Skip to main content

Optical Characterization of Porous Silicon Multilayers

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

Uncontrolled fabrication errors for multilayer porous silicon structures could in some circumstances significantly and unexpectedly change their optical properties (reflectivity, refractive index, etc.). Therefore, optical characterization of these structures gains prominent importance before using these structures for various applications such as optoelectronics and sensing. It is the aim of this short review to discuss the importance of optical characterization of multilayer porous silicon structures, by way of some numerical modeling and experimental results. We will thereby illustrate some important aspects about how the optical performance of these structures can be increased by following some simple precautions in their fabrication. It is also our objective in this review to bring some of the recent studies and trends in the subject of optical characterization to the attention of readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal V, Mora-Ramos ME, Alvarado-Tenorio B (2009) Optical properties of multilayered period-doubling and Rudin-Shapiro porous silicon dielectric heterostructures. Photon Nanostruct Fundam Appl 7:63–68

    Article  Google Scholar 

  • Azzam RMA, Bashara NM (1989) Ellipsometry and polarized light. North Holland, Amsterdam

    Google Scholar 

  • Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    Article  Google Scholar 

  • Canham LT (ed) (1997) Properties of porous silicon. IEE Inspec, London

    Google Scholar 

  • Charrier J, Dribek M (2010) Theoretical study on the factor of merit of porous silicon based optical biosensors. J Appl Phys 107:044905

    Article  Google Scholar 

  • Cho S-Y, Lee K-W, Kim J-W, Kim D-H (2013) Rugate-structured free-standing porous silicon-based fiber-optic sensor for the simultaneous detection of pressure and organic gases. Sensors Actuators B Chem 183:428–433

    Article  Google Scholar 

  • Cullis AG, Canham LT (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353:335–338

    Article  Google Scholar 

  • Escorcia-Garcia J, Martinez OS, Gracia-Jimenez JM, Agarwal V (2009) Porous silicon photonic devices using pulsed anodic etching of lightly doped silicon. J Phys D Appl Phys 42:145101–145108

    Article  Google Scholar 

  • Ghulinyan M et al (2003a) Free-standing porous silicon single and multiple optical cavities. J Appl Phys 93:9724–9729

    Article  Google Scholar 

  • Ghulinyan M et al (2003b) Porous silicon free-standing coupled microcavities. Appl Phys Lett 82:1550–1552

    Article  Google Scholar 

  • Hasar UC et al (2012) The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications. Opt Express 20:22208–22223

    Article  Google Scholar 

  • Hasar UC et al (2015a) Identification of gases by porous optical sensors using reflectivity difference and wavelength shift. IEEE Photon Technol Lett 27:596–599

    Article  Google Scholar 

  • Hasar UC et al (2015b) Characterization of porous silicon Fabry-Perot optical sensors for reflectivity and transmittivity measurements. IEEE J Sel Topics Quantum Electron 21:2900110

    Google Scholar 

  • James TD, Keating AJ, Parish G, Musca CA (2009) Pulsed anodization for control of porosity gradients and interface roughness in porous silicon. J Electrochem Soc 156:H744–H750

    Article  Google Scholar 

  • Jylha L, Sihvola A (2007) Equation for the effective permittivity of particle-filled composites for material design applications. J Phys D Appl Phys 40:4966–4973

    Article  Google Scholar 

  • Karacali T, Alanyalioglu M, Efeoglu H (2009) Single and double Fabry-Perot structure based on porous silicon for chemical sensors. IEEE Sensors J 9:1667–1672

    Article  Google Scholar 

  • Karacali T et al (2013) Novel design of porous silicon based sensor for reliable and feasible chemical gas vapor detection. J Lightwave Technol 31:295–305

    Article  Google Scholar 

  • Liu J, Sun Y, Fan X (2009) Highly versatile fiber-based optical Fabry-Perot gas sensor. Opt Exp 17:2731–2738

    Article  Google Scholar 

  • Lorenzo E et al (2005) Porous silicon-based rugate filters. Appl Opt 44:5415–5421

    Article  Google Scholar 

  • Moretti L et al (2006) Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon. Opt Express 14:6264–6272

    Article  Google Scholar 

  • Ouyang H, Striemer CC, Fauchet PM (2006) Quantitative analysis of the sensitivity of porous silicon optical biosensors. Appl Phys Lett 88:163108

    Article  Google Scholar 

  • Palavicini A, Wang C (2013) Infrared transmission in porous silicon multilayers. Opt Photon J 3:20–25

    Article  Google Scholar 

  • Pavesi L (1997) Porous silicon dielectric multilayers and microcavities. La Rivista del Nuovo Cimento 20:1–76

    Article  Google Scholar 

  • Pelant I, Valenta J (2012) Luminescence spectroscopy of semiconductors. Oxford University Press Inc., New York

    Book  Google Scholar 

  • Pérez EX (2007) Design, fabrication and characterization of porous silicon multilayer optical devices. Ph. D. Thesis, Universitat Rovira I Virgili

    Google Scholar 

  • Saarinen JJ et al (2008) Reflectance analysis of a multilayer one-dimensional porous silicon structure: theory and experiment. J Appl Phys 104:013103

    Article  Google Scholar 

  • Sailor MJ (2012) Porous silicon in practice: preparation, characterization and applications. Wiley, Weinheim

    Google Scholar 

  • Setzu S, Ferrand P, Romenstain R (2000) Optical properties of multilayers porous silicon. Mater Sci Eng B 69-70:34–42

    Article  Google Scholar 

  • Snow PA, Squire EK, Russell PSJ, Canham LT (1999) Vapor sensing using the optical properties of porous silicon Bragg mirrors. J Appl Phys 86:1781–1784

    Article  Google Scholar 

  • Suarez I, Chirvony V, Hill D, Martinez-Pastor J (2011) Simulation of surface-modified porous silicon photonic crystals for biosensing applications. Photon Nanostruct: Fundam Appl 9:304–311

    Google Scholar 

  • Thonissen M, Berger MG (1997) Multilayer structures of porous silicon. In: Canham LT (ed) Properties of porous silicon. INSPEC Publications, London, p 35

    Google Scholar 

  • Tompkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry: a user’s guide. Wiley, London

    Google Scholar 

  • Torres-Costa V, Martin-Palma RJ, Martinez-Duart JM (2004) Optical constants of porous silicon films and multilayers determined by genetic algorithms. J Appl Phys 96:4197–4203

    Article  Google Scholar 

  • Yan D et al (2014) Electrochemical deposition of ZnO nanostructures onto porous silicon and their enhanced gas sensing to NO2 at room temperature. Electrochim Acta 115:297–305

    Article  Google Scholar 

  • Zangooie S et al (2001) Infrared ellipsometry characterization of porous silicon Bragg reflectors. Appl Opt 40:906–912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Cem Hasar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Hasar, U.C., Ozbek, I.Y., Karacali, T. (2017). Optical Characterization of Porous Silicon Multilayers. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_118-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_118-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics