

Q.Z. Sheng and J. Kjeldskov (Eds.): ICWE 2013 Workshops, LNCS 8295, pp. 325–329, 2013.
© Springer International Publishing Switzerland 2013

MockupDD: Facilitating Agile Support
for Model-Driven Web Engineering

José Matías Rivero1,2 and Gustavo Rossi1,2

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{mrivero,gustavo}@lifia.info.unlp.edu.ar

2 Conicet

Abstract. Model-Driven Web Engineering methodologies provide a more pro-
ductive way of building Web Applications using high-level models and generat-
ing final implementations from them. However, they follow a waterfall-like
development process, forcing to specify a different set of models sequentially to
obtain a first runnable prototype of the Web Application. On the other hand,
agile methodologies pursue an iterative process based on the delivery of appli-
cation prototypes in short periods of time using manual coding, which results
less productive and more error-prone in comparison to model-based approaches.
In this work we propose a hybrid agile and Model-Driven approach called
MockupDD that intends to blend the best of MDWE and agile development
processes.

1 History

Model-Driven Web Engineering (MDWE) approaches like WebML [1], UWE [2] or
OOHDM [3] have become mature solutions for developing Web Applications. These
methodologies intend to apply Model-Driven Development (MDD) concepts to the
Web Applications field, capturing high-level concepts relative to Web development
(domain objects, pages, hyperlinks, rich interaction functionality, etc.) into models,
letting developers automatically generate runnable applications from them. While
standard MDWE processes improve productivity by describing Web Applications
with such languages, they tend to leave User Interface (UI) aspects to the end of the
development cycle [4]. The classical MDWE process starts building a content model
describing the different types of objects that will be managed by the application and
how they relate. Then, a hypertext model specifying the navigational structure of the
Web Application and how the aforementioned objects will be shown and manipulated
is defined. Finally, a presentation model is constructed detailing how the pages struc-
tured in the hypertext model should look in detail and refining interaction aspects.

On a different track, agile methodologies have shown a quick and massive adop-
tion over the last years. These methodologies, instead of following a set of linear steps
or high-level languages to define Web Applications, rely on direct coding to generate
deliverable versions of the product being built to promote early and constant interac-
tion with customers or end-users. The purpose of this strategy is to assert that the
software being built complies with end-users requirements by constantly delivering

326 J.M. Rivero and G. Rossi

prototypes developed in short periods of time. Agile approaches argue that software
specifications must emerge naturally, enhancing former prototypes along the devel-
opment until the final application is obtained, and the same applies for good practices
and patterns that help the developer teams day by day to build high-quality software
products1.

Both approaches show advantages and weak points. While MDD and agile ap-
proaches are usually seen as contradictory or incompatible, in this work, we propose
to combine both in order to maximize their pros and reduce their disadvantages as
much as possible. In order accomplish this task, we chose to use user interface proto-
types (usually referred as mockups) as a starting requirements artifacts that end-users
or customers can understand [5] and then introduce them as valuable model specifica-
tions in the process. Since user interface modeling and prototyping represents a very
studied field (for instance, considering Canonical Abstract Prototypes [6] or UsiXML
[7]) and also have been applied into agile processes [8], we argue that integrating
them in a novel MDD process will provide a better requirements understanding and a
more quick a less error-prone model-based development process.

2 Problem

While MDWE methodologies facilitate software specification portability, abstraction
and productivity, they fail in providing agile interaction with customers because con-
crete software results are obtained too late, since they follow a waterfall-like model-
ing process with linearly structured steps. Modelers must define a set of models
sequentially after reaching a final prototype of the application that can be shown to
end-users or customers. Moreover, detailed requirements that cannot be fulfilled na-
tively by the MDWE language concepts have to be coded manually (which leads to
breaking the MDD abstraction and its inherent advantages) or force developers to
extend the MDWE language and code generators, which implies additional time
overheads to obtain a running prototype of the application as quick as possible.

On the other hand, agile methodologies are heavily based on implementation
through direct coding. Thus, they have more freedom to code detailed business-
related requirements ad-hoc and also they can adapt or mock they implementations
more easily to speedily show running versions of the application to end-users or cus-
tomers and assess that requirements have been correctly captured and implemented.
However, the use of direct coding implies more proneness to human errors, forces
developers to manually maintain an uniform coding style and also implies writing
again and again repetitive and common functionalities (like, for instance, classical
CRUD operations) that can be easily generated automatically or semi-automatically
as in MDWE.

1 Principles behind the Agile Manifesto –
 http://agilemanifesto.org/principles.html

 MockupDD: Facilitating Agile Support for Model-Driven Web Engineering 327

3 Solution

We propose an hybrid model-based agile methodology – called Mockup-Driven De-
velopment (MockupDD) – aiming to extract the best of both approaches, i.e. a process
driven by the active participation of users and customers, and a classical approach
following the phases of analysis, design and implementation assisted with the use of
models in all stages. Our approach starts by the requirement analysis defining a set of
user interface mockups to agree upon the application’s functionality. After being built
with active end-user or customer participation, mockups are translated to an abstract
User Interface model that can be directly derived to specific MDWE presentation
models or technology-dependent UI prototypes [9].

After this stage, we propose to enrich mockups by a tagging process. In this step,
mockups (now linked to presentation models) are enriched with navigation, data, data
manipulation, business logic and interaction specs. Again, end-users or customers can
actively participate in the most of the process (excluding technical specifications)
since they understand the underlying concepts in the foundational models (mockups):
widgets, pages, etc. This also facilitates a better traceability of the requirements being
modeled, since they are associated to specs that were defined directly or with high
participation and assessment of end-users or customers.

Following the MDD principles, MockupDD relies on artifacts generation from
models – in this case, UI models expressed by mockups plus specs applied over them.
Thus, it provides both code and models generation (for more popular MDWE ap-
proaches) as the final step of the process. In addition, after a tagging session, a func-
tional prototypical version of the application can be run using a demo sandbox tooling
provided by the methodology, without requiring any compilation or deployment. The
application of the MockupDD approach within the well-known Scrum agile process is
depicted in Fig. 1.

4 Current Approaches and Related Work

One of the key fields to which MockupDD is related to is UI modeling and prototyp-
ing. This is an extensively studied field. Currently, a lot of UI mocking tools has been
defined like Balsamiq, Pencil, among dozens of many others including DENIM [10],
in which several levels of UI sketching are provided in a top-down incremental way.
Also, well-known UI modeling proposals like UsiXML exist [7], in companion of
extensive tool support. While the former are oriented to build quick-and-dirty and
disposable prototypes for requirements gathering purposes, the latter provide a model-
ing language and environment to formally define user interfaces and generate running
implementation from them. However, MockupDD does not intend to provide yet
another UI prototyping or modeling environment, but to use enriched mockups (that
are good for requirements gathering and facilitate customer-developer interaction) as
a foundation to generate models for existing MDWE and Model-Based User Interface
(MBUI) approaches like UsiXML.

328 J.M. Rivero and G. Rossi

From the modeling point of view, user interfaces were used in numerous approach-
es as a basis for requirements or software specifications. For instance, Panach et al.
propose gathering interaction requirements from UI sketches and then creating struc-
tural task models from them [11]. In [5] and [12], UI models are used to specify the
structure and dynamics of the interface using formal or informal storyboard-oriented
specifications. The Interaction Flow Modeling Langauge2 (IFML) recently approved
as a standard by the OMG, uses visual models (more technical-oriented than mock-
ups) to assemble UI descriptions and specify detailed actions over them.

Fig. 1. MockupDD Scrum process adaptation

5 Research Methodology

We already built several tools to test the methodology. First, we implemented a
Mockup Processing Engine [4] that is able to take mockups built with traditional
mockup tools and abstract them into a common UI model to be further used in the
modeling process. We also built a tagging environment for such processed mockups.

Using these tools, we already conducted a quantitative experiment in which we
compared MockupDD performance vs. traditional modeling using WebML in terms
of completion, speed and model quality. We are currently conducting a second expe-
riment in which we are comparing detailed modeling using a refined MockupDD
annotation set oriented to data models vs. data modeling using mainstream tools. As a
result of the implementations and experiments, we expect to show that MockupDD is
able to improve the modeling process both quantitative and qualitative in comparison
to traditional existing modeling and agile pure code-based methods.

2 IFML: The Interaction Flow Modeling Language - http://www.ifml.org/

 MockupDD: Facilitating Agile Support for Model-Driven Web Engineering 329

6 Agenda and Further Work

After obtaining the final results of our experiments, we are aiming to improve Mock-
upDD process to make it more complete and friendlier both for developers and
end-users or customers. We are planning to extend the set of specifications that the
methodology currently provides to cover other well-known Web Application fields
like data validation, RIA behavior, etc.

Since MockupDD is in essence an MDD methodology, the problem of coping with
detailed requirements is an important issue to tackle. Because it is founded on existing
artifacts (User Interface mockups), we are planning to provide custom APIs to extend
aspects modeled over the UI using direct coding in a non-intrusive fashion, consider-
ing also code reuse among different mockups and specifications.

References

1. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling lan-
guage for designing Web sites. Computer Networks 33, 137–157 (2000)

2. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering. Springer,
London (2008)

3. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Modeling and Implementing Web Applica-
tions using OOHDM. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engi-
neering: Modelling and Implementing Web Applications, pp. 109–155. Springer, London
(2008)

4. Rivero, J.M., Rossi, G., Grigera, J., Luna, E.R., Navarro, A.: From interface mockups to
web application models. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE 2011.
LNCS, vol. 6997, pp. 257–264. Springer, Heidelberg (2011)

5. Mukasa, K.S., Kaindl, H.: An Integration of Requirements and User Interface Specifica-
tions. In: 6th IEEE International Requirements Engineering Conference, pp. 327–328.
IEEE Computer Society, Barcelona (2008)

6. Constantine, L.L.: Canonical Abstract Prototypes for Abstract Visual and Interaction De-
sign. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS,
vol. 2844, pp. 1–15. Springer, Heidelberg (2003)

7. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML:
A Language Supporting Multi-path Development of User Interfaces. In: Bastide, R., Pa-
lanque, P., Roth, J. (eds.) EHCI-DSVIS 2004. LNCS, vol. 3425, pp. 200–220. Springer,
Heidelberg (2005)

8. Ferreira, J., Noble, J., Biddle, R.: Agile Development Iterations and UI Design. In: AGILE
2007 Conference, pp. 50–58. IEEE Computer Society, Washington, DC (2007)

9. Rivero, J.M., Rossi, G., Grigera, J., Burella, J., Luna, E.R., Gordillo, S.: From mockups to
user interface models: An extensible model driven approach. In: Daniel, F., Facca, F.M.
(eds.) ICWE 2010. LNCS, vol. 6385, pp. 13–24. Springer, Heidelberg (2010)

10. Lin, J., Newman, M.W., Hong, J.I., Landay, J.A.: DENIM: finding a tighter fit between
tools and practice for Web site design, pp. 510–517 (2000)

11. Panach, J.I., España, S., Pederiva, I., Pastor, O.: Capturing Interaction Requirements in a
Model Transformation Technology Based on MDA. J. UCS 14, 1480–1495 (2008)

12. Luna, E.R., Garrigós, I., Grigera, J., Winckler, M.: Capture and Evolution of Web Re-
quirements Using WebSpec. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 173–188. Springer, Heidelberg (2010)

	MockupDD: Facilitating Agile Support
for Model-Driven Web Engineering
	1 History
	2 Problem
	3 Solution
	4 Current Approaches and Related Work
	5 Research Methodology
	6 Agenda and Further Work
	References

