in the de novo biosynthesis
of pyrimidines. As rapidly proliferating human T
cells have an exceptional requirement for de novo
pyrimidine biosynthesis, small-molecule
dihydroorotate dehydrogenase inhibitors consti-
tute an attractive therapeutic approach to autoim-
mune diseases, immunosuppression, and cancer.
The main mode of action of the immunosuppres-
sive compound leflunomide and its active metab-
olites is considered to be the inhibition of the
enzyme dihydroorotate dehydrogenase (Bruneau
et al. 1998; Graul and Castañer 1998; Knecht and
Löffler 1998; R€uckemann et al. 1998;
Schorlemmer et al. 1998; Herrmann et al. 2000;
Liu et al. 2000).

Procedure
A fragment of human dihydroorotate dehydroge-
nase is expressed by means of the baculovirus
expression vector system and purified to a specific
activity greater than 50 U/mg (Knecht et al. 1996,
1997). Enzyme assays are performedwith purified
recombinant dihydroorotate dehydrogenase at
30 �C. The oxidation of the substrate
dihydroorotate and the reduction of the
co-substrate quinone is coupled to the reduction
of the chromogen 2,6-dichlorophenolindophenol
(DCIP). The reaction mixture contains 0.1 mM
QD or 0.1 M Q10, 1 mM L-dihydroorotate,
0.06 mM DCIP, 0.1 % Triton X-100 in 50 mM
Tris–HCl buffer, 150 mM KCl, and pH 8.0. The
reaction is started by addition of the enzyme. The
loss of absorbance of the blue DCIP is monitored
at 600 nm: � = 18.800 l mol�1 cm�1. The
enzyme activity in control assays without QD or
Q10 which is approximately 1 % of maximum
enzyme activity is subtracted from the activity
values measured. Stock solutions of the test
compounds are prepared in dimethyl sulfoxide
with further dilutions in the buffer taken for the
assays.
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Evaluation
To determine the inhibitory potency of the agents,
the initial velocity of dihydroorotate dehydroge-
nase reaction is measured at saturating substrate
concentrations, 1 mM dihydroorotate and 100 μM
QD, and varying concentrations of the drugs
(1 nM through 100 μM). The equation is fitted to
the initial velocities:

v ¼ V= 1þ I½ �=IC50f g

([I] is the inhibitor concentration) in order to find
the concentration causing 50 % inhibition of the
enzyme activity (IC50). Both virtual (Diao
et al. 2012) and high-throughput screening
(Baldwin et al. 2005) and have been used to iden-
tify micromolar and sub-micromolar, respec-
tively, inhibitors of DHODH activity. Recently,
DHODH has emerged as a therapeutic target in
bovine babesiosis (2014).
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Sphingosine 1-Phosphate

General Considerations
Sphingolipids have emerged as molecules whose
metabolism is regulated to generation of bioactive
products including ceramide, sphingosine, and
sphingosine-1-phosphate. The balance between
cellular levels of these bioactive products is rec-
ognized to be critical to cell regulation and may be
a promising approach to tumor therapy and mul-
tiple sclerosis (Huwiler and Pfeilschifter 2006;
Rosen et al. 2013; Blaho and Hla 2014), whereby
ceramide and sphingosine cause apoptosis and
growth arrest phenotypes and sphingosine-1-
phosphate mediates proliferative and angiogenic
responses. Sphingosine kinase is a key enzyme in
modulating the levels of these lipids (Hannun and
Obeid 1995; Hofmann and Dixit 1998; Mathias
et al. 1998; Prieschl et al. 1999; Pyne and Pyne
2000; Cummings et al. 2002; MacKinnon
et al. 2002; Rosen and Liao 2003; Chen
et al. 2004; Deguchi et al. 2004; Lee et al. 2004;
Peng et al. 2004; Cyster 2005; Kee et al. 2005;
Watterson et al. 2005; Gardell et al. 2006; Taha
et al. 2006). Ceramide formation and degradation
are influenced by nitric oxide (NO) (Huwiler
et al. 1999a, b; Franzen et al. 2002a, b).
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Binding to Sphingosine 1-Phosphate
Receptors

Purpose and Rationale
At least five subtypes of the sphingosine
1-phosphate receptor with tissue specificity are
known (Meyer zu Heringdorf et al. 1998; Kon
et al. 1999; Im et al. 2000, 2001; Forrest
et al. 2004; Hale et al. 2004a; Sanna et al. 2004;
Zhou and Murthy 2004; Xin et al. 2004; Lepley
et al. 2005; Kimura et al. 2006; Kitano
et al. 2006).

The immunomodulator FTY720 is an agonist
to sphingosine 1-phosphate receptors (Brinkmann
et al. 2002, 2010; Brunkhorst et al. 2014; Chiba
2005; Chiba et al. 2011, 2014; Gräler and Goetzl
2004; Kunzendorf et al. 2004; Xin et al. 2004;
Albert et al. 2005; Bandhuvula et al. 2005;
Sawicka et al. 2003, 2005; Habicht et al. 2005;
Takasugi et al. 2013; Xin et al. 2006; Zhang
et al. 2013; Zhou et al. 2006). FTY720 is derived
from ISP-1 (myriocin), a fungal metabolite that is
an eternal youth nostrum in traditional Chinese
herbal medicine (Fujita et al. 1994). The com-
pound {2-amino-2-[2-(4-octophenyl) ethyl]pro-
pane-1,3-diol} is a highly potent immune
modulating agent.

Further derivates such as sphingosine
1-phosphate receptor agonists (Hale et al. 2004b,
c; Clemens et al. 2005; Foss et al. 2005; Galicia-
Rosas et al. 2012; Guerrero et al. 2013; Kiuchi
et al. 2005; Komiya et al. 2012; Jin et al. 2014; Jo
et al. 2005; Li et al. 2005; Colandrea et al. 2006;
Sanada et al. 2011; Satsu et al. 2013; Sobel
et al. 2013; Ren et al. 2012; Yamamoto
et al. 2014) and antagonists (Davis et al. 2005;
Kennedy et al. 2011; Angst et al. 2012) have been
described, and a patent review of sphingosine
1-phosphate receptors has been conducted (Rob-
erts et al. 2013). Brinkmann et al. (2002) used the
[γ-35S] GTPS-binding assay to study the binding
of the immune modulator FTY720 to sphingosine
1-phosphate receptors.

Forrest et al. (2004) studied the binding of
sphingosine 1-phosphate agonists on distinct
receptor subtypes.
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Procedure

Receptors and Cell Lines
CHO cells stably expressing human S1P1,2,3,4,5
were used (Mandala et al. 2002). cDNA
sequences encoding rodent S1P receptors were
cloned from genomic DNA by polymerase chain
reaction using the following primers for each
respective receptor:

50-GAACCCGGGTGTCCACTAGCATCCC
GG and 50CCCGAATTCTTAGGAAGAA-
GAATTGACGTTTCC (mouse S1P1), 50-
GAACCCGGGCGGCTTATACTCAGAGTACC
and 50-GGCGAATTCTCAGACCACTGTGTTA
CCCTC (mouse S1P2), 50-GAACCCGGGCAA
CCACGCATGCGCAGG and 50-GTCGAA
TTCTCACTTGCAGAGGACCCCG (mouse
S1P3), 50-GAACCCGGGAACATCAGTA
CCTGGTCCACGC and GCGGAATTCTA
GGTGCTGCGGACGCTGG (mouse S1P4),
50-GAACCCGGGCTGCTGCGGCCGG and 50-
CGCGAATTCAGTCTGTAGCAGTAGGCACC
(mouse S1P5), 50-GTAGGATCCGTGTCCTCCA
CCAGCATC and 50GGCCGAATTCTTAAGAA
GAAGAATTGACGTTTC (rat S1P1), 50-GAA
CCCGGGCATCCACGCATGCGCAG and 50-
GCCGAATTCTCACTTGCAGAGGACCCCA
TTCTG (rat S1P3).

The polymerase chain reaction products were
inserted in-frame after a FLAG tag using vector
pCMV-Tag2 (Stratagene, La Jolla, Calif., USA).
Stable lines were established by transfecting plas-
mids into CHO cells using Lipofectamine reagent,
selecting for neomycin resistance, and screening
single cell cultures for increased [33P]
S1P-specific binding. Membranes were prepared
from positive clones and confirmed in [33P]S1P
and [35S]GTPγS binding assays.

S1P Receptor Assays
Binding assays were conducted as described by
Mandala et al. (2002). [33P]S1P was sonicated
with fatty-acid-free bovine serum albumin,
added to test compounds diluted in dimethyl sulf-
oxide (DMSO), and mixed with membranes in
200 μl in 96-well plates with assay concentrations
of 0.1 nM[33P]S1P (22,000 dpm), 0.5 % bovine

serum albumin, 50 mM HEPES-Na (pH 7.5),
5 mM MgCl2, 1 mM CaCl2, and 0.3–0.7 μg of
membrane protein. Binding was performed for
60 min at room temperature and terminated by
collecting the membranes onto GF/B filter plates
with a Packard Filtermate Universal harvester.
Filter-bound radionuclide was measured on a
Perkin Elmer 1450 MicroBeta. Specific binding
was calculated by subtracting radioactivity that
remained in the presence of 1,000-fold excess of
unlabeled S1P.

To measure functional activation of the S1P
receptors, [35S]GTPγ S binding was measured.
Membranes (1–4 μg of protein) were incubated
in 96-well plates with test compounds diluted in
DMSO in 100 μl of buffer containing 20 mM
HEPES (pH 7.4), 100 mM NaCl, 10 mM MgCl2,
and 2–10 μM GDP, depending on the expressed
receptor. The assay was initiated with the addition
of 100 μl of [35S]GTPγ S (1,200 Ci/mmol or
44,400 BGq/mmol; Perkin Elmer Life and Ana-
lytical Sciences, Boston, Mass., USA) for an
assay concentration of 125 pM. After 60 min of
incubation at room temperature, membranes were
harvested onto GF/B filter plates, and bound
radionuclides were measured.

Modifications of the Method
Murata et al. (2000) described a radioreceptor-
binding assay for quantitative measurement of
sphingosine 1-phosphate.
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Sphingosine Kinase Activation Assay

Purpose and Rationale
Sphingosine 1-phosphate produced by two sphin-
gosine kinase isoenzymes, denoted SphK1 and
SphK2, is the ligand for a family of specific
G-protein-coupled receptors that regulate cyto-
skeletal rearrangements and cell motility. Unlike
the proliferative action of SphK1, the isoenzyme
SphK2 has been shown to possess antiproli-
ferative and proapoptotic action. Both kinases
have been cloned and functionally characterized
(Kohama et al. 1998; Liu et al. 2000, 2003; Nava
et al. 2000; Olivera et al. 2000; Igarashi et al.
2003; Paugh et al. 2003; Sanchez et al. 2003;
Billich et al. 2005; Döll et al. 2005; Hait
et al. 2005; Kharel et al. 2005; Okada et al.
2005; De Palma et al. 2006; Zemann et al. 2006;
Gao and Smith 2011; Neubauer and Pitson 2013;
Tonellli et al. 2013; Zhang et al. 2013;
Ceccom et al. 2014; Plano et al. 2014; Shen
et al. 2014; Tamashiro et al. 2014; Tous
et al. 2014). A recent summary of drugs in clinical
trials targeting the sphingosine 1-phosphate path-
way illustrates the potential roles of this axis in
cancer and autoimmune inflammatory disease
(Kunkel et al. 2013).

Sphingosine kinase activity assays were
performed in a similar way by Paugh
et al. (2003) and by Huwiler et al. (2006).

Procedure

Sphingosine Kinase Activity Assay
In vitro kinase reactions were performed
according to Olivera et al. (2000). In brief, 30 μg
of protein lysates was incubated with 50 μmol/l of
sphingosine (dissolved as 1 mmol/l stock solution
in 4 mg/ml of BSA in PBS) and 10 μCi (370 kBq)
of [γ-32P]ATP for 15 min at 37 �C. For SK-2
activity assay, the same buffer including 1 M
KCl was used to inhibit SK-1 activity (Liu
et al. 2000). Reactions were terminated by addi-
tion of 20 μl of 1 N HCl followed by 800 μl of
chloroform/methanol/HCl (100:200:1, v/v),
240 μl of chloroform, and 240 μl of 2 mol/l KCl.
After vigorous vortexing and phase separation,
50 μl of the lower organic phase was loaded onto
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TLC plates and run in 1-butanol/ethanol/acetic
acid/water (80:20:10:20, v/v).

Evaluation
Spots corresponding to S1P were analyzed and
quantified using an imaging system (Fuji).
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Lymphocyte Trafficking After Sphingosine
1-Phosphate Receptor Agonists

Purpose and Rationale
Adaptive immunity depends on T cell exit from
the thymus and T and B cells traveling between
secondary lymphoid organs to survey for antigen.
After activation in lymphoid organs, T cells must
again return to circulation to reach sites of infec-
tion. The immunomodulatory drug FTY720
induces sequestration of circulating mature lym-
phocytes by acceleration of lymphocyte homing
via the S1P receptor 1 (Chiba et al. 1998;
Yanagawa et al. 1998a, b; Henning et al. 2001;
Forrest et al. 2004; Matloubian et al. 2004; Hait
et al. 2005; Kharel et al. 2005; Huwiler
et al. 2006). Mandala et al. (2000) described alter-
ation of lymphocyte trafficking by sphingosine
1-phosphate receptor agonists.

Procedure

Induction of Lymphopenia and Reduction
of Thoracic Duct (TD) Lymphocytes by S1P
and Analogues in Rats
Blood or thoracic duct lymph lymphocyte counts
were determined by autoanalyzer (H2000,
CARESIDE, Culver City, Calif., USA) and nor-
malized to counts in vehicle controls after admin-
istration of FTY720 (2.5 mg/kg p.o.) or test
compound. S1P was administered by continuous
infusion beginning at 8 mg/kg/h for 20 min
followed by 2 mg/kg/h for a further 220 min.
The measured physiological S1P concentration
in rat plasma by LC-MS was 0.5 μg/ml. This
rose to a Cmax of 2.5 μg/ml at 30 min and was
maintained at 1.5 μg/ml for the remainder of the
experiment. Studies on the effect on lymphocyte
numbers in thoracic duct-cannulated rats were
performed after the administration of FTY720 or
test compound. Lymph flow remained constant
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for the duration of the experiment, and numbers
are shown as the average cell concentration
maintained over the preceding 30 min.

FACS Measurement of Peripheral Blood
Lymphocyte Depletion in Cannulated Rats
Percentage depletion by FTY720 compared to
vehicle control was measured. Similar nadir
lymphopenia was produced by FTY720 or
non-metabolizable phosphonates. Peripheral
blood samples were diluted 1:1 with phosphate-
buffered saline (PBS), layered on the same vol-
ume of Lymphocyte Separation Medium (ICN
Biomedicals, Aurora, Ohio, USA), and
centrifuged at 400 g for 30 min. Peripheral blood
mononuclear cells (PBMC) were resuspended in
PBS and counted using a hemocytometer. PBMC
were then stained with FITC-labeled anti-CD8,
PE-labeled anti-CD45RA, and Cy-chrome-
labeled anti-CD4 antibodies. Numbers of CD4-,
CD8-, and CD45RA-positive cells were calcu-
lated by multiplying total PBMC count with the
percentages of CD4+, CD8+, and CD45RA+ gen-
erated from flow cytometry.

Quantitation of Lymph Node Cells
Single cell suspensions were prepared by passage
of tissues through a 40-μm sieve. Peripheral blood
lymphocytes were further isolated from spleens
by ammonium chloride lysis of red blood
cells. Cells were subsequently washed in
UltraCULTURE medium (Biowhittaker,
Walkersville, Md., USA), and all samples were
adjusted to the same volume with PBS. An equal
volume of 4 % paraformaldehyde was added
while gently vortexing the samples. The total
number of viable, unstained lymphocytes per
sample was determined by flow cytometry
(FACScan; Becton Dickinson) using CellQuest
software (Becton Dickinson), based upon
forward- and side-scatter characteristics.
Beads (Sigma; P7458) were used as an internal
standard.

Evaluation
Data were calculated as cell number per node by
dividing the total number of lymphocytes quanti-
tated by the number of nodes harvested per site

(i.e., the number of Peyer’s patches and mesen-
teric or peripheral lymph nodes collected).

Modifications of the Method
Kawa et al. (1997) reported inhibition of chemo-
tactic motility and trans-endothelial migration of
human neutrophils by sphingosine 1-phosphate.

Fueller et al. (2003) described activation of
human monocytic cells by lysophosphatidic acid
and sphingosine-1-phosphate.

Roviezzo et al. (2004) studied human eosino-
phil chemotaxis and selective in vivo recruitment
by sphingosine 1-phosphate. Kunisawa et al.
(2007) showed that sphingosine 1-phosphate
may regulate peritoneal B cell trafficking and
Thangada et al. (2010) using adoptive transfer
experiments in wild-type mice, and mice
mutated for the sphingosine 1-phosphate
receptor showed that cell surface residency
of the receptor determines the kinetics of
lymphocyte egress. Yang et al. (2014) showed
that fingolimod (FTY720) may prevent
inflammation-sensitized hypoxic ischemia brain
injury in newborn rats.
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In Vivo Methods for Testing
Immunological Factors

Spontaneous Autoimmune Diseases
in Animals
Several spontaneous autoimmune diseases have
been reported in several inbred animal strains:

New Zealand black mouse (NZB mouse)
(Bielschowski et al. 1959; Howie and Helyer
1968; Barthold et al. 1974; Blanchard and Bach
1980). The NZB mouse develops a spontaneous
autoimmune disease with autoimmune hemolytic
anemia, splenomegaly, glomerulonephritis,
lymphoproliferative disorders, and peptic
ulcerations.

New Zealand black/white F1 (B/W) mouse
(Helyer and Howie 1963; Kessler 1968). These
animals develop nephritis similar to that in human
systemic lupus erythematosus and show mononu-
clear cell infiltration in salivary and lachrymal
glands such as in human Sjögren’s syndrome.

A substrain of the autoimmune-prone
mouse, NZB/kl, was found to show spontaneous
elevation of the auditory brainstem response
threshold with age (Sone et al. 1995).

Immunodeficient alymphoplasia mice were
recommended as a spontaneous model for
Sjögren’s syndrome (Tsubata et al. 1996). Mice
homozygous for an autosomal-recessive mutation
aly (alymphoplasia) lack both lymph nodes and
Peyer’s patches and show defects in both humoral

and cellular immunity. Histopathological analyses
revealed chronic inflammatory changes in exo-
crine organs such as the salivary gland, the lacri-
mal gland, and the pancreas.

The Palmerston North autoimmune mouse
strain which exhibits both spontaneous systemic
autoimmune disease and otic capsule bone forma-
tion has been proposed as a model for otic capsule
osteogenesis and otosclerosis (Hertler and Trune
1990; Traynor et al. 1992).

In aging BDF1 mice, Hayashi et al. (1988)
described spontaneous development of autoim-
mune sialadenitis.

Robison et al. (1994) examined the relation-
ship between orchitis and aspermatogenesis in
various strains of H2 congenic mice and defined
a genetic predisposition to spontaneous
aspermatogenesis.

Motheaten mice. Mice homozygous for the
autosomal-recessive motheaten (me) or the allelic
viable motheaten (mev) mutations develop severe
and early-age onset of systemic autoimmune and
inflammatory disease (Green and Shultz 1975;
Shultz et al. 1984; Shultz 1988; Su et al. 1998).

The genetic, hormonal, and behavioral influ-
ence on spontaneously developing arthritis in nor-
mal mice has been reviewed by Holmdahl
et al. (1992).

Nonobese diabetic mouse (NOD mouse)
(Makino et al. 1980; Miyazaki et al. 1985; Leiter
et al. 1987). The inbred NODmouse is considered
a good model for type I diabetes mellitus. Mono-
nuclear cells infiltrate the pancreatic islets of
Langerhans from 6 to 8 weeks of age, followed
by a progressive and selective destruction of
insulin-producing β-cells and the onset of IDDM
from the 12th week of age onwards.

Itoh et al. (1997) studied the requirement of Fas
for the development of autoimmune diabetes in
nonobese diabetic mice.

Quartey-Papafio et al. (1995) showed that
aspartate at position 57 of nonobese diabetic I-A
(g7) β-chain diminishes the spontaneous inci-
dence of insulin-dependent diabetes mellitus in
the NOD mouse.

The NOD mouse was also recommended to
study the pathogenesis of autoimmune thyroiditis
(Many et al. 1996; Giarratana et al. 2007).
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Inherited inflamed joints. Adipue
et al. (2011) established a new spontaneous
murine model of inflammatory arthritis of
inherited inflamed joints (IIJ) established from
AR mice that appeared in a 5B6 transgenic
mouse-breeding colony.

Qi et al. (2013) developed a murine model of
spontaneous liver disease resembling autoim-
mune hepatitis, and Yang et al. (2014) developed
a murine model of spontaneous peripheral
polyneuropathy.

Bio-breeding rat (BB rat) (Like et al. 1982;
Field 1983; Yale and Marliss 1984). On the
basis of clinical and histopathological
parameters, the BB rat is considered a useful
model for human IDDM. The disease in the
BB rat is characterized by infiltration of lympho-
cytes and macrophages into the islets of
Langerhans.

Allen and Thupari (1995) described spontane-
ous autoimmune lymphocytic thyroiditis in
BB/Wor rats.

Obese strain chicken (OS chicken) (van
Tienhoven and Cole 1962; Cole 1966; Cole
et al. 1968, 1970; Wick et al. 1974). The OS
chicken is perhaps the best studied model for an
organ-specific, spontaneously occurring autoim-
mune disease, viz., spontaneous autoimmune thy-
roiditis, which closely resembles human
Hashimoto thyroiditis. The spontaneous autoim-
mune thyroiditis in obese chicken was further
studied by Neu et al. (1986), Kroemer
et al. (1989), Cihak et al. (1995), Hala
et al. (1996), and Dietrich et al. (1997).

Chickens of the University of California line
200 (UCD-200 chickens) develop an inherited
inflammatory fibrotic disease that closely resem-
bles human progressive systemic sclerosis
(scleroderma) (Gershwin et al. 1981; Van de
Water et al. 1984; Brezinscheck et al. 1993).

Schumm-Draeger and Fortmeyer (1996)
described autoimmune thyroiditis in the cat as
a spontaneous disease model.

Spontaneous autoimmune thyroiditis was
found in Mastomys (Praeomys coucha) by
Solleveld et al. (1985) and recommended as an
animal model of human disease.
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Acute Systemic Anaphylaxis in Rats

Purpose and Rationale
Rats are immunized with ovalbumin and
Bordetella pertussis suspension as adjuvant.
After 11 days, the animals are challenged by intra-
venous injection of ovalbumin. The shock symp-
toms can by inhibited by corticosteroids and
intravenous disodium cromoglycate.

Procedure
Female Sprague–Dawley rats weighing 120 g are
immunized by i.m. injection of 10 mg/kg highly
purified ovalbumin. Simultaneously 1 ml of
Bordetella pertussis suspension (2 � 1010 organ-
isms) is injected intraperitoneally. IgE antibodies
are induced and attached to the surface of mast
cells and basophilic granulocytes. Eleven days
later, the animals are challenged by intravenous
injection of 25 mg/kg highly purified ovalbumin.
This results in the formation of antigen–antibody
complexes on the surface of mast cells and baso-
philic granulocytes in blood and in all organs with
immediate release of various mediators of ana-
phylaxis, such as histamine, serotonin, SRS-A,
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and prostaglandins; in shock symptoms; and 80 %
lethality. Corticosteroids, e.g., dexamethasone
1–10 mg/kg s.c., are given 18 h prior to challenge
or 30 mg/kg disodium cromoglycate i.v. before
injection of ovalbumin. Ten to 20 animals are used
for each group.

Evaluation
The shock symptoms are scored and mortality
counted. Results after treatment are compared
with untreated controls. Pretreatment with corti-
costeroids or disodium cromoglycate can inhibit
death and ameliorate shock symptoms. Statistical
calculation is performed using the χ2-test.

Modifications of the Method
Desensitization by repeated “microshocks” of
constant strength in guinea pigs has been reported
by Herxheimer (1952).

Acute systemic anaphylaxis experiments have
also been performed in guinea pigs and in mice. In
guinea pigs, anaphylactic bronchospasm can be
measured with the Konzett and Rössler method
(Davies and Evans 1973).

Moreover, anaphylactic bronchospasm can be
measured in isolated guinea pig lungs according to
the method of Bhattacharya and Delaunois (1955).

Anaphylaxis can be measured in the chopped
guinea pig lung by assay of the supernatant in the
isolated guinea pig ileum in the presence of
2 � 10�7 M atropine (Austen and Brocklehurst
1961).

Ufkes and Ottenhof (1984) sensitized Brown
Norway rats with a suspension of trinitrophenyl-
haptenized ovalbumin together with AlPO4 as
adjuvant. Bronchial and cardiovascular functions
were studied after treatment with antiallergic
agents and antigen challenge.

Elwood et al. (1992) studied the effect of dexa-
methasone and cyclosporine A on allergen-
induced airway hyperresponsiveness and inflam-
matory cell responses in sensitized Brown
Norway rats.
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Anti-anaphylactic Activity (Schultz–Dale
Reaction)

Purpose and Rationale
Guinea pigs are sensitized against egg albumin.
Challenge after 3 weeks causes in isolated organs’
release of mediators, e.g., histamine, which
induce contraction in isolated ileum.

Procedure
Guinea pigs of either sex weighing 300–350 g are
sensitized with alum-precipitated egg albumin.
Alum egg albumin is prepared by dissolving egg
albumin (1 mg/ml) in 6 % aluminum hydroxide
gel, suspended in saline. The mixture is stirred and
kept at room temperature. Each animal receives at
the same time injections of 0.125 ml of this mix-
ture in each foot pad and 0.5 ml subcutaneously.
After 4 weeks, the animals are killed and the ileum
is dissected out. Cleaned pieces, about 2–3 cm
long, are mounted in an organ bath containing
Tyrode solution at 37 �C. The strips are allowed
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to equilibrate for 15 min. The contractility of the
ileum strips is tested by adding 10�4 g/ml BaCl2
solution. To one organ bath the standard
(2 � 10�6 g/ml final concentration of
tribenoside = 1-O-ethyl-3,5,6-tri-O-benzyl-D-
glucofuranoside = Glyvenol CIBA) and to other
vials the test compounds (final concentration up to
10�5 g/ml) are added. One organ bath serves as
control. After 3 min, ovalbumin in a final concen-
tration of 2 � 10�6 g/ml is added. The contrac-
tions are recorded with strain gauges by a
polygraph.

Evaluation
The results are expressed as presence or absence
of blocking activity (percentage inhibition). If
anti-anaphylactic activity is observed, ED50

values using different doses are calculated.

Critical Assessment of the Method
Positive results can also be achieved with spas-
molytics, local anesthetics, antihistaminics, and
sympathicomimetics.

Modifications of the Method
The method has been modified by testing hista-
mine release in the lung after challenging with egg
albumin. Either lung strips from sensitized guinea
pigs are suspended in an organ bath and their
contractions are measured after addition of egg
albumin or the entire lung tissue is dissected out
and washed free from blood by perfusing with
warm oxygenated Tyrode solution via the pulmo-
nary artery. The lung tissue is chopped and
washed with Tyrode solution in order to remove
the remaining blood. The chopped lung tissue is
divided into 24 samples, each of approximately
100 mg wet weight. These are incubated at 37 �C
in Tyrode solution for 15 min with continuous
agitation by rocking, after which 1 mg/ml of egg
albumin is added to the reaction mixture. After
shaking for 10 min at 37 �C, the supernatant is
collected and assayed for histamine with guinea
pig ileum. Atropine sulfate 2 mg/ml is added in
Tyrode solution. The residual histamine is
obtained by boiling the tissue in 5 ml Tyrode
solution for 10 min. The tubes are then placed
on ice for 1 h to allow complete diffusion.

Released histamine is expressed as a percentage
of total histamine content.

Koppel et al. (1981) developed a method to
induce contraction of immunologically sensitized
mouse trachea by antigen (Schultz–Dale
reaction).

The trachea of sensitized guinea pigs was used
by Omote et al. (1994). Choi et al. (2008) mea-
sured the effects of dehydroepiandrosterone on
the Schultz–Dale reaction and the Th2 immune
response in sensitized BALB/c mice.
Guhathakurta et al. (2013) determined the effects
of UNIM-352 and Naik et al. (2013) the effects of
extract of Zizyphus jujuba fruits, both natural
products, in a rodent model of systemic
anaphylaxis.
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Passive Cutaneous Anaphylaxis

Purpose and Rationale
Passive cutaneous anaphylaxis is an immune
reaction of the immediate type. By passive
immunization of rats in the skin with rat anti-
ovalbumin serum and a challenge 2 days later
with ovalbumin at the same skin area,
antigen–antibody complexes are formed in the
mast cells inducing release of mediators. This
results in vasodilatation, increase in permeability
of the vessel walls, and leakage of plasma. To
make the allergic reaction visible, Evan’s blue
dye is administered along with the antigen.
Evan’s blue dye is attached to the albumin frac-
tion of plasma, producing a blue spot. This blue
spot indicates that an anaphylactic reaction has
taken place in the skin.

Procedure
For preparation of antiserum, male rats weighing
200–250 g are adrenalectomized and are allowed
to recover for 3 days. Thereafter, animals are
sensitized with egg albumin (1 mg/animal) using
aluminum hydroxide gel (200 mg) as adjuvant.
Alum egg albumin is prepared by dissolving
1 mg/ml of egg albumin in 20 % aluminum
hydroxide gel, suspended in saline. Each animal
simultaneously receives 0.125 ml of the above
solution in each foot pad and 0.5 ml subcutane-
ously. After 8 days, the animals are bled and
antiserum is collected.

For the test, the antiserum is diluted in such a
manner as to give a wheal of 15–20 mm diameter
in a preliminary titration. Aliquots of 100 μl of
appropriate dilution of antiserum are injected
intradermally into the shaved dorsal skin of nor-
mal male rats weighing about 100 g. After 24 h of
latent period, each animal is challenged with the
intravenous administration of 0.1 ml of 2.5 %
Evans blue dye containing 25 mg/ml of egg albu-
min. In the case of intravenous administration, the
test compound is administered simultaneously
with the antigen and the dye. In case of oral
testing, the compound is given orally 1 h prior to
challenge. The animals are sacrificed 30 min after
the challenge. The amount of Evans blue dye
leaked at the site of passive cutaneous anaphylac-
tic reaction is extracted and determined colorimet-
rically at 620 μm wavelength.

Evaluation
The amount of Evans blue extracted from passive
cutaneous anaphylactic reaction is taken as
100 %. Percent inhibition of passive cutaneous
anaphylactic reaction in the rats treated with the
test compound is calculated. The standard
disodium cromoglycate at a dose of 3 mg/kg
i.v. or 30 mg/kg orally results in 80–100 % inhi-
bition. Using different doses, ED50 values can be
calculated.

Modifications of the Method
Goose and Blair (1969) used Bordetella pertussis
and extracts of the worm Nippostrongylus
brasiliensis as antigens in passive cutaneous ana-
phylaxis experiments in the rat.

Patterson et al. (1971) tested passive cutane-
ous reactivity to antihuman IgE in rhesus
monkeys.

Without immunization, plasma extravasation
after bradykinin injection can be tested in anes-
thetized Sprague–Dawley rats (Lembeck
et al. 1991). Evans blue dye is injected to stain
plasma proteins. After injection of bradykinin
antagonists followed by bradykinin injection, the
rats are perfused with physiological saline. The
trachea, the urinary bladder, and the duodenum
are resected, weighed, and incubated for 48 h in
formamide at 50 �C (Saria et al. 1983). The
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amount of Evans blue extracted is measured pho-
tometrically at 620 nm.

Vascular reactions to histamine, histamine lib-
erator, and leukotaxine in the skin of guinea pigs
using pontamine sky blue 6� as indicator were
studied by Miles and Miles (1952). Babakin
et al. (2008) investigated the effects of fullerene-
60 in both systemic and both rat and murine
passive cutaneous models of anaphylaxis, and
Zhu et al. (2009) showed that the proteinase-
activated receptor 2 is involved in passive cutane-
ous murine model of anaphylaxis and that it can
be inhibited by tacrolimus.

Hitomi et al. (2010) discovered that mice defi-
cient in the immunoglobulin-like receptor
Allergin-1 developed enhanced passive systemic
and cutaneous anaphylaxis, and Han et al. (2013)
showed that the phytoalexin resveratrol inhibited
both IgE-mediated basophilic mast cell degranu-
lation and passive cutaneous anaphylaxis in a
murine model.
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Arthus-Type Immediate Hypersensitivity

Purpose and Rationale
The immune complex-induced Arthus reaction
comprises inflammatory factors that have been
implicated in the acute responses in joints of rheu-
matic patients. Complement and polymorphonu-
clear neutrophils are activated via precipitating
antigen–antibody complexes leading to an inflam-
matory focus characterized by edema,
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hemorrhage, and vasculitis. Arthus reaction of the
immediate type becomes maximal 2–8 h after the
challenge.

Procedure

Ovalbumin Suspension
1,700 mg ovalbumin is suspended in 100 ml par-
affin oil. 4.38 ml pertussis vaccine is suspended in
70 ml 0.9 % NaCl solution. Both suspensions are
mixed to form an emulsion.

Wistar or Sprague–Dawley rats of either sex
weighing 220–280 g can be used. Seven days
prior to the start of the experiment, rats are sensi-
tized by i.m. administration of 0.5 ml of the oval-
bumin suspension. They are housed in groups of
eight with standard food and water ad libitum.

Twenty-four hours and 1 h prior to induction of
the Arthus reaction, test compounds are adminis-
tered to groups of eight animals. The rats are
challenged by injection of 0.1 ml of 0.04 % solu-
tion of highly purified ovalbumin in the left hind
paw. Swelling of the paw occurs which reaches a
maximum after a few hours. The footpad thick-
ness can be measured by calipers. One group of
sensitized animals treated with solvent alone
serves as positive control; one group of
non-sensitized animals treated with solvent alone
serves as negative control. Standard doses are
30 mg/kg cortisone or 10 mg/kg prednisolone p.o.

Evaluation
The change in footpad thickness is expressed as
the percent change from the vehicle control group.
Comparison of experimental group to positive
control is evaluated statistically using Student’s
t-test.

Modifications of the Method
Instead of ovalbumin, sheep red blood cell sus-
pensions can be used for immunization and for
challenge in mice (Omote et al. 1994).

Nagakawa et al. (1990) sensitized mice by
s.c. injection of bovine serum albumin in com-
plete Freund’s adjuvant and boosted on day 21 by
an intradermal injection of BSA. On day 28, the
Arthus reaction was elicited by intradermal injec-
tion of BSA. Four hours later, an erythematous

skin reaction over an area of more than 8 mm2 was
regarded as positive.

Kamei et al. (1991) immunized guinea pigs by
injection of a mixture of egg albumin and
Freund’s complete adjuvant subcutaneously into
the food pad or i.m. into the hind leg. The injec-
tion was repeated four times at 7-day interval. Ten
days after the last immunization, 0.2 ml of 2.5 %
egg albumin was injected sc. into the dorsal skin
of the animals. The intensity of the Arthus reac-
tion was evaluated by measuring the inflamed area
according to scores.
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Delayed-Type Hypersensitivity (DTH)

Purpose and Rationale
Delayed-type hypersensitivity is a reaction of cell-
mediated immunity and becomes visible only
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after 16–24 h. The same methods as for testing
immediate-type hypersensitivity can be used.

Procedure
Rats are sensitized in the same way by
i.m. administration of 0.5 ml ovalbumin suspen-
sion 7 days prior to the start of the experiment as
described for testing immediate-type hypersensi-
tivity. They are challenged by injection of 0.1 ml
of 0.04 % solution of highly purified ovalbumin
in the left hind paw. Footpad thickness is mea-
sured immediately and 24 h after ovalbumin
administration.

Modifications of the Method
Mizukoshi et al. (1994) injected female CDF1
mice intradermally with a suspension of 2 � 108

sheep red blood cells/50 μl into the left foot pad. A
second booster of the same dose was given to the
right foot pad on day 4. The thickness of the foot
pads was measured on the following day, and the
difference in the thickness between the right and the
left food pads was taken as the degree of swelling.

Kamei et al. (1991) immunized mice by apply-
ing 0.15ml of 7% picryl chloride/ethanol solution
to the skin of the shaved abdomen. The second
immunization was performed 6 days later. One
week after the second immunization, 1 drop of
1 % picryl chloride olive oil solution was applied
to the ear, and the thickness of the ear was mea-
sured by a thickness gauge 24 h later.

Heriazon et al. (2009) investigated the induc-
tion of DTH and interferon gamma to Candida
albicans and anti-hen egg white lysozyme anti-
body as phenotypic markers of enhance bovine
immune response, and their studies suggest that
this combination of test antigens could be used as
phenotypic markers of immune responsiveness in
cattle. Escandell et al. (2010) investigated the
inhibition of DTH by the plant product
cucurbitacin R which was shown to reduce
human T lymphocyte proliferation.

Yang et al. (2011) used the DTH model to a
three-protein cocktail with that of a purified pro-
tein derivative, and Atkinson et al. (2012)
extended the model to study the similarities with
collagen-induced arthritis and human rheumatoid
arthritis.
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Reversed Passive Arthus Reaction

Purpose and Rationale
In the reversed passive Arthus reaction, the anti-
gen is injected intravenously followed by a local
injection – either intradermally or into the pleural
space – of the respective antibody. Generation of

an immune-mediated reverse passive Arthus reac-
tion in the rat pleural cavity results in a classic
acute inflammatory response. The methods are
used to evaluate new anti-inflammatory agents.

Procedure
Male Lewis rats weighing 200–250 g are fasted
overnight prior to use with free access to water.
The animals receive 5 mg bovine serum albumin
in 0.2 ml sterile saline intravenously, followed
30 min later by injection of 1 mg rabbit anti-
BSA in 0.2 ml sterile saline into the right pleural
cavity under light halothane anesthesia. Drugs or
vehicle controls are administered by gastric
gavage in 1 ml/100 g body weight at different
times prior to the anti-BSA. The animals are
sacrificed at various intervals after anti-BSA
injections by CO2 inhalation (after 5 min for
thromboxane B2 determination, after 10 min for
leukotriene B4 determination, and after 4 h at the
peak time of neutrophil infiltration). The fluid
exudate is removed from the pleural cavity by
gentle vacuum aspiration and the volume is
recorded. Eicosanoids in the pleural exudate are
quantitated by commercial RIA kits.

Evaluation
The values after treatment with various doses of
test compounds are compared with those of vehi-
cle controls.

Modifications of the Method
The antibody can be injected intradermally into
the shaved skin of rats after intravenous injection
of the antigen (e. g., human albumin) together
with Evans blue dye solution. Extravasated dye
is determined in skin punches (Camussi
et al. 1990; Burch et al. 1992; Okamoto
et al. 1992).

Bailey and Sturm (1983) induced the reverse
passive Arthus reaction in rats using bovine serum
albumin as antigen into the tail vein and rabbit
anti-bovine serum albumin into the skin site. One
hour after oral dosing with vehicle or drug, ani-
mals were lightly anesthetized and their hair was
shaved from the middorsal region with electric
clippers. Each animal was injected intradermally
with 40 μl on the left side of the middorsal line and
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with 40 μl of rabbit anti-bovine serum albumin
(5.0 mg/ml antibody protein), diluted 1:4 with
phosphate-buffered saline on the right side of the
dorsal midline. Immediately following the intra-
dermal challenge, each rat received 0.5 ml
phosphate-buffered saline containing 1.0 mg
bovine serum albumin injected in the tail vein.
Four hours after intradermal challenge, the ani-
mals were sacrificed. The full-thickness skin was
removed from the back, and disks 8 mm in diam-
eter were punched out with a metal punch. Wet
weight of the samples from the phosphate-
buffered saline- and antibody-injected site was
determined, and the edema induced by the reverse
passive Arthus reaction calculated as the differ-
ence between both weights.
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Adjuvant Arthritis in Rats

Purpose and Rationale
Adjuvant arthritis in rats has been described by
Pearson and Wood (1959) exhibiting many simi-
larities to human rheumatoid arthritis. Injections
of complete Freund’s adjuvant into the rat paw
induce inflammation as primary lesion with a
maximum after 3–5 days. Secondary lesions
occur after a delay of approximately 11–12 days
which are characterized by inflammation of
non-injected sites (hindleg, forepaws, ears, nose,
and tail) and a decrease of weight and immune
responses. The procedure has been modified by
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several authors in order to differentiate between
anti-inflammatory and immunosuppressive activ-
ity (e.g., Perper et al. 1971). Anti-inflammatory
compounds do not inhibit secondary lesions,
which are prevented or diminished by immuno-
suppressive agents. Two protocols, termed “pre-
ventative” (or “prophylactic”) and “therapeutic”
(or “established”) adjuvant arthritis, have gained
wide usage for assessing a drug’s potential anti-
arthritic activity (Schorlemmer et al. 1999).

Procedure
The choice of the animal strain has been found to
be very important for the performance of this test.
Wistar–Lewis rats have been proven to be very
suitable in contrast to other substrains. Male rats
with an initial body weight of 130–200 g are used.
On day 1, they are injected into the suplantar
region of the left hind pawwith 0.1 ml of complete
Freund’s adjuvant. This consists of 6 mg myco-
bacterium butyricum (Difco) being suspended in
heavy paraffin oil (Merck) by thoroughly grinding
with mortar and pestle to give a concentration of
6 mg/ml. Dosing with the test compounds or the
standard is started on the same day and continued
for 12 days. Paw volumes of both sides and body
weight are recorded on the day of injection,
whereby paw volume is measured plethysmo-
graphically with equipment as described in the
paw edema tests. On day 5, the volume of the
injected paw is measured again, indicating the
primary lesion and the influence of therapeutic
agents on this phase. The severity of the induced
adjuvant disease is followed by measurement of
the non-injected paw (secondary lesions) with a
plethysmometer. Purposely, from day 13–21, the
animals are not dosed with the test compound or
the standard. On day 21, the body weight is deter-
mined again, and the severity of the secondary
lesions is evaluated visually and graded according
the following scheme:

Score

Ears Absence of nodules and redness 0

Presence of nodules and redness 1

Nose No swelling of connective tissue 0

Intensive swelling of connective
tissue

1

(continued)

Tail Absence of nodules 0

Presence of nodules 1

Forepaws Absence of inflammation 0

Inflammation of at least one joint 1

Hind
paws

Absence of inflammation 0

Slight inflammation 1

Moderate inflammation 2

Marked inflammation 3

Evaluation
(a) For primary lesions: The percent inhibition of

paw volume of the injected left paw over
vehicle control is measured at day 5.

(b) For secondary lesions: The percentage inhibi-
tion of paw volume of the non-injected right
paw over controls is measured at day 21.

(c) An arthritic index is calculated as the sum of
the scores as indicated above for each animal.
The average of the treated animals is com-
pared with the control group.

(d) The total percentage change is calculated as
follows by addition of:

Percent inhibition of the injected paw on day
5 + percent inhibition of the non-injected paw
on day 21 + percent change of the arthritic index.

Doses of 0.3 mg/kg indomethacin p.o. and
20–50 mg/kg phenylbutazone p.o. are effective
on the primary lesions when dosage is started at
the day of injection of the irritant. They are not
effective on the secondary lesions.

In contrast, immunosuppressants like cyclo-
phosphamide at a dose of 7 mg/kg inhibited the
secondary lesions even when started at day 9 or
later.

Critical Assessment of the Method
Evidence was given that adjuvant arthritis in the
rat is associated with chronic pain (Colpaert
1987). The measure of pain in this model still
presents some technical problems since the eval-
uation is based on the somewhat biased observa-
tion of the behavioral responses.

Modifications of the Method
A review was given by Gardner (1960) on the
experimental production of arthritis.
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Moran et al. (1999) compared adjuvant arthri-
tis and selected animal models of arthritis to rheu-
matoid arthritis with special emphasis on the
mechanism of joint destruction.

Kazuna and Kawai (1975) and Rooks
et al. (1982) used rats with established lesions to
test analgesics in the arthritic flexion pain test. The
method is claimed to be specific by detecting only
central analgesics and nonsteroidal anti-
inflammatory drugs but not other classes such as
CNS-depressant or antihistaminic drugs.

Brackertz et al. (1977) established antigen-
induced arthritis in the mouse by immunization
with methylated bovine serum albumin in com-
plete Freund’s adjuvant with B pertussis vaccine.

A streptococcal cell wall-induced arthritis in
rats has been described by Wilder et al. (1982,
1987) and Yocum et al. (1986).

Lewis et al. (1997) studied degradation of
articular cartilage in a rat monoarthritis model
induced by an intra-articular injection of
Propionibacterium acnes.

Crossley et al. (1989) reported on a
monoarticular antigen-induced arthritis in rabbits
and mice.

α-2-Glycoprotein levels have been
recommended as parameter for severity and inhi-
bition of experimental immunoarthritis in the rat
by Sandow et al. (1971).

Pircio et al. (1975) recommended a method for
the evaluation of analgesic activity using
adjuvant-induced arthritis in rats. The degree of
vocalization was recorded from five rats placed
together in a counting chamber.

Cruwys et al. (1994) sensitized rats on day
0 and 7 with multiple intradermal injections of
methylated bovine serum albumin emulsified in
Freund’s complete adjuvant. On day 21, the ani-
mals were challenged by the intra-articular injec-
tion of 100 μl 0.5 % solution of methylated bovine
serum albumin into the right knee. The progress of
the monoarticular arthritis was monitored by daily
measurement of joint diameter.

Butler et al. (1991) described a limited arthritic
pain model for chronic pain and inflammation
studies using injections of 0.05 ml of complete
Freund adjuvant into the left tibiotarsal joint of
Sprague–Dawley rats.

Issekutz et al. (1994) studied the role of
tumor necrosis factor-alpha and IL-1 in polymor-
phonuclear leukocyte and T lymphocyte
recruitment to joint inflammation in adjuvant
arthritis.

Esser et al. (1995) measured radiographic
changes in adjuvant-induced arthritis in rats by
quantitative image analysis. Digitized radiographs
of the calcaneus were examined for changes in the
mean and in the distribution of gray values.
Periostal new bone formation was measured as
an increase in image area of the calcaneus.

Mercuric chloride (HgCl2) induces a syndrome
of autoimmunity in Brown Norway rats charac-
terized by a variety of IgG antibodies; very high
concentrations of serum IgE, proteinuria,
leukocytoclastic vasculitis which predominantly
affects the cecum; and an inflammatory
polyarthropathy (Kiely et al. 1995, 1996).

Kawahito et al. (2000) reported that 15-deoxy-
Δ12,14-PGJ2 which activates PPAR-α induces
synoviocyte apoptosis and suppresses adjuvant-
induced arthritis in rats. Cuzzocrea et al. (2002)
found that prostaglandin 15-deoxy-Δ12,14-prosta-
glandin J2 attenuates the development of acute
and chronic inflammation.

Bolon et al. (2004) described a method for
rapid quantification of intralesional osteoclasts in
the hind paws of Lewis rats with adjuvant-induced
arthritis. A 4-μm-thick section of the decalcified
hind paw was stained to demonstrate osteoclasts
using an indirect immunoperoxidase method
and a rabbit antihuman monoclonal antibody
directed against the osteoclast marker
cathepsin K, which is an osteoclast protease pri-
marily responsible for the resorption of bone. The
sections were evaluated using tiered, semiquanti-
tative criteria to grade bone erosions and
intralesional osteoclasts.

Kong et al. (1999), Campagnuolo et al. (2002),
and Bolon et al. (2002a, b) used Lewis rats with
adjuvant arthritis to describe the effects of
osteoprotegerin, an endogenous antiosteoclast
factor for protecting bone in rheumatoid arthritis.

Francischi et al. (2000) described anti-
inflammatory and analgesic effects of the phos-
phodiesterase 4 inhibitor rolipram in the rat model
of adjuvant-induced arthritis.
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Boyle et al. (2001) reported anti-inflammatory
effects of a non-nucleoside adenosine kinase
inhibitor in rat adjuvant arthritis.

Fujisawa et al. (2002) demonstrated the effects
of highly water-soluble matrix metalloproteinase
inhibitors in a rat adjuvant-induced arthritis model.

Wei et al. (2004) described the effects and
mechanisms of a dual inhibitor of interleukin-1
and tumor necrosis factor on adjuvant arthritis
in rats.

Boe et al. (1999) reported that interleukin
6 knockout mice are resistant to antigen-induced
experimental arthritis.

Gauldie et al. (2004) described a robust model
of adjuvant-induced chronic unilateral arthritis in
two mouse strains. DBA/1 and C57BL/6 male
mice were injected intra-articularly into a stifle
joint with FCA (5 μg in 5 μl) once per week for
4 weeks. Measurements of joint diameter and joint
histopathology were used to monitor the course of
arthritis. Inflammatory hyperalgesia was assessed
as the pressure causing a limb withdrawal. Stan-
dard drugs, such as indomethacin or prednisolone,
caused a decrease in joint inflammation and asso-
ciated hyperalgesia.

Kim and Moudgil (2009) reviewed the genetic
and other determinants of both susceptibility and
resistance to adjuvant-induced arthritis in the rat,
and Snekhalatha et al. (2013) conduced a detailed
characterization of adjuvant-induced arthritis in
the rat model comparing thermography, radiolog-
ical imaging, and histopathology, a work extended
by Vollmer et al. (2014) who used near-infrared
fluorescence imaging to monitor the progress of
experimental-induced arthritis in several rat
models.

The adjuvant-induced arthritis model has been
used to profile the activity of a number of candi-
date drugs which include DHOH, p38 and JAK
inhibitors (Balague et al. 2012), bee venom
(Darwish et al. 2013), peptides from heat shock
protein 65 (Shi et al. 2014), and the saponin
astragaloside IV (Wang 2014).

Consden et al. (1971), Cooke and Jasin (1972),
Cooke et al. (1972), and Jasin and Cooke (1977)
produced a chronic experimental monoarthritis by
intra-articular injection of antigens into previ-
ously immunized rabbits.

Henderson et al. (1990) induced monoarticular
arthritis in ovalbumin-sensitized rabbits by intra-
articular injection of ovalbumin (antigen-induced
arthritis) or in naive rabbits by injecting
hyaluronic acid mixed with the polycation poly-
D-lysine (polycation-induced arthritis).

Arner et al. (1995) compared the alterations in
proteoglycan metabolism in antigen-induced
arthritis and polycation-induced arthritis in rabbits
and determined the involvement of interleukin-1
in the cartilage degradation that occurs in these
models of rheumatoid arthritis.

Lewthwaite et al. (1995) studied the
antifibrotic action of interleukin-1 receptor antag-
onist in antigen-induced monoarticular arthritis in
New Zealand white rabbits.

Arthritis occurs in pigs due to infection with
Erysipelothrix rhusiopathiae (Ajmal 1969).
Experimental erysipelothrix infection in pigs can
be used as a model for rheumatism research
(Schulz et al. 1975a, b, 1977). Infections are
established by oral or parenteral administration
of standardized serotype B erysipelas strains.

Erysipelothrix arthritis could also be produced
in rats and rabbits (White et al. 1975; Glynn
1977).

Arthritis due to infection with Mycoplasma
synoviae occurs naturally among domestic poul-
try (Olson et al. 1954, 1964). Arthritis in chickens
after mycoplasma infection has been used as
experimental model (Kerr and Olson 1970; Cullen
1977).

Experimental models of arthritis due to strep-
tococcal infections have been proposed for vari-
ous species: mice (Cayeux et al. 1966; Hook
et al. 1960; Ohanian et al. 1969), rats (Jasmin
1967; Koga et al. 1973), rabbits (Cecil
et al. 1939; Cook and Fincham 1966; Ginsburg
et al. 1968, 1977; Norlin 1960; Shimizu
et al. 1958; Stein et al. 1973), and pigs (Roberts
et al. 1968, 1969).

Avridine-Induced Arthritis
The injection of avridine [N,N-dioctadecyl-N0,
N0-bis (2-hydroxyethyl) propanediamine/CP-
20961], emulsified in Freund’s adjuvant, at the
base of the tail is arthritogenic in susceptible rat
strains (Meacock et al. 1994; Brun et al. 1995;

Methods for Testing Immunological Factors 2127



Vingsbo et al. 1995; Lorentzen and Klareskog
1997; Joe and Wilder 1999; Van Bilsen
et al. 2004).
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Collagen Type II-Induced Arthritis in Rats

Purpose and Rationale
As reported by Trentham et al. (1977), intradermal
injection of homologous or heterologous type II
collagen in incomplete Freund’s adjuvant results
in an inflammatory polyarthritis in rats. The dem-
onstration of antibodies to collagen in patients
with rheumatic polyarthritis suggests that autoim-
munity may contribute to the pathophysiology of
synovitis and joint destruction. Because of the
similarities of the symptoms in rats to human
disease, the test is considered to be useful to detect
anti-inflammatory and immunosuppressive prop-
erties of test compounds.

Procedure
Bovine type II collagen is prepared from nasal
septum cartilage, which is cut into small frag-
ments, frozen in liquid nitrogen, and pulverized
in a freezer mill. Proteoglycans are extracted
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overnight by stirring 25 g of pulverized cartilage
in 1 l of 0.2 N NaOH. Following centrifugation at
20,000 g for 30 min, the residue is washed with
250 ml of absolute ethanol, the supernatant aspi-
rated, and the residue vacuum dried. Hundred mg
pepsin is added to 150 ml of 0.5 M acetic acid,
after which 1.0 g of cartilage is added to reach a
cartilage to pepsin ratio of 10:1 (w/w). The mix-
ture is stirred 18 h at room temperature and
centrifuged at 20,000 g for 1 h. Acid soluble
collagen present in the supernatant is precipitated
by adding NaCl to reach a final concentration of
0.9 M, followed by centrifugation at 20,000 g for
1 h. The precipitate from 1.0 g cartilage is
dissolved in 100 ml 1.0 N NaCl/0.005 M
Tris–HCl, pH 7.5, and stirred for 3 days. Then,
the solution is dialyzed against 0.02 M Na2HPO4,
pH 9.4, and the precipitate collected by centrifu-
gation at 30,000 g for 1 h. The pellet is dissolved
in 0.5M acetic acid, dialyzed against 6 l of 0.01M
acetic acid, and lyophilized. All procedures,
unless otherwise stated, are performed at 4 �C.

Test procedure. Collagen is dissolved in a con-
centration of 2.0 mg/ml in 0.1 M acetic acid over-
night at 4 �C. This solution is added dropwise to
an equal volume of chilled incomplete Freund’s
adjuvant. Six to 12 male Wistar rats with an initial
weight of about 120 g are used for each group. On
day 1, each rat receives a total of 0.5 mg collagen
in 0.5 ml, equally divided, in five sites. All injec-
tions are intradermal, one at the base of each
appendage and one in the nape of the neck.
Seven days postimmunization, the animals
receive identical booster injections. Control ani-
mals receive only the incomplete Freund’s adju-
vant diluted with 0.1 M acetic acid.

The volume of both hind paws is measured
plethysmographically on day 20. To minimize
the possibility of including animals with minimal
transient disease, only animals with a paw volume
of 1.8 ml or greater are used for further testing.
From days 20–40, the animals receive the test
compounds p.o. once a day. On day 41, the paw
volumes are recorded again.

Evaluation
The paw volumes of treated animals are recorded
plethysmographically. The increase versus day

20 is calculated. The increase is compared with
that of controls or animals treated with a standard
drug. Otherwise, arthritic scores can be deter-
mined. Nonsteroidal anti-inflammatory drugs
such as indomethacin in a dose of 2 mg/kg
p.o. or phenylbutazone in a dose of 150 mg/kg
p.o., but not acetylsalicylic acid in a dose of
50 mg/kg p.o., have been found to be active.
Likewise, corticosteroids and immunosuppres-
sives, but not D-penicillamine, were active.

Critical Assessment of the Method
Nonsteroidal and steroidal anti-inflammatory
compounds are detected by this method which,
however, does not allow a separation between
these two groups.

Modifications of the Method
From studies with a neutrophil elastase inhibitor,
Janusz and Durham (1997) concluded that the
destruction of the joints in rat collagen-induced
arthritis is at least partially due to neutrophil
elastase.

Romas et al. (2002) reported that
osteoprotegerin reduces osteoclast numbers and
prevents bone erosion in collagen-induced arthri-
tis in Dark Agouti rats.

Studies in Mice
Hom et al. (1988), Takagishi et al. (1986, 1992),
Cannon et al. (1990), Nemoto et al. (1992), and
Carlson et al. (1992) described the effects of
immunomodulating agents in collagen-induced
arthritis in mice.

Wooley et al. (1993) investigated the anti-
arthritic effect of recombinant human
interleukin-1 receptor antagonist protein on type
II collagen-induced arthritis and antigen-induced
arthritis in mice.

Joosten et al. (1994) found an accelerated onset
of collagen-induced arthritis in DBA1 lac/J mice
by remote inflammation.

Miesel and Haas (1993), Miesel et al. 1994a, b)
studied the effects of an active center analogue of
Cu2Zn2-superoxide dismutase in collagen type
II-induced arthritis. Furthermore, the authors
described a model potassium peroxochromate-
induced inflammation in rats and mice. One to
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3 μmol/kg K3CrO8 was administered by
intraplantar application into the left hind paws of
anesthetized rats or mice. Arthritis index was
assessed by a score system, or the inflammatory
response was quantified scintigraphically under a
gamma camera by intravenous injection of
500 μCi Na99mTcO4.

Kumar et al. (1997) compared the cellular
mechanisms involved in the control of collagen
II-induced arthritis and experimental autoimmune
encephalomyelitis in mice.

Ruchatz et al. (1998) studied the role of IL-15
in development of antigen-induced immunopa-
thology in collagen-induced arthritis in DBA/1
mice. A soluble fragment of IL-15 receptor pro-
foundly suppressed the symptoms of collagen-
induced arthritis.

Joosten et al. (1999) immunized male DBA-1
mice with 100 μg bovine type II collagen in CFA
enriched with Mycobacterium tuberculosis
H37Ra (4 mg/ml) at the base of the tail. The
mice were boosted i.p. with 100 μg collagen
dissolved in saline. After disease onset on day
28, the mice were treated either with dimerically
linked PEGylated soluble p55 TNFR1 receptor or
with purified rabbit anti-murine IL-1α and anti
IL-1β. IL-1αβ blockade prevented cartilage and
bone destruction, whereas TNF-α blockade only
ameliorated joint inflammation.

Using a similar protocol, Plater-Zyberg
et al. (2001) found a therapeutic effect of neutral-
izing endogenous IL-18 activity in the collagen-
induced model of arthritis and Lubberts
et al. (2004) after treatment with a neutralizing
anti-murine interleukin-17 antibody.

Cuzzocrea et al. (2003) found a reduction in
the evolution of murine type II collagen-induced
arthritis by treatment with rosiglitazone, a ligand
of PPARγ.

McIntyre et al. (2003) reported that a highly
selective inhibitor of IκB kinase blocked both
inflammation and destruction in collagen-induced
arthritis in mice.

Chen et al. (2003) tested orally active inhibi-
tors of TNF synthesis as anti-rheumatoid arthritis
drugs using collagen-induced arthritis in male
DBA/1 J mice.

Nakae et al. (2002, 2003) generated IL-17-
deficient mice and found a suppression of
collagen-induced arthritis.

Podolin et al. (2005) described attenuation of
murine collagen-induced arthritis by a selective
small-molecule inhibitor of IκB kinase 2, occur-
ring via reduction of proinflammatory cytokines
and antigen-induced T cell proliferation.

Kuno et al. (2006) reported anti-inflammatory
activity of a non-nucleoside adenosine deaminase
inhibitor in mice.

Hegen et al. (2008), Bevaart et al. (2010),
Bolon et al. (2011), and Roy and Ghosh (2013)
reviewed the utility of animal models in arthritis
and their suitability for therapeutic target evalua-
tion and correlation with clinical treatment of
human rheumatoid arthritis. Many compounds
have been evaluated in collagen-induced arthritis
including inhibitors of the Bruton’s tyrosine
kinase (Liu et al. 2011), inhibitors of Sphingo-
sine-1-phosphate (Fujii et al. 2012), and agonists
of the nicotinic alpha7 receptor (Hu et al. 2014).
Consistent with this finding, the role of the cho-
linergic pathway as an anti-inflammatory mecha-
nism has been explored in this model (Levine
et al. 2014). Furthermore, technological advances
for imaging inflammation and monitoring thera-
peutic responses have been developed (Balducci
et al. 2012; Sevilla et al. 2015), which may help
progress the discovery and development of new
drugs, where differentiation from drugs currently
in clinical practice is mandated.
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Proteoglycan-Induced Progressive
Polyarthritis in Mice

Purpose and Rationale
Glant et al. (1987, 1992), Mikecz et al. (1987,
1990), and Poole (1989) described a
proteoglycan-induced progressive arthritis and
spondylitis in BALB/c mice as an animal model
displaying similarities to human rheumatoid
arthritis and ankylosing spondylitis as indicated
by clinical assessments, immunological parame-
ters, and histopathological studies of diarthrodial
joints and spine.

Procedure
High buoyant density cartilage proteoglycans are
prepared from fetal and adult human, canine or
bovine articular cartilages, as well as 1-week-old
mouse epiphyseal cartilage. Fetal human articular
cartilage proteoglycan digested with
chondroitinase ABC (Hascall and Heinegård
1974) is used to induce arthritis in female
BALB/c mice. The mice are sensitized by intra-
peritoneal injection of 100 μg of chondroitinase
ABC-treated proteoglycan in 100 μl of phosphate-
buffered saline, pH 7.2, and in Freund’s complete
adjuvant in a 1:1 emulsion. They are reinjected
twice more with the antigen in incomplete
Freund’s adjuvant after 1 and 3 weeks. All
BALB/c mice immunized with human articular
cartilage proteoglycan develop arthritis in
diarthrodial joints after the third antigen injection.
Sera from mice with progressive polyarthritis are
tested for antibodies to arthritogenic proteogly-
cans during weeks 12–18 of immunization. The
limbs of all mice are examined daily to record
clinical arthritic changes. Swelling and redness,
as the first symptoms of arthritis, and the thickness
(diameter) of the knee, ankle (intermalleolar
diameter), wrist, and the dorsovolar thickness of
the paw are recorded three times a week. The most
objective joint diameter is the intermalleolar one.
The animals are treated with test drug or vehicle
for 12 weeks and serum samples taken by retro-
orbital puncture for determination of antibodies to
proteoglycans. Seven weeks later, the mice are
sacrificed, and limbs, tails, and lumbar spine are
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fixed, decalcified, and embedded in paraffin for
histological examination.

Evaluation
Mean values of intermalleolar diameter and anti-
body titers of treated and non-treated animals are
compared by nonparametric statistics.

Modifications of the Method
Stimpson and Schwab (1989) described a chronic
remittent erosive arthritis in rats induced by bac-
terial peptidoglycan-polysaccharide structures.

Glant et al. (2011) extended this model to gen-
erate a model based on recombinant human gly-
can1 containing Tcell epitopes suspected of being
arthritogenic. Delemarre et al. (2014) explored the
efficacy of autologous bone marrow transplanta-
tion in this model showing a stabilization of arthri-
tis scores, and Swart et al. (2014) showed that
mesenchymal stem therapy provided by either
the intra-articular or intraperitoneal route may
suppress proteoglycan-induced arthritis in a
murine model.
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Pristane-Induced Arthritis in Mice

Purpose and Rationale
Themineral oil 2,6,10,14-tetramethylpentadecane
(known as pristane) induces a chronic inflamma-
tory arthritis inmice after intraperitoneal injection
(Potter and Wax 1981; Hopkins et al. 1984;
Wooley et al. 1989; Chapdelaine et al. 1991;
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Wooley and Whalen 1991; Levitt et al. 1992; Abe
et al. 1995; Thompson et al. 1998; Wooley
et al. 1998; Vigar et al. 2000). The immunological
involvement in the pathogenesis of pristane-
induced arthritis was studied by several authors
(Bedwell et al. 1987; Thompson et al. 1990;
Ghoraishian et al. 1993; Nishikaku et al. 1994;
Vingsbo et al. 1996; Stasiuk et al. 1997; Morgan
et al. 2004). Moreover, the genetic basis for the
susceptibility to pristane-induced arthritis was
studied (Lu et al. 2002; Olofsson et al. 2003;
Brenner et al. 2005; Jensen et al. 2006). Not
only in mice but also in rats arthritis could be
induced by pristane injections (Vingsbo
et al. 1996; Zheng et al. 2002, 2003; Webster
et al. 2003; Holmberg et al. 2006).

Patten et al. (2004) characterized the model of
pristine-induced arthritis (PIA) in mice by study-
ing the response to antirheumatic agents, expres-
sion of joint cytokines, and immunopathology.

Procedure

Induction and Characterization of PIA
Male DBA/101aHsd mice were placed under
isoflurane anesthesia and injected intraperitoneally
with 0.5 ml of pristane (Sigma-Aldrich, Poole,
UK), and an identical booster injection was given
7 weeks thereafter. The severity of arthritis was
graded visually by assessing the level of swelling
in each paw, including the tarsus (ankle) or carpus
(wrist) joints. The following scoring system was
used: 0.5 = swelling of toes only or very slight
ankle/wrist swelling; 1 = slight swelling of paw;
2 = moderate swelling of paw; 3 = marked swell-
ing of paw; and 4 = substantial swelling of paw.
Thus, the maximum total score per animal was 16.
All batches also contained animals that were not
treated with pristane, and these served as compar-
ators for all studies undertaken.

Mice were observed for paw or toe swelling in
a time-course study lasting up to 180 days after
the first pristane injection. After study termina-
tion, the initially swollen hind paws were obtained
for histologic assessment and allocated to differ-
ent study groups according to the duration of
swelling. The remaining three paws of each ani-
mal were used in cytokine studies.

Drug Preparation and Administration Schedules
The effects of administration of established and
novel antirheumatic compounds were assessed
using a therapeutic dosing schedule. Separate
batches of mice for each drug study were moni-
tored weekly for the development of swollen paws
from day 80 after the first injection of pristane.
Mice were included in the drug studies only if
they developed a score of �1 in a hind paw on
two consecutive weekly observations between
day 120 and day 134 after the first injection of
pristane (n = 7–13 per treatment group). At study
termination, paws were obtained for histologic
and cytokine assessments, normally at 1 h after
the final drug administration.

All orally administered treatments were under-
taken by gavage. Prednisolone was suspended in
0.5 % methylcellulose and administered orally
once daily at a dose of 2 mg/kg. Methotrexate
was dissolved in physiologic saline and adminis-
tered intraperitoneally three times per week at a
dose of 9 mg/kg. Indomethacin and diclofenac
were suspended in 1 % methylcellulose and
given orally once daily at doses of 3 mg/kg and
2 mg/kg, respectively. Celecoxib was suspended
in a solution of 66 % polyethylene glycol, 33 %
water, and 1% dimethyl sulfoxide and was admin-
istered orally twice daily at a dose of
30 mg/kg. Etanercept was dissolved in the sup-
plied vehicle according to the instructions of the
manufacturer and diluted using physiologic saline
and was administered intraperitoneally three
times per week at doses of 300 μg and 100 μg
per mouse. Murine sTNFR, consisting of two
murine p75 receptors fused to murine IgG2a,
was dissolved in physiologic saline and adminis-
tered intraperitoneally three times per week at
doses of 300 μg and 100 μg per mouse. The
selective p38MAPK inhibitor SB242235 (synthe-
sized at the US GSK Research Center) was
suspended in 0.5 % tragacanth and 0.03 M
hydrochloric acid and given orally twice daily at
doses of 30 mg/kg and 15 mg/kg.

Joint Cytokine Messenger RNA (mRNA)
and Protein Assays
The levels of mRNA and protein for the
proinflammatory cytokines TNFα, IL-1β, and
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IL-6 were measured in disaggregated joints by
TaqMan real-time reverse transcription-
polymerase chain reaction (PCR) and enzyme-
linked immunosorbent assays (ELISAs),
respectively. At study termination and, in the
drug studies, 1 h after the final drug treatment
administration, the primary ankle joint was
removed for histology, and the remaining paws
were removed and snap-frozen in liquid nitrogen
(six to eight mice per group). For cytokine assess-
ment, the paw showing the highest score for
swelling was selected with the proviso that it had
also been swollen at the start of the drug study. If
the remaining three paws exhibited no swelling at
study termination, then the remaining ankle was
selected for assay. Whole paws were frozen and
pulverized using a mortar and pestle filled with
liquid nitrogen.

For the mRNA studies, total RNAwas isolated
from homogenized paws using RNeasy Mini Kits
(Qiagen, Crawley, UK). Samples were treated
with 10 units of RNase-free DNase (Qiagen) for
15 min during the RNA isolation process. Reverse
transcription of mRNA was carried out using
TaqMan reverse transcription reagents in an MJ
Research PTC-200 PCR Peltier Thermal Cycler.
TaqMan probes and forward and reverse primers
for the genes of interest (TNFα, IL-1β, and IL-6)
and for housekeeping genes (GAPDH and
cyclophilin) were designed with Primer Express
TM software (PE Applied Biosystems). Cytokine
mRNA expression levels were quantified by
TaqMan real-time PCR using the ABI Prism
7900 Sequence Detector System (PE Applied
Biosystems).

Measurement of Serum Antibody Levels
Blood was withdrawn from all mice before pris-
tane injection and monthly thereafter. Levels of
antibodies were determined by ELISA. Plates
were coated with 100 μl of coating buffer (0.4 M
phosphate buffer, pH 7.6) containing 5 μg of each
antigen, at 4 �C overnight. The antigens assessed
were bovine aggrecan, bovine biglycan, human
endoplasmic reticulum molecular chaperone pro-
tein, bovine chondroitin sulfate A, bovine chon-
droitin sulfate B, bovine type I collagen, chick
type II collagen, murine type II collagen peptide,

bovine decorin, bovine double-stranded DNA,
human fibronectin, lupine glucose-6-phosphate
isomerase, mycobacterial 65-kDa heat shock pro-
tein, murine aggregated IgG, joint extract from
normal mice, and joint extract from arthritic
mice. Plates were washed three times with
0.05 % Tween 20 in PBS, and nonspecific binding
was blocked by 5 % nonfat milk in PBS overnight
at 4 �C. Serum samples from at least six individual
mice per time point were used. Since 1:100 was
the dilution determined to produce the optimal
response to high-density proteoglycans, mouse
serum diluted 1:100 in 5 % milk/PBS was added
to each well and incubated overnight at 4 �C.
Subsequently, the plates were washed six times
with 0.05 % Tween 20 in PBS and incubated
with alkaline phosphatase-conjugated goat anti-
mouse IgG (Southern Biotechnology Associates,
Birmingham, Ala., USA) at 37 �C for 1 h. Plates
were again washed six times and developed for
40 min in the dark, using p-nitrophenyl phosphate
as a chromatogen substrate. The optical density
was measured at 405 nm (OD405nm) using an
ultraviolet max spectrophotometer (Molecular
Devices, Sunnyvale, Calif., USA). To ensure uni-
formity of the assay, negative control sera
obtained prior to blood withdrawal and a standard
mouse anti-type II collagen antiserum were titered
on each plate. Antibody binding was expressed as
the OD405nm in units, blanked against control.

Isolation of Splenocytes and Cell
Proliferation Assays
Spleens were excised and immediately immersed
in PBS. Tissue was mechanically disrupted to
release cells, which were suspended in 10 ml of
sterile PBS and centrifuged for 10 min at 1,500
rpm. Prior to resuspension in medium, red blood
cells were removed from the spleen preparations
by adding distilled water for 10 s and then adding
PBS. Spleen cells were then counted using a
hemocytometer and washed and resuspended in
RPMI at a final concentration of 2.5 � 106/ml.

Next, 100 μl of spleen cell aliquots (2.5 � 106/
ml) was transferred to 96-well plates with 50 μg/
ml of each antigen (aggrecan, biglycan, chondroi-
tin sulfate A, chondroitin sulfate B, type I colla-
gen, type II collagen, type II collagen peptide,

2140 M. Braddock



decorin, fibronectin, and heat shock protein; all
were derived from the same species as described
for the serum antibody studies) in complete RPMI
1640 medium. Cells were incubated for 72 h at
37 �C in the presence of antigen. Then 20 μl of
MTT solution (a mitochondrial enzyme substrate)
was added to each well (5 mg/ml). After a 6-h
incubation, the culture supernatant was discarded,
and 200 μl of 10 % sodium dodecyl sulfate solu-
tion was added to each well. After incubation at
37 �C overnight, the OD590nm was read by
microplate photospectrometer (Molecular
Devices). The mean OD values were recorded
for each cell sample as a measure of antigen
stimulation. Antigen-specific responses were cal-
culated as follows: (OD590nm [stimulated culture])
– (OD590nm [spontaneous proliferation culture]).

Histopathologic Evaluation
In all studies, the primary ankle joint that was
swollen at the beginning of the time-course
study or drug study was excised and fixed in
10 % neutral buffered formalin. The tissues were
decalcified with formic acid and embedded in
paraffin blocks. Sections (4–7 μm) were cut
along a longitudinal axis, mounted, and stained
with hematoxylin and eosin or toluidine blue, and
representative slides for each animal were
assessed. The following features were scored in
six to ten animals per group: inflammatory exu-
date, neutrophil and mononuclear cell infiltration,
bone resorption, and synovial hyperplasia. For
drug studies, the effects of the agents on the
pristane-induced pathologic condition were
scored as follows: + = mild inhibition of patho-
logic features, ++ = moderate inhibition of path-
ologic features, and +++ = marked inhibition of
pathologic features.

Evaluation
Graphic and tabular data are expressed as the
mean � SEM. Statistical significance was tested
by application of the Kruskal–Wallis test for clin-
ical scores and by analysis of variance followed
by Dunnett’s test for the cytokine mRNA and
protein time-course results. Antibody and cell
proliferation studies were analyzed using the
least-squares significant difference post hoc test.

Modifications of the Method
Brenner et al. (2006) published thermal signature
analysis as a novel method for evaluating inflam-
matory arthritis activity using rats with Freund’s
adjuvant-induced monoarthritis and pristane-
induced arthritis. The thermal imaging system
employs a platinum silicide 256 � 256 pixel
detector array filtered to be sensitive to infrared
radiation at a wavelength of 3–5 μm.

Lange et al. (2005) investigated the mode of
action of methotrexate in different models for
rheumatic arthritis, such as fibroblast-induced
arthritis in SCID mice, collagen-induced arthritis
and anti-collagen II antibody-induced arthritis in
rats, and pristane-induced arthritis in DA rats, and
models of multiple sclerosis, such as experimental
autoimmune encephalomyelitis in (Balb/c �
B10.Q) F1 and B10.Q mice.

Pristane induces lupus-like kidney and pulmo-
nary disease in mice (Satoh et al. 1995; Richards
et al. 1998; Lin et al. 2004; Chae et al. 2006).

De Franco et al. (2014) used the pristane-
induced arthritis model to dissect genetic determi-
nants for high inflammation susceptibility and
demonstrate the involvement of loci interaction
with the Slc11a1 gene.
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Streptococcal Cell Wall-Induced Arthritis

Purpose and Rationale
Streptococcal cell wall (SCW)-induced arthritis is
a chronic and erosive polyarthritis which may be
induced in susceptible Lewis rats by a single
injection of a sterile, aqueous suspension of
SCW via the intraperitoneal route of administra-
tion (Cromartie et al. 1977).

The model has been used to study the efficacy
of a number of experimental drugs which include
the immunosuppressant cyclosporine A (Yocum
et al. 1986); antibodies to IL-4, IL-10, interferon-
γ, and monocyte chemotactic protein-1 (Schrier
et al. 1998; Schimmer et al. 1998); the phospho-
diesterase inhibitor rolipram (Laemont
et al. 1999); the bisphosphonate clodronate
(Richards et al. 2001); N-butyryl glucosamine
(Wang et al. 2007); an inhibitor of the
purinoreceptor P2X7 (McInnes et al. 2014); and
the TNF-a inhibitor etanercept (Chakravathy
et al. 2014).

Procedure
Lewis rats, typically 120–150 g at the start of the
study, receive an injection into the ankle joint of
SCW (Lee Laboratories, Grayson, GA, USA).
Susceptible animals can be identified by intra-
articular injection of SCW (5 μg) into the ankle
joint up to day 21 prior to any therapeutic inter-
vention, which may reflect an acute phase of
arthritis induction. The chronic, reactivation
phase of the study, during which therapeutic inter-
vention is typically investigated, is achieved by
intravenous injection of SCW (100–200 μg).
Studies normally run for 6–7 days post intrave-
nous injection of SCW but may run for up to
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30 days; animals are sacrificed prior to and after
intravenous challenge for blood analysis and
ankle joint assessment.

Evaluation
Disease severity is typically assessed using the
following criteria:

1. A direct measurement of ankle swelling and
mechanical hyperalgesia by von Frey thresh-
old using nylon filaments

2. Assessment of histopathological measures
which typically include synovitis, inflamma-
tion of synovial sub-lining, chondronecrosis,
and subchondral bone resorption

3. Radiographical assessment of joint structure

It is also common practice to take blood sam-
ples for analysis of biomarkers and drug pharma-
cokinetics. Rioja et al. (2005) conducted an
extensive analysis of the gene expression profile
in response to SCW-induced arthritis.

Modification of the Method
Kuiper et al. (1998) used a single intravenous
injection of SCw (25 μg) and assessed the effects
of TNF-α and IL-1β blockade by administration
of anti-cytokine antibodies 1 h prior to arthritis
induction. Wang et al. (2007) induced arthritis by
a single intraperitoneal injection of SCW (15 μg/g
weight of rat) and studied the disease-modifying
effects ofN-butyryl glucosamine commencing the
day after SCW injection.
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Experimental Autoimmune Thyroiditis

Purpose and Rationale
Immunization of rats or mice with porcine thyro-
globulin results in thyroiditis (Vladutiu and Rose
1971; Vladutiu 1983; McGregor et al. 1983;
Hassman et al. 1985; Salamero et al. 1987;
Fournier et al. 1990).

Procedure
Crude porcine thyroglobulin (PTg) solution is
emulsified in complete Freund’s adjuvant in a
1:1 ratio. Female mice (6–8 weeks old) are primed
with 50 μg PTg given s.c. into four or five sites of
injection and are boosted 14 days later with the
same dose of PTg (s.c.) emulsified in incomplete
Freund’s adjutant. The test compounds are admin-
istered from day 0 (at priming) until day 21. Mice
are bled on day 21 and on day 28 after priming.
The sera are tested for the levels of anti-PTg
antibodies using an enzyme-linked immunosor-
bent assay (ELISA). On day 28, the animals are
sacrificed and the thyroid glands prepared. Five-
micrometer-thick sections are stained with Mas-
son-Goldner’s trichrome solution.

Evaluation
The histological severity of experimental autoim-
mune thyroiditis is graded as a function of mono-
nuclear cell thyroid infiltration indices:

1. Interstitial accumulation of inflammatory cells
distributed between two or more follicles

2. One or two foci of inflammatory cells reaching
at least the size of one follicle

3. 10–40 % of the thyroid replaced by inflamma-
tory cells

4. More than 40 % of the thyroid replaced by
inflammatory cells

Mean values of treated animals are compared
with controls.

Modifications of the Method
Castagliola et al. (1994) induced autoimmune
thyroid disease in BALB/c mice by immunizing
with the extracellular domain of the human TSH
receptor expressed as a maltose-binding protein
fusion in bacteria. This type of thyroiditis could be
transferred to naive BALB/c and NOD mice
(Castagliola et al. 1996).

Green et al. (1995) described a spontaneous
model of autoimmune thyroiditis in MRL-lpr/
lpr mice.

Furthermore, Green et al. (1996) induced thy-
roiditis in Lewis rats by immunization with thy-
roid extract and thyroglobulin. A reduction of the
gap junction proteins connexin 43, connexin
32, and connexin 26 was found in diseased thy-
roid tissue.

Wang et al. (2014) showed that overexpression
of the human BH3 interacting-domain death ago-
nist (BID) in the thyroids of transgenic mice may
increase their sensitivity to iodine-induced auto-
immune thyroiditis, noting that BID expression
alone is not sufficient to induce thyroiditis.

References and Further Reading
Castagliola S, Many MC, Stalmans-Falys M,

Tonacchera M, Vassart G, Ludgate M (1994)
Recombinant thyrotropin receptor and the
induction of autoimmune thyroid disease in
BALB/c mice: a new animal model. Endocri-
nology 135:2150–2159

Castagliola S, Many MC, Stalmans-Falys M,
Vassart G, Ludgate M (1996) Transfer of thy-
roiditis, with syngeneic spleen cells sensitized
with the human thyrotropin receptor, to naive

Methods for Testing Immunological Factors 2145



BALB/c and NOD mice. Endocrinology
137:4637–4643

Fang Y, Zhao L, Parker CA, Yan F, Zhang C
(2010) Modulation of apoptosis: new opportu-
nities for drug discovery to treat autoimmune
thyroiditis. Recent Pat Inflamm Allergy Drug
Discov 4:255–260

Fournier C, Gepner P, Saouk M, Charreire J
(1990) In vivo beneficial effects of cyclosporin
A and 1,25-dihydroxyvitamin D3 on the induc-
tion of experimental autoimmune thyroiditis.
Clin Immunol Immunopathol 54:53–63

Green LM, LaBue M, Lazarus JP, Colburn KK
(1995) Characterization of autoimmune thy-
roiditis inMRL-lpr/lpr mice. Lupus 4:187–196

Green LM, LaBue M, Lazarus JP, Jennings JC
(1996) Reduced cell-cell communication in
experimentally induced autoimmune thyroid
disease. Endocrinology 137:2823–2832

Hassman RA, Dieguez C, Rennie DP, Weetman
AP, Hall R, McGregor AM (1985) The influ-
ence of cyclosporin A on the induction of
experimental autoimmune thyroid disease in
the PVG/c rat. Clin Exp Immunol 59:10–16

Iddah MA, Macharia BN (2013) Autoimmune
thyroid disorders. ISRN Endocrinol 2013.
Article ID 509764, 9 pp. doi:10.1155/2013/
509764

McGregor AM, Rennie PD, Weetman AP,
Hassman RA, Foord SM, Dieguez C, Hall R
(1983) The influence of cyclosporin A on
experimental autoimmune thyroid disease in
the rat. Life Sci 32:97–108

Luo Y, Kawashima A, Ishido Y, Yoshihara A,
Oda K, Hiroi N, Ito T, Ishii N, Suzuki K
(2014) Iodine excess as an environmental risk
factor for autoimmune thyroid disease. Int J
Mol Sci 15:12895–12912

Mori K, Yoshida K, Ishi K, Moroshi K,
Nakagawa Y, Hoshikawa S, Ozaki H,
Takahashi Y, Ito S (2011) Experimental auto-
immune thyroiditis in human parvovirus B10
transgenic mice. Autoimmunity 44:483–489

Penhale WJ, Farmer A, Irvine WJ (1975) Thy-
roiditis in T cell-depleted rats: influence of
strain, radiation dose, adjuvants and
antilymphocyte serum. Clin Exp Immunol
21:362–375

Salamero J, Remy JJ, Michel-Béchet M, Chareire
J (1987) Experimental autoimmune thyroiditis
induced by a 5–10 kDa tryptic fragment from
porcine thyroglobulin. Eur J Immunol
17:843–848

Tamura K, Woo J, Murase N, Nalesnik M, Thom-
son AW (1993) Inhibitory effect of FK 506 on
autoimmune thyroid disease in the PVG rat.
Ann N YAcad Sci 696:257–262

Vladutiu AO (1983) Effect of cyclosporine on
experimental autoimmune thyroiditis in mice.
Transplantation 35:518–520

Vladutiu AO, Rose NR (1971) Autoimmune
murine thyroiditis relation to histocompatibil-
ity (H-2) type. Science 174:1137–1139

Wang SH, Fan Y, Baker JR Jr (2014)
Overexpression of BID in thyroids of trans-
genic mice increases sensitivity to iodine-
induce autoimmune thyroiditis. J Transl Med
12:180

Coxsackievirus B3-Induced Myocarditis

Purpose and Rationale
The effects of immunosuppressant drugs can be
studied in the murine model of coxsackievirus B3
myocarditis.

Procedure
Three-week-old male BALB/c mice are kept for
7 days before the experiment in a single, self-
contained animal isolation unit to exclude
pre-diseased animals. They are maintained in dis-
posable, filter-topped cages and handled with
gloves by gowned and masked personnel. The
intraperitoneal route is used for injection of virus
in a 0.5 ml volume.

The CVB3 virus strain is grown on either
Hep-2 or VERO cells, aliquoted, and maintained
at �70 �C until use. At the time of infection, seed
virus is grown on either VERO or LLC-MK-2
cells with Dulbecco’s modified Eagle medium,
12 % fetal calf serum, and gentamicin. Virus is
harvested and adjusted to an inoculum of
1.75 � 107 plaque-forming units/0.5 ml
RPM-1640. The test drugs are given subcutane-
ously daily for 8 days. On day 8, the animals are
sacrificed, the hearts rapidly removed, and
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divided into two equal cross sections. The basal
portion is snap frozen for isolation of virus and
determination of drug level. The apical portion is
fixed in 10 % formalin, dehydrated, and embed-
ded in paraffin. Five-mm sections are stained with
hematoxylin–eosin and Masson’s trichrome
stains. The bases of the individual hearts are
minced with a sterile scalpel, suspended in 1 ml
RPMI-1640, and homogenized in a glass tissue
grinder. The suspension is centrifuged at 8,000 g
for 10 min at 4 �C. Supernatants are harvested and
frozen at �70 �C until assay. Serial tenfold dilu-
tions of heart homogenates in minimum essential
medium are layered on confluent, 72-h-old VERO
cells that had been grown in 96-well microtiter
plates. Monolayers are checked daily for 7 days
for presence or absence of virus and rate of cell
destruction.

Evaluation
The slides are examined by two observers blinded
to the slide code, and inflammation and necrosis
are quantitated.

Modifications of the Method
Lane et al. (1991) showed that lipopolysaccha-
rides promote CB3-induced myocarditis in other-
wise resistant B10. A mice.

Beisel et al. (1991) identified a putative shared
epitope between coxsackievirus B4 and mouse
alpha cardiac myosin heavy chain.

Gauntt et al. (1993) found that epitopes shared
between coxsackievirus B3 and normal heart tis-
sue contribute to CVB3-induced myocarditis
in mice.

Xu et al. (2004) used the murine model to
deliver a chitosan–DNAvaccine and showed pro-
tection against acute CVB3 challenge. Park
et al. (2009) and Yue et al. (2009) further explored
approaches supportive of potential immunothera-
peutics in this model using pancreatitis as an addi-
tional endpoint (Park et al. 2009). The model has
also been used to investigate the innate immune
response as a predictor for the progression of
cardiovascular disease and heart failure in male
mice (Onyimba et al. 2011) and to better under-
stand the efficacy of further immunotherapeutic
approaches where oral administration of

interferon-α2b-transformed Bifidobacterium
longum was shown to protect animals from
CVB3-induced myocarditis (Yu et al. 2011).

A number of other agents have been tested in
this model and include galectin-9 which amelio-
rated CVB3-induced myocarditis (Lv et al. 2011),
IL-17 which was found to be protective (Xie
et al. 2012), and the micro-RNA miR-21 which
alleviated CVB3-induced myocarditis
(He et al. 2013). A comparison of the effects of
ivabradine and carvedilol showed an expected
effect on heart rate reduction and a potential
anti-inflammatory effect in the CVB3-induced
myocarditis model.

Instead of coxsackievirus B3, Monrad
et al. (1986) used encephalomyocarditis virus to
induce experimental myocarditis in mice.
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Porcine Cardiac Myosin-Induced
Autoimmune Myocarditis in Rats

Purpose and Rationale
Pummerer et al. (1991), Inomata et al. (1995),
Suzuki (1995), and Dimitrijevic et al. (1998)

2148 M. Braddock



described autoimmune myocarditis in rats
induced by porcine cardiac myosin.

Procedure
Male Sprague–Dawley or Lewis rats at the age of
8–10 weeks are immunized with porcine cardiac
myosin either purchased from Sigma (St. Louis,
MO, USA) or prepared from the ventricular mus-
cle of porcine hearts according to Murakami
et al. (1976). The cardiac myosin fraction is
dissolved in phosphate buffer at a concentration
of 10 mg/ml. The antigen solution is emulsified
with equal volume of complete Freund’s adjuvant
supplemented with heat-killed mycobacterium
tuberculosis. Rats are injected subcutaneously
into the foot pad with an immunizing dose of
5 mg of antigen in complete Freund’s adjuvant/
kg of body weight. Rats are injected intraperito-
neally with test compounds either from day 0 to
6 (early treatment group) or from day 14 to
20 (late treatment group).

Immunized rats are sacrificed on days 8, 16,
21, and 34, respectively. Disease course and
severity are analyzed by macroscopic findings of
the hearts and heart weight/bodyweight ratio as
well as by histological and immunohistochemical
analysis. Macroscopic findings are scored as fol-
lows: 0, normal finding; 1, presence of focal
discolored area on the surface; and 2, presence
of diffuse discolored areas (Kodama et al. 1995).

The hearts are removed and weighted immedi-
ately after the rats are sacrificed, fixed in 10 %
buffered formalin, and embedded in paraffin.
Serial section (5 μm in thickness) is stained with
hematoxylin–eosin. The severity of myocarditis is
determined according to the following scoring
system: 0, no inflammation; 1, histological cross
section infiltrated up to 5 %; 2, 5–10 % infiltrates/
section; 3, 10–20 % infiltrates/section; greater
than 20 % infiltrates/section.

For immunohistochemical staining, heart
samples are embedded in OCT compound
(Miles, Elkhart, IN) and rapidly frozen. Cryostat
sections are cut sequentially at 7 μm in thickness,
mounted on glass slides, and prepared for
immunoperoxidase staining. Sections are fixed
in cold acetone for 10 min and extensively washed
in 0.1 M Tris buffer solution, pH 7.6. Murine

monoclonal antibodies specific for different rat
molecules are added at appropriate concentra-
tions. After incubation at 4 �C overnight and
further buffer washes, the sections are incubated
with peroxidase-conjugated anti-mouse immuno-
globulins for 60 min. Peroxidase reaction is visu-
alized with 0.05 % diaminobenzidine in 0.01 %
H2O2 for 7–8 min. The color development is
stopped by washing slides in running water. All
samples are lightly counterstained with hematox-
ylin, mounted in gelatin/glycerol medium, and
assessed by light microscopy.

Evaluation
Macroscopic and microscopic scores are
expressed as mean values. Body weights, heart
weights, and heart weight/body weight ratio are
expressed as mean � SD. Student’s t-test for
paired samples is used for comparison data
within groups in reference to time, while
two-sample t-test is used for comparison data
between groups.

Modifications of the Method
Koyama et al. (1995) immunized Lewis rats with
human cardiac myosin suspended in complete
Freund’s adjuvant and induced severe active
myocarditis with acute and chronic heart failure.
The baseline left ventricular pressure was signif-
icantly lower in the chronic phase group, and
peak dP/dt was significantly lower in both the
acute phase group and the chronic phase group
than in the respective controls. The animal
model was recommended to study both acute
heart failure related to acute myocarditis and
chronic heart failure due to diffuse myocardial
fibrosis.

Neu et al. (1990, 1991; Neu and Ploier 1991;
Penninger et al. 1993) induced severe autoim-
mune myocarditis in some mouse strains by
immunization with cardiac myosin in complete
Freund’s adjuvant.

Wahed et al. (2005) used the method of immu-
nization with porcine cardiac myosin to test the
effects of eplerenone, a selective aldosterone
blocker, on the progression of left ventricular dys-
function and remodeling in rats with dilated
cardiomyopathy.
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Experimental Allergic Encephalomyelitis

Purpose and Rationale
Experimental allergic encephalomyelitis was first
produced in laboratory animals by Rivers et al. in
1933. This pathological model is an immunologic
disease arising from a delayed hypersensitivity
reaction to nervous tissue. In many respects, the
model resembles autoimmune diseases, especially
demyelinating diseases, in man (Constantinescu
et al. 2011), and the utility of animal models as for
drug discovery and development for neurological
diseases especially multiple sclerosis (MS) has
been extensively reviewed (Croxford et al. 2011;
Denic et al. 2011; Pachner 2011; Singhal and
Srivastava 2012; Tian et al. 2013). The method
is used for evaluation of immunosuppressive
properties of drugs (Warford and Robertson
2011; Dasgupta et al. 2011; Paris et al. 2013;
Mondal and Pahan 2015).

Procedure
Preparation of the encephalitogen: 3 g of spinal
cord from guinea pigs or rats is homogenized with
7.5 ml bidistilled water, 3.8 ml phenol, and 7.5 ml
complete Freund’s adjuvant under cooling.

Groups of 6–12 male Wistar–Lewis rats with
an initial body weight of 130–200 g are used. On
day 0, experimental allergic encephalomyelitis is
induced by subplantar injection of 0.1 ml of the
encephalitogen into the left hind paw. An equal
volume of Bordetella pertussis vaccine concen-
trate (200 � 109 organisms/ml) is injected into
the same foot. From days 1–2, the animals receive
the test compound or vehicle only or the standard
drug by oral administration once a day. Body
weights of the animals are recorded every second
day. The clinical signs of experimental allergic
encephalomyelitis consist of ataxia or paresis, i.
e., grossly irregular gait and weakness of one or
both hind legs followed by flaccid paralysis of the
hindquarters, urinary incontinence, fecal impac-
tion, and abdominal wall flaccidity. Animals
showing one of these clinical signs are considered
positive for the purpose of evaluation.

Evaluation
Starting from day 7, the severity of clinical signs
and mortality are determined daily and scored
according to the following scheme:

Score

Per 20 g loss of weight 1

Paralysis of the tail 1

Paralysis of the hind paw 3

Complete paralysis 5

Death 6

Calculation of the Results
The delay of onset of the paralytic symptoms is
determined. The total score per day is recorded for
treated and control groups. On the day of maximal
clinical symptoms occurring among control ani-
mals, the total score of the treated groups is com-
pared to the total score of the control group. The
percentage change is evaluated.

Doses of 0.5 mg/kg p.o. methotrexate, 1 mg/kg
p.o. hydrocortisone, and 2.5 mg/kg p.o. cyclo-
phosphamide were found to be active, whereas
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nonsteroidal anti-inflammatory compounds were
inactive.

Critical Assessment of the Method
The model of experimental allergic encephalomy-
elitis in rats is suitable to distinguish between
immunosuppressive and anti-inflammatory
drugs. Experimental autoimmune encephalomy-
elitis is considered as a rodent model of the auto-
immune disease multiple sclerosis (Pearson
et al. 1997; Deng et al. 2002).

Modifications of the Method
The phosphodiesterase inhibitor pentoxifylline
was found to prevent induction of experimental
autoimmune encephalomyelitis in Lewis rats
(Rott et al. 1993).

Martin and Near (1995) studied the protective
effect of the interleukin-1 antagonist IL-1ra on
experimental allergic encephalomyelitis in
Lewis rats.

Experimental autoimmune encephalomyelitis
in different strains of mice was described by
Heremans et al. (1996), Glabinski et al. (1997),
and Liblau et al. (1997).

Baker et al. (1990, 1991, 2000) induced exper-
imental allergic encephalomyelitis in Biozzi
AB/H mice by sensitization with 1 mg of mouse
spinal cord homogenate emulsified in Freund’s
complete adjuvant on days 0 and 7. The disease
is characterized by relapsing–remitting episodes
similar to multiple sclerosis in human beings.
Biozzi AB/H mice also develop spasticity and
tremor which can be antagonized by
cannabinoids.

A chronic relapsing–remitting form of experi-
mental autoimmune encephalomyelitis was
induced in the common marmoset Callithrix
jacchus following a single immunization with
human white matter by Massacesi et al. (1995)
and Genain and Hauser (1997) and recommended
as a new model for multiple sclerosis. This model
has been used for histopathological characteriza-
tion of magnetic resonance imaging-detectable
white matter lesions in a primate model of multi-
ple sclerosis by ‘t Hart et al. (1998, 2004).

Experimental allergic neuritis in several animal
species has been described by Waksman and

Adams (1955, 1956); King et al. (1983);
McCombe et al. (1990), and Nakayasu
et al. (1990). This disorder has been considered
to show similarities to the Guillain–Barré syn-
drome in man. The demyelinating process initi-
ated by the injected antigens is a lymphocyte-
mediated reaction in which activated macro-
phages strip myelin off the axons. Hartung
et al. (1987) described the adoptive transfer exper-
imental autoimmune neuritis in Lewis rats by
injection of P2-reactive T lymphocyte cell lines.

Mix et al. (1992) studied the effect of stilbene-
type anion channel blockers on the immune
response during experimental allergic neuritis
induced by bovine peripheral myelin.

Kojima et al. (1994) investigated the patho-
genic potential of autoimmune T cell responses
to nonmyelin autoantigens in the Lewis rat using
the astrocyte-derived calcium-binding protein
S100β as a model nonmyelin autoantigen. In con-
trast to the experimental autoimmune encephalo-
myelitis induced by the adoptive transfer of
myelin basic protein-specific T line cells, S100β-
specific T cell transfer induced intense inflamma-
tion not only in the spinal cord but also throughout
the entire CNS and also in the uvea and retina of
the eye.

Gautam et al. (1992) reported that a
polyalanine peptide with only five native basic
protein residues induces autoimmune encephalo-
myelitis in mice. This peptide, called myelin basic
protein (MBP) Ac1–11, has been used by several
authors for further studies on experimental auto-
immune encephalomyelitis (Ratts et al. 1999;
Matejuk et al. 2003).

Pearson et al. (1997) reported the induction of a
heterogeneous T cell receptor repertoire in
(PL/JXSJL/J) F2 mice by myelin basic protein
peptide Ac1–11 and its analogue Ac1–11[4A].

Deng et al. (2002) found that expression of the
tyrosine phosphatase Src homology 2 domain-
containing protein tyrosine phosphatase 1 deter-
mines the T cell activation threshold and severity
of experimental autoimmune encephalomyelitis.

Maron et al. (2002) investigated the immuno-
logical properties of Cop1 (glatiramer acetate) to
determine the degree to which its effects were
antigen specific using myelin basic protein T cell
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receptor transgenic mice. Immunization of these
mice fed glatiramer acetate, myelin basic protein,
or MBP Ac1–11 resulted in decreased prolifera-
tion and IL-2, IL-6, and IFN-γ production and
increased secretion of IL-10 and TGF-β in
glatiramer acetate-fed animals.

Gilgun-Sherki et al. (2003) reported that
riluzole suppresses myelin oligodendrocyte
glycoprotein-induced experimental autoimmune
encephalomyelitis in mice.

Pollak et al. (2003) studied the experimental
allergic encephalitis-associated behavioral syn-
drome and the modulation by anti-inflammatory
treatments.

Diab et al. (2004) found that ligands for the
PPAR-γ and the retinoid X receptor exert additive
anti-inflammatory effects on experimental auto-
immune encephalomyelitis. Duckers et al.
(1997) studied the effect of a neurotropic treat-
ment on cortical lesion development in experi-
mental allergic encephalomyelitis in rats by
longitudinal in vivo magnetic resonance imaging
methods.
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Acute Graft-Versus-Host Disease (GVHD)
in Rats

Purpose and Rationale
The intravenous injection of a mixture of parental
splenocytes into healthy inbred F1-rats results in
graft-versus-host (GVH)-induced immune abnor-
malities. This is due to T lymphocytes in the donor
inoculum that recognize the major histocompati-
bility alloantigens expressed by the F1-animals.
The host F1 T cells are genetically unable to rec-
ognize antigens of the parental donor as foreign;
thus, the response involves only donor recogni-
tion of host and not host recognition of donor. The
ensuing immune abnormalities lead to clinical
symptoms of an acute, lethal GVH-disease
(GVHD), i.e., profound immunodeficiency, ane-
mia, hypogammaglobulinemia, and runting.

Procedure
Three- to 4-month-old male F1-hybrid rats
of the inbred strains Lewis (Rt-1 l) and Brown
Norway (BN, Rt-1n) (Zentralinstitut f€ur
Versuchstierkunde, Hannover, Germany) are
used as hosts for cell grafts from the Lewis paren-
tal strain. The bone marrow cells are obtained by
flushing hind femur bone shafts with culture
medium. These cells are then pooled together
with spleen cells (ratio 2 bones/1 spleen). The
cell viability, determined by trypan exclusion,
has to be more than 90 %. Each recipient is

injected with about 40 � 107 cells in a 1.5 ml
suspension volume. The route of injection is the
penis vein, allowing an optimal control of correct
intravenous application.

Prophylactic Drug Application
For this experiment, two groups of 6 F1-hybrids
each are injected with the abovementioned bone
marrow/spleen cell suspension. One group
receives the test drug orally and daily until the
end of the experiment, homogeneously suspended
in 1 % carboxymethylcellulose (CMC) solution.
The other group receives CMC alone and, thus,
serving as the GVHD control group. The experi-
ment is terminated 2 weeks after disease induc-
tion, i.e., 1 week after the first appearance of
GVHD symptoms. All animals are sacrificed and
clinical aspects documented; spleens weighed;
histology of the skin, liver, spleen, and lymph
nodes performed; and organs photographed.

Therapeutic Drug Application
In this experiment, rats are separated into four
groups and treatment begins with the first sign of
GVHD symptoms (beginning of the second
week). Because of the expected, greater therapeu-
tic difficulty, the daily dose of the test drug has to
be doubled, again for 2 weeks duration.

The experiment is terminated either by sacrific-
ing those rats that are too sick to be able to move
around the cage or at the end of the 4-week obser-
vation period, regardless of the clinical condition
of the animals. The clinical-chemical parameters
are determined by routine procedures conducted
with a Hitachi autotechnicon.

Evaluation
The tested parameters of therapeutic success or
disease, respectively, are survival rate (%), spleen
weight (g), and body weight (g) as well as clinical-
chemical parameters (bilirubin, alkaline phospha-
tase, creatinine, white cell count) after 2 and
3 weeks.

Modifications of the Method
Gelpi et al. (1994) established a chronic graft-
versus-host disease in (C5BL/10 � DBA/2) F1
mice with an injection of lymphoid cells from
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the parent DBA/2 strain. Most of the animals
developed antibodies against transfer
RNA/protein particles.

Mosier et al. (1988) reported transplantation of
human peripheral blood lymphocytes (PBL) into
severe combined immunodeficient (SCID) mice
to construct hu-PBL-SCID mice. Kim
et al. (1997) suggested these mice for routine
immunotoxicity investigations using lymph
nodes of intestines as the lymphocyte sources.

Ford et al. (1970) and Schorlemmer
et al. (1997, 1998) used the popliteal lymph
node assay to study the local graft-versus-host
reaction. The test is based on the enlargement of
the draining popliteal lymph nodes as a result of
injecting immunocompetent cells (1 � 108 paren-
tal Lewis spleen cells) into the hind foot pad of
Lewis � Brown Norway F1 recipients. The reac-
tion is measured at day 6 after challenge as a gain
in lymph node weights.

Xu et al. (2010) explored the effects of both
rapamycin and tacrolimus in the model measuring
animal survival after liver transplantation and
reporting a differential effect on survival between
the two drugs. Xia et al. (2013) investigated the
effects of Trichostatin A (TSA) in the rat model of
liver transplantation and concluded that TSA did
not abrogate acute graft-versus-host disease due to
a downregulation of regulatory T cells.
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Influence on SLE-Like Disorder in
MRL/lpr Mice

Purpose and Rationale
Systemic lupus erythematosus (SLE) is an auto-
immune disease in man that affects multiple body
organs and is characterized by the development of
certain types of self-antigens. Primarily, the anti-
bodies formed against double-stranded DNA
(dsDNA), the most prevalent in this ailment, com-
plex together and, with complement, deposit in
the small blood vessels, leading to widespread
vasculitis. MRL Mpf lpr/lpr (MRL/lpr) mice
spontaneously develop a severe disease with
many symptoms very similar to human SLE, i.e.,
hypergammaglobulinemia and glomerulonephri-
tis (Theofilopoulos and Dixon 1981). Recent
years have seen the development of numerous
animal models of skin disease which have assisted
the discovery of potential new drugs for clinical
testing (Rottman and Willis 2010; Avci
et al. 2013) which in part have allowed progres-
sion of a number of small-molecule candidate
drugs (Kyttaris et al. 2013; Markopoulou and
Kyttaris 2013).

Procedure
Female MRL/lpr mice (originally from Jackson
Laboratories, USA), displaying distinct symp-
toms of SLE (between 12 and 13 weeks of age),
are randomized and divided into groups of
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12 animals each. At this age, the animals have
already clinical manifestations of the SLE-like
illness, as determined by the disease index, but
have not yet developed proteinuria. Animals with
early symptoms of disease are treated with various
drugs, e.g., leflunomide, cyclosporine A, azathio-
prine, cyclophosphamide, or prednisolone, for
11 weeks, and the survival rate and disease index
of these animals are followed for 24 weeks. The
disease index and urine protein level are deter-
mined once weekly.

Disease Index
The subsequent clinical parameters are taken into
consideration:

1. Ears: reddening of the skin, deterioration of the
pinna

2. Nose: loss of hair, wasting of the skin
3. Lymph nodes: detection of swollen lymph

nodes on any part of the body, especially the
neck and extremities

4. Fur: general condition of fur (e.g., shabby,
mangy, etc.), loss of hair

5. Skin: inflammation of the skin, scab, and/or
granuloma formation

6. Eyes: exophthalmos, deterioration due to
inflammation, tumor formation around the
eye, swelling of the eyelid with eventual clo-
sure of the eye

7. Paws: reddening of the skin, swelling of the paw

Evaluation
A score for each of the above-described parame-
ters is given according to the severity of the symp-
toms as follows:

Points for Clinical Index

Involvement Detectable Moderate Severe

Ears (each) 0.5 1.0 1.5

Nose 1.0 2.0 3.0

Lymph node
(each)

1.0 2.0 3.0

Fur 1.0 2.0 3.0

Skin 1.0 2.0 3.0

Eyes (each) 1.0 2.0 3.0

Paws (each) 0.5 1.0 1.5

Body weight (one point for 5 g difference from
week to week)

The determination of the disease index is
performed, weekly, by the same individual, but
without knowledge of the group being evaluated.
The points, for each animal, are registered and the
total score, of each group, summarized. The aver-
age score for the group is calculated, and signifi-
cance between the experimental group and the
untreated diseased group is determined using the
Student’s t-test.

Proteinuria
Pooled urine is collected from each experimental
group and the amount of protein in the urine is
calculated.

Modifications of the Method
In addition to a lupus-like syndrome and massive
T cell proliferation, MRL-1pr/1pr (MRL/1) mice
develop an arthritic process very similar serolog-
ically and histologically to human rheumatoid
arthritis. Boissier et al. (1989) found that in these
animals, mouse type II collagen is antigenic, but
not arthritogenic.

Holmdahl et al. (1991) studied the involvement
of macrophages and dendritic cells in synovial
inflammation of collagen-induced arthritis in
DBA/1 mice and spontaneous arthritis in
MRL/lpr mice.

Rordorf-Adam et al. (1985) used serum amy-
loid P component and autoimmune parameters in
the assessment of arthritis in MRL/lpr/lpr mice.

Furukawa et al. (1996) studied the autoimmune
disease-prone genetic background in relation to
Fas defect in MRL/lpr mice.

Kanno et al. (1992) found spontaneous develop-
ment of pancreatitis in the MRL/Mp strain of mice.

Kusakari et al. (1992) compared hearing acuity
and inner ear disorders of MRL/lpr mice with
those of BALB/c mice and found a significantly
higher auditory brain stem response threshold.
They recommended this as a model of sensorineu-
ral hearing loss.

Bundick and Eady (1992) investigated the
effects of an immunosuppressive agent on the
development of spontaneous lupus disease in
female NZBW F1-hybrid mice.
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Walker et al. (1996) reported a powerful sup-
pressive effect of testosterone on the autoimmune
disease analogous to systemic lupus
erythematodes spontaneously developed by
F1-hybrids of New Zealand Black (NZB) �
New Zealand White (NZW) mice. A model was
developed in which NZB dams carrying
NZB/NZW fetuses were treated with testosterone
in a dose adequate to masculinize the external
genitalia in female fetuses.

Zoja et al. (1998) investigated bindarit, a com-
pound devoid of immunosuppressive properties,
in NZB/W F1 hybrid mice developing an immune
complex glomerulonephritis with proteinuria and
progression to renal insufficiency.

Kiberd and Stadnyk (1995) studied the role of
endogenous interleukin-1 in established lupus
nephritis in MRL-lpr/lpr mice by administration
of the IL-1 receptor antagonist IL-1ra.

Gleichmann et al. (1982) and Schorlemmer
et al. (1997) induced a systemic lupus
erythematodes-like disease in mice by abnormal
T and B cell cooperation. A chronic graft-versus-
host reaction with the pathologic symptoms of
severe glomerulonephritis is induced in B6D2
(C5Bl/6 � DBA/2) F1 hybrid mice receiving
four i.v. injections (one per week) of 1 � 108

parental lymphoid spleen cells from DBA/2
donors. The inoculation of splenocytes into the
BDF1 hybrid mice results in the development of a
chronic GvH reaction with lymphoid hyperplasia,
autoantibody production, and immune complex
glomerulonephritis.

Chan et al. (1995) described ocular changes
occurring in mice with experimental lupus
erythematodes. The ocular disease is character-
ized by bilateral subacute and chronic
inflammation of the eyelids (blepharitis) and
hypertrophic meibomian glands. The severity of
the ocular changes is strain dependent. The
authors recommend this experimental eye disease
as an animal model for chronic blepharitis in
humans.

The changes of lacrimal and salivary glands
found in MRL/lpr mice and other mouse strains
with autoimmune disorders were also regarded as
model of Sjögren’s syndrome in human (Sullivan
and Edwards 1997; Toda et al. 1999).

The MRL-lpr mouse model has been used to
provide cognitive dysfunction in neuropsychiatric
systemic lupus erythematosus (Jeltsch-David and
Muller 2014), and peptide microarray technology
has been developed which may facilitate diagno-
sis and early detection of CNS-SLE (Williams
et al. 2014).

Several studies have investigated the effects of
T cell modulation in the MRL/lpr model (Richard
et al. 2013; Shinsuke and Hiroshi 2013), and the
role of peptidylarginine deiminase and NET for-
mation has been investigated in the MRL/lpr
model (Knight et al. 2014).

An assessment of the value of murine
lupus models for translation of findings into the
clinic (Bender et al. 2014) has highlighted the
individuals’ strengths of the various models
available.
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Prevention of Experimentally Induced
Myasthenia Gravis in Rats

Purpose and Rationale
Myasthenia gravis is an organ-specific autoim-
mune disease in man that results in skeletal mus-
cles’ weakness. Typically, the sufferer has
drooping eyelids, a blank facial expression, and
weak, hesitant speech. This is due to the formation
of autoantibodies against the nicotinic acetylcho-
line receptor (AChR). The formation of autoanti-
bodies to acetylcholine’s receptor leads to a
gradual destruction of the receptors in skeletal
muscles that receive nerve impulses and initiate
muscle contractions. As a result, affected muscles
fail to respond or react only weakly to nerve
signals.

Experimental myasthenia gravis (EMG) can
be induced in rats by injecting them with heter-
ologous AChR or with recombinant α-subunits
(two) of the AChR (portion of the AChR to
which acetylcholine mainly binds) (Lennon
et al. 1991), and the utility of clinical trials to
guide the use of animal models has been recently
addressed (Punga et al. 2015). The animals dis-
play symptoms of myasthenia (electrophysiolog-
ical evidence of altered neuromuscular function)
and detectable antireceptor antibodies. The
severity of the disease can vary, but most ani-
mals display, at the very least, a weakness and
fatigability of foot grip. The disease gradually
leads to abnormal gait and eventually the inabil-
ity of the animals to walk or even right
themselves.

Procedure
Female rats of AO strain, 6–10 weeks old, are
used. Three groups of rats are included in the
experiment:

1. Immunized with acetylcholine receptor
(AChR) protein and treated with test drug.

2. Immunized with AChR protein
without drug.

3. Nonimmunized, non-treated control rats. The
test drug is applied per os daily. First dose is
administered on the day of immunization and
the last on the day of sacrifice.
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Immunization with AChR Protein
AChR protein isolated from Torpedo marmorata
is emulsified with complete Freund’s adjuvant,
and 100 μg/rat is injected intradermally in the
hind foot pad. As additional adjuvant,
2.6 � 1010 Bordetella pertussis microorganism
is administered simultaneously by intramuscular
injection in the hind leg.

Antibody Determination
Anti-AChR-protein antibodies are measured by
enzyme-linked immunosorbent assay (ELISA) as
described by Norcross et al. (1980). AChR protein
is diluted to a final concentration of 2.5 μg/ml in
0.05 M carbonate buffer, pH 9.6. Two hundred ml
of this solution is placed in each well of a
microtitration plate (Flow Laboratories Inc.).
After an overnight incubation at 4 �C, the plates
are washed thoroughly with 0.01 M phosphate-
buffered saline (PBS) solution containing 0.05 %
Tween 20 (Sigma) subsequently referred to as
PBS/T. Sera from all groups of rats are serially
diluted in PBS/T, and 200 μl is added to each
micron well except in the background row (con-
trol row) and incubated at 4 �C for 2 h. After
washing, 200 μl of 1:1,000 diluted peroxidase-
conjugated goat anti-rat immunoglobulin (Sera
Lab. Sussex, England) in PBS/T is added to the
micron wells and incubated for an additional
60 min at 4 �C. After plates are washed, 200 μl
of substrate-citrate buffer and 0.2 μl of 10 %H2O2

are added and then incubated in the dark at room
temperature for 30 min. The reaction is stopped by
addition of 50 μl of 2 M H2SO4 and the OD
determined by using Titert Multiscan.

Two-Color Flow Cytometry
Thymic cell suspensions are obtained by mincing
tissue and passing it through 80-mm stainless
mesh. After being washed three times in PBS,
the cells are resuspended in PBS at a cell density
of 107 viable cells/ml. The cell viability is deter-
mined by the trypan blue exclusion test. Erythro-
cytes are removed by addition of ammonium
chloride. Cell staining and flow cytometric ana-
lyses are done as described by Itoyama
et al. (1989). Thymocyte subsets expressing
CD4 and/or CD8 molecules are defined by

staining with monoclonal antibodies obtained
from Serotec, Oxford, England: phycoerythrin
(PE)-conjugated anti-W3/25 (CD4) and fluores-
cein isothiocyanate (FITC)-conjugated anti-MRC
OX8 (CD8). Two � 105–1 � 106 cells
suspended in 100 ml of PBS are exposed sequen-
tially for 30 min to FITC-conjugated anti-CD8
and PE-conjugated anti-CD4 monoclonal anti-
bodies. Isotype-matched control monoclonal anti-
bodies are used to prove the specificity of binding.
Cell analysis is performed using FACScan flow
cytometer from Becton Dickinson. One � 104

events per sample are analyzed by Consort
30 and Lysis software. All data are collected and
displayed on a log scale of increasing green and
orange fluorescence intensity. This is presented as
two-dimensional contour maps and as percentage
of thymocytes by integrating counts in selected
areas of the contour plots.

Stereologic Analysis of Thymuses
Thymuses of animals of all groups are prepared
for light microscopic analysis. For this purpose,
thymus tissue is fixed in Carnoy’s solution,
embedded in paraffin, and 3–5-μm-thin sections
are stained with hematoxylin and eosin. Cortex
and medulla are analyzed stereologically using
the point counting method described by Weible
(1963). Volume density (Vv) of the examined
structures is determined by the following equa-
tion: Vv = Pi/Pt, where Pi represents the number
of points of the examined structure and Pt the total
number of points. Vv refers to the volume fraction,
i.e., volume of a feature per unit test volume
(Tascaland Vaughn-Williams 1981).

Evaluation
EMG is evaluated clinically by daily examination
of muscle weakness and scored as follows:

+ = weakness of grip with fatigability
++ = abnormality of gait
+++ = inability to walking and righting

Immediately after appearance of clinical signs
of EMG, rats are sacrificed, and blood and thy-
muses are taken for determination of anti-AChR-
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protein antibodies and histological analysis of
thymuses and thymocyte subsets, respectively.

Statistical analysis of data is performed by
Student’s t-test (data of stereological analysis)
and Mann–Whitney U-test (results of flow
cytometric analysis of thymocyte subsets).

Modifications of the Method
McIntosh and Drachman (1987) described an
in vitro suppressor assay using responder cells
from the lymph nodes of Lewis rats immunized
sc. with acetylcholine receptors emulsified in
complete Freund’s adjuvant and suppressor cells
from spleens of rats immunized i.p. with acetyl-
choline receptors absorbed on bentonite. Anti-
bodies were determined after stimulation with
acetylcholine receptors from cocultures of
responder cells and putative suppressor cells
treated previously with an immunosuppressant.

Arag and Blalock (1994) developed a method
of altering B cell-mediated autoimmune diseases
by induction of anti-idiotypic antibodies by
immunization with complementary peptides. A
peptide encoded by RNA complementary to
RNA for the Torpedo acetylcholine receptor
main immunogenic region, AChR 67–16, was
tested in the Lewis rat model of experimental
autoimmune myasthenia gravis.

Russell et al. (2012) reported on the testing of
CK-2017357 (Tirasemtiv) in rat model of myas-
thenia gravis and showed as a troponin activator it
improved muscle function in this model.

Oliveira et al. (2015) describe the role of CD73
in impaired neuromuscular transmission in the
EMG model and further describe the potential
role of adenosine in the pathophysiology on this
neuromuscular disorder.
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Glomerulonephritis Induced by
Antibasement Membrane Antibody
in Rats

Purpose and Rationale
Masugi nephritis and other nephritis models of
immunological origin in rats have been used for
evaluation of immunosuppressive activity
(Heymann et al. 1959; Shibata et al. 1966; Ito
et al. 1983; Thoenes et al. 1989; Ogawa
et al. 1990, 1991).

Procedure

Preparation of Rabbit Antiserum Against Rat
Glomerular Basement Membrane
Glomeruli are separated from the homogenate of
rat renal cortex by successive use of three metal

sieves (150-, 180-, and 200-mesh). The basement
membrane fraction is obtained by centrifugation
and ultrasonic disruption. It is then digested with
trypsin, dialyzed, and lyophilized. The resultant
substance is employed as antigen. An emulsion of
1 mg of the antigen in 0.2 ml saline with 0.2 ml of
complete Freund’s adjuvant is injected intracutane-
ously into white rabbits once a week for 6 weeks.
One week later, production of the antibasement
membrane antibody is confirmed in guinea pigs
by the passive cutaneous anaphylaxis test. The
blood is collected from the carotid artery, incubated
at 56 �C for 30 min to inactivate components of the
complement and stored at �20 �C until use.

Induction of Glomerulonephritis in Rats
Male Sprague–Dawley rats weighing about 300 g
are injected with 0.5 ml of the rabbit antiserum via
the tail vein. On the following day, they are further
injected subcutaneously with an emulsion (0.25
ml) of physiological saline solution containing
5 mg of rabbit gamma globulin in an identical
volume of complete Freund’s adjuvant.

Treatment
The rat antibasement antibody is injected 5 days
before the start of administration of the test com-
pound. Before the first dose, urinary total protein
is determined and rats with nephritis are so
assigned as to provide almost equal distribution
of severity of the disease per group. The test
compounds are administered orally for 14 days.
The urine is collected at 7 and 14 days of treat-
ment. After 14 days, the animals are sacrificed,
blood is collected, and the thymus and kidneys are
removed. Histopathological and immunohisto-
chemical studies are performed in kidney tissue.

Evaluation
Scores are given for microscopic findings in
the following:

Glomeruli
• Cell proliferation in glomeruli
• PAS-positive granules in the epithelium of

glomeruli
• Fibrin deposits in Bowman’s space
• Adhesion to Bowman’s capsule
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Tubuli
• Hyaline cast
• Dilation of tubuli

Scores are also given for immunofluorescence
findings for rat IgG, rat C3, and rabbit IgG.

Furthermore, total urinary protein, plasma total
cholesterol, plasma fibrinogen, and thymus/body
weight ratio are compared between drug-treated
animals and controls by statistical means.

Modifications of the Method
Lan et al. (1995) investigated the pathogenic role
of interleukin-1 in the progression of established
rat crescentic glomerulonephritis by administra-
tion of the interleukin-1 receptor antagonist
IL-1ra.

Giménez et al. (1987) and Thoenes
et al. (1987) induced autoimmune tubuloin-
terstitial nephritis in the Brown Norway rat by
injection of bovine tubular basement membrane.

Development of a systemic T lymphocyte-
dependent autoimmune syndrome in Brown Nor-
way rats including glomerulonephritis with high
proteinuria was induced with mercuric chloride
by Baran et al. (1986), Aten et al. (1988), and
Lillevang et al. (1992).

Kokui et al. (1992) induced nephrosis with
proteinuria in rats by intraperitoneal injection of
puromycin aminonucleoside.

Lundstrom et al. (1993) studied the Heymann
nephritis antigenic complex using a rat yolk sac
carcinoma cell line that expresses glycoprotein
330, the main antigen in this autoimmune disease.

Taylor et al. (2009) demonstrated a role for the
purinergic P2X7 purinoreceptor in experimental
glomerulonephritis showing that mice harboring a
knockout for the receptor were renoprotective,
further supported by a nonclinical intervention
study with A-439079. Smith et al. (2010) investi-
gated the role of spleen tyrosine kinase (SYK) in a
rat model of glomerulonephritis with R788
(fostamatinib) and showed reduction of glomeru-
lar crescents and improvement in renal function
establishing SYK as a target for potential future
clinical investigation.

Suana et al. (2011) have shown that
immunoliposomes carrying a low-dose

mycophenolate mofetil cargo may prevent
creatine increase and albuminuria in a model of
experimental mesangial proliferative glomerulo-
nephritis model in the rat.

D’Souza et al. (2013) developed a bicongenic
rat model of experimental crescent glomerulone-
phritis to develop a system for investigating
macrophage-dependent glomerulonephritis.

Recently Takakura et al. (2014) demonstrate an
antiproliferative effect of the anti-inflammatory
and antifibrotic agent pirfenidone in a rat model
of basement membrane glomerulonephritis.
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Inhibition of Allogenic Transplant
Rejection

Purpose and Rationale
Transplantation of allogenic organs to recipients
results in rejection of the transplants (Sanchez-
Fueyo and Strom 2011). This effect can be
suppressed or delayed by immunosuppressive
agents, and the role of B cells has been investi-
gated in animal models suggesting a role in mech-
anisms of transplant tolerance (Chesneau
et al. 2013). Various organs are used for allogenic
transplantation in animal experiments, such as
skin pieces (Schorlemmer et al. 1993), kidney
(Lee 1967; K€uchle et al. 1991), rat heart, rat
small intestine (Xiao et al. 1994; Zhang
et al. 2014), and corneal buttons (Coupland
et al. 1994). The immunosuppressive activity
can be evaluated either by using a major histo-
compatibility complex variant strain combination
or a strong allogenic system, and the advances and
limitations of murine models have been recently
described (Schroeder and DiPersio 2011).

Procedure
For skin transplantation male animals of inbred
strains of Fischer (F334), Lewis (LEW), Brown
Norway (BN), and Dark Agouti (DA) rats are
used. Rat tail skin (donor) is cut into square pieces
of 0.5–1.0 cm and transplanted to the tails of
recipient rats. Rejection is defined as the day
when the skin graft is of red-brown color and
hard consistency. As strain combination with a
major histocompatibility variant, transplantation
from LEW to F334 is performed. Using a strong

allogenic system, the high responder DA to LEW
donor-recipient combination is used. The immu-
nosuppressive agents, e.g., cyclosporine or
leflunomide, are given orally up to 20 days. Ten
animals are used for each group.

Evaluation
The mean values of rejection time of treated
groups are compared statistically with vehicle-
treated controls using Student’s t-test or the
Mann–Whitney U-test.

Modifications of the Method
Schorlemmer and Kurrle (1997) used Lewis
(LEW, Rtl*l) rats as receivers and Balb/c mice as
donors in a xenotransplantation model of mouse-
to-rat skin grafts. Rejection was defined as the day
when the skin graft turned red-brown and became
hard. For quantification of xenospecific IgM and
IgG antibody titers, the test sera (dilution 1:10)
were incubated with 1 � 106 purified T cells
(by sheep anti-mouse Dynabeads, Deutsche
Dynal GmbH, Hamburg, Germany) from Balb/c
donor spleens for 30 min at 4 �C. The cells were
washed three times with phosphate-buffered
saline (pH 7.2) and then stained for IgG or IgM
xenoantibodies; 50 μl of FITC-conjugated goat
antibodies, specific for the Fc-portion of rat IgG
or specific for the μ-chain of rat IgM, was added.
After 30 min at 4 �C, the cells were washed twice
and analyzed by flow cytometry.

Techniques for transplantation of several
organs have been elaborated.

For kidney transplantation, male rats, 5–7
months of age, are used as donors and recipients
for the orthotopic right kidney transplantation as
described by Lee (1967) with a modification of
ureter–ureter anastomosis (Thoenes et al. 1974).
Because bilateral nephrectomy is performed at
transplantation, animal survival is dependent
upon the allograft’s function. All rats that do not
excrete urine on the first postoperative day are
excluded from further studies. As a control
concerning long survival, syngenically
transplanted rats are maintained up to 300 days.

Engelbrecht et al. (1992) described a new rapid
technique for renal transplantation in the rat. The
method combines a special sleeve anastomotic
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technique for the renal artery, conventional end-
to-end anastomosis of the renal vein, and implan-
tation of the ureter into the bladder.

A porcine renal transplant model has been used
by Almond et al. (1992).

Peters et al. (1993) reviewed the therapeutic
potential of tacrolimus in renal and hepatic
transplantation.

For studying heart transplantation, hetero-
topic implantation of hearts from BN to LEW
rats is performed (Williams et al. 1993). The diag-
nosis of rejection is established once the palpable
cardiac allograft impulse ceases. Further studies
with rat cardiac allografts have been performed by
Hancock et al. (1990). The Fischer 344 rat
(donor)/Long Evans rat (recipient) combination
was used by Kahn et al. (1991). Walpoth
et al. (1993) used magnetic resonance spectros-
copy for assessing myocardial rejection in the
transplanted rat heart.

Shiraishi et al. (1995) evaluated the effective-
ness of the interleukin-1 receptor antagonist
IL-1ra in the immune and inflammatory responses
to rat heart allografts.

Cardiac transplantation between inbred rat
strains that differ for weak histocompatibility anti-
gens is associated with the development of arte-
riosclerosis in arteries of the donor graft
myocardium (Cramer et al. 1990; Adams
et al. 1992).

A heterotopic rat heart transplant model and
the influence of infection were described by
Kobayashi et al. (1993).

The hamster to rat cardiac xenograft model
has been used by several authors (de Masi
et al. 1990; Steinbr€uchel et al. 1991; van den
Bogaerde et al. 1991; Woo et al. 1993; Fujino
et al. 1994; Schuurman et al. 1994). The hearts
from Syrian hamsters were implanted
heterotopically in male Lewis rats, with anasto-
moses between the infrarenal abdominal aorta
and inferior vena cava of the recipient and the
donor aorta and right pulmonary artery,
respectively.

Primate cardiac xenografts were performed
by McManus et al. (1993) using cynomolgus
monkeys (Macaca fascicularis) as donors and
baboons (Papio anubis) as recipients.

Chronic rejection of rat aortic allograft was
studied by Mennander et al. (1991). Administra-
tion of cyclosporine induced accelerated allograft
arteriosclerosis.

Heterotopic transplantation of small intes-
tine has been performed from BN to LEW rats.
The mesenteric venous drainage is reconstructed
either via the vena cava or the portal vein (Xiao
et al. 1994). An isolated Thiry–Vella loop was
prepared by Xia and Kirkman (1990). Kellnar
et al. (1990) described allogenic transplantation
of fetal rat intestine with anastomosis to the nor-
mal bowel of the host. Langrehr et al. (1991)
investigated under which circumstances graft-
versus-host disease occurs following fully allo-
genic small bowel transplantation in the rat.
Kirsch et al. (1991) studied the extent to which
intestinal transplants in rats undergo functional
and morphologic compensation.

Liver transplantation procedure has been
described by Svensson et al. (1995), allowing
measurement of bile secretion.

Orthotopic left lung transplantation was
performed in inbred rats by Katayama
et al. (1991).

Tracheal allografts were implanted into the
abdomen of recipient rats (Davreux et al. 1993).

In vivo electrophysiology of rat peripheral
nerve transplants was studied by Yu
et al. (1990). A sciatic-tibial nerve graft was
harvested from the donor rat between the sciatic
notch and the ankle. In the recipient, the tibial
nerve and the sural nerve were resected. The
nerve graft was placed along the natural course
of the native tibial nerve. Nerve repair was
performed using standard end-to-end epineural
microsuture technique.

A model of neurovascularized rectus femoris
muscle transplantation in rats was established
by Muramatsu et al. (1994).

The orthotopic transplantation of
vascularized skeletal allografts (rat distal
femur and surrounding muscular cuff) has been
described by Lee et al. (1995).

Long-term survival of limb allografts in rats
was studied by Kuroki et al. (1991). The donor
and recipient limbs were prepared simultaneously
by amputation at mid-femur. The donor limb was
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fixed orthotopically by Kirschner wire. The donor
and recipient femoral arteries, veins, and sciatic
nerves were anastomosed using a microsurgical
technique.

For cornea transplantation, Brown Norway
rats (RT11�n) serve as donors and Lewis rats
(RT11) as recipients (Coupland et al. 1994). Both
the donor and recipient rats are anesthetized
with xylazine hydrochloride and ketamine
hydrochloride. Twenty min prior to surgery,
the recipient rats also receive 0.5 mg/kg atro-
pine sc. and phenylephrine hydrochloride 5 %
eyedrops. Under sterile conditions and using an
operation microscope, two donor corneal but-
tons (3.5 mm) are harvested from the donor rat
using a trephine and curved Castroviejo scis-
sors. The donor animals are then sacrificed by
ether inhalation. The left eyes of the recipient
rats are prepared by removing a central 3.0-mm
button using a trephine and curved Castroviejo
scissors. A drop of sterile methylcellulose (1 %)
is placed over the 3.0-mm corneal opening
before the donor cornea is fixed with
10 interrupted sutures. The anterior chamber is
not reestablished following surgery. Prior to
closure of the eyelids with three or four
interrupted sutures, Polyspectran eyelid gel is
placed over the operated eye. Forty-eight hours
following surgery, the eyelid sutures are
removed, allowing for the first time assessment
of the cornea on the slit-lamp microscope. Slit-
lamp evaluations are performed every 2–3 days
under i.m. anesthesia with ketamine, with
assessment of the cornea by scoring graft opac-
ity, edema, and vascularization.

Recently the role of indoleamine
2,3-dioxygenase as an immunomodulator
has been reviewed in models of allogenic
pancreatic islet and skin transplantation (Gill
et al. 2013).
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