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Abstract. We investigate exact crossing minimization for graphs that
differ from trees by a small number of additional edges, for several vari-
ants of the crossing minimization problem. In particular, we provide fixed
parameter tractable algorithms for the 1-page book crossing number, the
2-page book crossing number, and the minimum number of crossed edges
in 1-page and 2-page book drawings.

1 Introduction

Graphs that differ from a tree by the inclusion of a small number of edges
arise in many applications; such graphs are called almost-trees. Almost-trees
can be found in the areas of biology, medicine, operations research, sociology,
genealogy, distributed systems, and telecommunications, and in each of these
applications it is important to find effective visualizations1. One of the most
important criteria for the aesthetics and readability of a graph drawing is its
number of its crossings. Although crossing minimization problems tend to be
NP-complete, we may hope that the graphs arising in applications are not hard
instances for these problems, allowing us to find optimal drawings for them
efficiently. In this paper we prove that almost-trees are indeed not hard instances
by designing algorithms for crossing minimization of almost-trees that are fixed-
parameter tractable when parameterized by the number of extra non-tree edges
in these graphs.

Many different variants of the crossing number have been studied, depending
on what types of drawing are allowed and what we count as a crossing [1]. The
most frequently studied is the topological crossing number, cr(G), which counts
the number of crossings in a unrestricted placement of vertices and edges in the
plane. In this paper we consider also the 1-page and 2-page crossing numbers,
denoted cr1(G) and cr2(G) respectively. The 1-page crossing number counts the
minimal number of crossings in a drawing where all the vertices of G are placed
on a straight line, and all edges must be placed to one side of the line. The 2-page
crossing number is defined similarly: all vertices of G are placed on a straight line
and edges may be assigned to either side of the line, but are not allowed to cross
the line. In both 1-page and 2-page drawings it is not uncommon to place the
vertices on a circle instead of a straight line; this does not change the crossing
structure of the drawing. In addition to the number of crossings we consider the
number of crossed edges for these drawing styles, denoted cre1(G) and cre2(G).

1 We provide more details about these applications in Section 2.
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Fig. 1. Left: 1-page circular embedding with two crossings and three crossed edges.
Right: 2-page linear embedding of K4,4 with four crossings and eight crossed edges.

Following Gurevich, Stockmeyer and Vishkin [2] we define a k-almost-tree to
be a graph such that every biconnected component of the graph has cyclomatic
number at most k, where the cyclomatic number is the difference between the
number of edges in a graph and in one of its maximal spanning forests. The
k-almost-tree parameter has been used in past fixed-parameter algorithms [3–9],
and will play the same role in our algorithms for crossing minimization.

Grohe and later Kawarabayashi and Reed showed the topological crossing
number to be fixed parameter tractable for its natural parameter [10, 11]; the
same is true for odd crossing number [12]. Because the topological crossing num-
ber is at most quadratic in the k-almost-tree parameter, cr(G) is also fixed
parameter tractable for k-almost-trees. However, to our knowledge no fixed pa-
rameter tractable algorithms were known for computing 1-page or 2-page cross-
ing numbers. Indeed, for the 2-page problem, determining whether a graph can
be drawn with zero crossings is already NP-complete [13], so to achieve fixed pa-
rameter tractability we must use some other parameter such as the k-almost-tree
parameter rather than using the crossing number itself as a parameter.

Our main results are that cr1(G), cr2(G), cre1(G), and cre2(G) are all fixed-
parameter tractable for almost-trees. As with previous work on parameterized
algorithms for crossing numbers [10–12], our algorithms have a high dependence
on their parameters. Making our algorithms more practical by reducing this
dependence remains an open problem.

2 Application Domains

Examples of k-almost-trees can be found in biological gene expression networks,
where vertices represent genes and edges represent correlations between pairs of
genes. The k-almost-tree structure of such graphs has been exploited in param-
eterized algorithms for finding sequences of valid labelings of genes as active or
inactive [5]. The parameter k has also been used in algorithms for continuous
facility location where weighted edges represent a road network on which to effi-
ciently place facilities serving clients [2]. Intraprogram communication networks
whose vertices represent modules of a distributed system and whose edges rep-
resent communicating pairs of modules also have an almost-tree structure that
has been exploited for parameterized algorithms [3].
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A typical example of almost-trees arises when studying the spread of sexually
transmitted infections, where sexual networks are constructed by voluntary sur-
vey. In these graphs vertices represent people who have received treatment, and
edges represent their reported sexual parters. Analysis of these networks allows
researchers to identify the growth and decline phases of an outbreak, and the
general spread of the disease [14–16].

Another type of social network represents the business dealings of individuals
and business entities. Examples of these networks can be found in the art of
Mark Lombardi, an artist famous for his drawings of networks connecting the
key players of conspiracy theories [17]. Many of Lombardi’s networks show an
almost-tree structure; the Lippo Group Shipping network listed below is one.

The directed acyclic graphs originating from genealogical data where edges
represent parental relationships on the vertices are another example of k-almost-
trees, when viewed as undirected graphs, since in modern societies marriage
between close relatives is rare. Similar types of graphs also come from animal
pedigrees, academic family trees, and organizational lineages [18].

Utility networks such as telecommunication networks and power grids also
form an almost-tree structure, where additional edges beyond those of a spanning
tree provide load balancing and redundancy. Since such links are expensive they
are placed in the network sparingly.

In order to visually distinguish the tree-like parts of these graphs from the
parts with nontrivial connectivity, we may use a sunburst style (Figure 2) in
which the 2-core of the graph (the part of a graph which is left after repeatedly
removing all degree one vertices [19]) is drawn with a one-page circular layout and
the rest of the graph extends outwards using a radial layout on concentric circles.
In this style, crossings occur only within the inner one-page layout, motivating
our interest in crossing minimization for one-page drawings of almost-trees.

We collect statistics for several real world graphs in Table 1. The table shows
vertex and edge counts (n and m), the cyclomatic number a = m − n + 1, the

Fig. 2. Two sunburst drawings. Left: An HIV infection graph. Right: Lombardi’s World
Finance Miami graph.
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k-almost-tree parameter k, and the vertex and edge counts for the 2-core (n2

and m2). For most of these graphs the parameters a and k are low.

Table 1. Statistics for real-world almost-trees

Name n m a k n2 m2

Gonorrhoea sexual network 1 [15] 38 39 2 2 9 10
Gonorrhoea sexual network 2 [15] 84 90 7 4 22 28
Lippo Group Shipping [17] 96 112 17 16 45 61
Global International Airways
and Indian Springs State Bank [17]

82 99 18 15 33 50

Gondola Genealogy [20] 242 255 14 14 50 63
HIV [14] 243 257 15 12 39 53
Power Grid [21] 4941 6594 1654 1516 3353 5006

3 The Kernel

Our fixed-parameter algorithms use the kernelization method. In this method
we find a polynomial time transformation from an arbitrary input instance to
a kernel, an instance whose size is bounded by a fixed function f(k) of the pa-
rameter value, and then apply a non-polynomial algorithm to the kernel. In this
section we outline the general method for kernelization that we use in our fixed
parameter algorithms, based on a similar kernelization by Bannister, Cabello
and Eppstein [22] for a different problem, 1-planarity testing.

We first describe our kernelization for cyclomatic number, which starts by
reducing the graph to its 2-core. The 2-core of a graph can be found in linear
time by initializing a queue of degree one vertices, repeatedly finding and re-
moving vertices from the queue and the graph, and updating the degree and
queue membership of the neighbor of each removed vertex.The 2-core consists
of vertices of degree at least three connected to each other by paths of degree
two vertices. The following lemma bounds the numbers of high degree vertices
and maximal paths of degree two vertices.

Lemma 1. If G is a graph with cyclomatic number k and minimum degree three
then G has at most 2k − 2 vertices and at most 3k − 3 edges. Furthermore, this
bound is tight. As a consequence, the 2-core of a graph with cyclomatic number
k has at most 2k−2 vertices of degree at least three, and at most 3k−3 maximal
paths of degree two vertices.

Proof. Double counting yields 2(n − 1 + k) ≥ 3n, simplifying to n ≤ 2k − 2. A
spanning tree of G has at most 2k − 3 edges, and there are k edges outside the
tree, from which the bound on edges follows. For a graph realizing the upper
bound consider any cubic graph with 2k − 2 vertices. ��
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The final step in this kernelization is to reduce the length of the maximal degree
two paths. Depending on the specific problem, we will determine a maximal
allowed path length �(k), and if any paths exceed this length we will shorten
them to length exactly �(k). After this step the kernel will have O(k�(k)) edges
and vertices, bounded by a function of k.

To change the parameter of our algorithms from the cyclomatic number to
the k-almost-tree parameter, we first decompose the graph into its biconnected
components. These components have a tree structure and in most drawing styles
they can be embedded separately without introducing crossings. We then ker-
nelize and optimally embed each biconnected component individually.

4 1-page Crossing Minimization

Minimizing crossings in 1-page drawings is important for several drawing styles,
but is NP-hard [23], leading Baur and Brandes to develop fast practical heuris-
tics for reducing but not optimizing the number of crossings [24]. As we now
show, crossing minimization and crossed edge minimization in 1-page drawings
of k-almost-trees is fixed-parameter tractable in the parameter k. We use the
kernelization of Section 3, keeping one vertex per maximal degree two path.

Lemma 2. Let G have cyclomatic number k and let K be the kernel constructed
from G with �(k) = 2. Then

1. K has at most 5k vertices and 6k edges;
2. cr1(G) = cr1(K);
3. cre1(G) = cre1(K).

Proof. (1) After reducing a graph with cyclomatic number k to its 2-core and
reducing all maximal degree two paths to single edges we have a graph with
2k − 2 vertices and 3k − 3 edges, by Lemma 1. Since we are then adding one
vertex back to every path that was not a single edge in the original graph, K
has at most 5k − 5 ≤ 5k vertices and 6k − 6 ≤ 6k edges.

(2) First we show that cr1(G) ≤ cr1(K). Suppose that K has been embedded
in one page with the minimum number of crossings. Every degree two vertex
v in K corresponds to a path of degree two vertices in G. We can expand this
path in a small neighborhood of v without introducing any new crossings. After
expanding all degree two paths we have an embedding of the 2-core of G. Now
each of the remaining vertices corresponds to a tree in G. Since trees can be
embedded in one page without crossings, we can expand each tree in a small
neighborhood of its corresponding vertex without introducing further crossings.

Now we show that cr1(K) ≤ cr1(G). Suppose that G is embedded on one page
with minimum crossings. Reduce G to its 2-core; this does not increase crossings.
Let u and v be two adjacent degree-two vertices of G, let e be the edge between
u and v and let f be the edge from v not equal to e. Now, change the embedding
of G by keeping u fixed and moving v next to u, rerouting f along the former
path used by both e and f . This change moves all crossings from e to f but does
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not create new crossings, so it produces another minimum-crossing embedding.
After this change, edge emay be contracted, again without changing the crossing
number. Repeatedly moving one of two adjacent degree-two vertices and then
contracting their connecting edge eventually produces an embedding of K whose
crossing number equals that of G.

(3) Follows from the proof of (2) with minor modification. ��
Lemma 3. If G is a graph with n vertices and m edges, then cr1(G) and cre1(G)
can be computed in O(n!) time.

Proof. We place the vertices in an arbitrary order on a circle, and compute the
number of crossings or crossed edges for this layout. Then we use the Steinhaus–
Johnson–Trotter algorithm [25] to list the (n − 1)! permutations of all but one
vertex efficiently, with consecutive permutations differing by a transposition.
When a transposition swaps u and v, the number of crossings (or crossed edges)
in the new layout can be updated from its previous value in O(deg(u)+deg(v)) =
O(n) time, as in [24]. This yields a total run time of O(n!). ��
Combining the above lemmas, we apply the non-polynomial time algorithm only
on the kernel of the graph to achieve the following fixed parameter result.

Theorem 1. If G is a graph with cyclomatic number k, then cr1(G) and cre1(G)
can be computed in O((5k)! + n) time. If G is a k-almost-tree, then cr1(G) and
cre1(G) can be computed in O((5k)!n) time.

In Section 6 we show how to improve the base of the factorial in this bound by
applying fast matrix multiplication algorithms.

5 2-page Crossing Minimization

In this section we consider the problem of 2-page crossing minimization. I.e.,
we seek a circular arrangement of the vertices of a graph G, and an assignment
of the edges to either the interior or exterior of the circle, such that the total
number of crossings is minimized. As in the 1-page case, we consider minimizing
both the number of crossings cr2(G) and the number of crossed edges cre2(G).

There are two sources of combinatorial complexity for this problem, the ver-
tex ordering and the edge assignment. However, even when the vertex ordering
is fixed, choosing an edge assignment to minimize crossings is NP-hard [26]. The
hard instances of this problem can be chosen to be perfect matchings (with k-
almost-tree parameter zero), so unless P = NP there can be no FPT algorithm
for the version of the problem with a fixed vertex ordering. Paradoxically, we
show that requiring the algorithm to choose the ordering as well as the edge as-
signment makes the problem easier. A straightforward exact algorithm considers
all 2m(n− 1)! possible configurations and chooses the one minimizing the total
number of crossings, running in O(2mn!) time. We will combine this fact with
our kernelization to produce an FPT algorithm.

We will give a sequence of reduction rules that transforms any drawing of G
into a drawing with the same number of crossings and crossed edges, in which
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the lengths of all paths are bounded by a function f(k) of the parameter k.
These reductions will justify the correctness of our kernelization using the same
function. Our reductions are based on the observation that, if uv is an uncrossed
edge, and u and v are consecutive vertices on the spine, then edge uv can be
contracted without changing the crossing number or number of uncrossed edges.
A given layout may not have any uncrossed edges connecting consecutive ver-
tices, but we will show that, for a graph with a long degree two path, the layout
can be modified to produce edges of this type without changing its crossings.

Lemma 4. Let G be a graph with cyclomatic number k. Then there exists a
2-page drawing with at most k crossed edges, and at most

(
k
2

)
crossings.

Proof. Remove k edges from G to produce a forest, F . Draw F without crossings
on one page, and draw the remaining k edges on the other page. Only the k edges
in the second page may participate in a crossing. ��
We classify the possible configurations of pairs of consecutive edges of a degree
two path, up to horizontal and vertical symmetries, into four possible types: m,
s, rainbow, and spiral, as depicted in Figure 3.

a cb a cb a bca bc

m s rainbow spiral

Fig. 3. Up to horizontal and vertical symmetry, the only possible arrangements of two
consecutive edges are m, s, rainbow, and spiral

Lemma 5. If a layout contains a pair of edges ab and bc of m or rainbow type
with edge bc uncrossed and with b and c both having degree two, then it can be
reduced without changing its crossings by a rearrangement followed by a contrac-
tion of the edge bc.

Proof. In either configuration we move vertex b adjacent to vertex c, on the
opposite side of c from its other neighbor, as demonstrated in Figure 4. Since the
edge bc is uncrossed this transformation does not change the crossing structure
of the drawing. Now that b and c are placed next to each other the edge bc may
be contracted. ��

Lemma 6. If a layout contains a pair of uncrossed edges ab and bc of s or spiral
type, with a, b, and c all having degree two, then the layout can be reduced without
changing its crossings by a rearrangement and contraction.

Proof. We assume by symmetry that a is the leftmost of the three vertices, edge
ab is in the upper page, and edge bc is in the lower page. Let x be the neighbor of
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a b c a c b a c b a cb

Fig. 4. The m reduction (left) and the rainbow reduction (right) shown with an edge
into the β region

a b cα β a b cαβ a c bα β a c bαβ

Fig. 5. The s reduction (left) shown with an edge into β and the spiral reduction (right)
shown with edges into α and β

a that is not b and let y be the neighbor of c that is not b. We may assume that
edge xa is in the lower page, for if it were in the upper page then edge ab would
be part of an m or rainbow configuration and could be reduced by Lemma 5. By
the same reasoning we may assume that cy is in the upper page.

First we consider s configurations. Let α be the set of vertices between a
and b, and let β be the set of vertices between b and c. Then β can have no
incoming edges in the lower page, because cy is upper and bc blocks all other
edges. Therefore, we may move β directly to the left of a, as in Figure 5. Since
edges ab and bc are uncrossed this transformation does not change the crossing
structure of the drawing. We can then contract edge ab.

For the spiral, assume by symmetry that c is between a and b. Let α be the
set of vertices between a and c, and let β be the set of vertices between c and
b. Because cy is assumed to be in the upper page, and bc blocks all other lower
edges, β can have no incoming lower edges; however, it might have edges in the
upper page connecting it to α, so we must be careful to avoid twisting those
connections and introducing new crossings. In this case, we move β between a
and α and contract edge bc. ��

As shown above, if any degree two path has at least four edges and two consec-
utive uncrossed edges, then we can apply one of the reduction rules and reduce
the number of edges. For this reason we define the kernelK for computing cr2(G)
using the method in Section 3, with the bound �(k) = 2k2 on the length of the
maximal degree two paths. Similarly, we define the the kernel L for computing
cre2(G) by setting �(k) = 2k.

Lemma 7. Let G be a graph with cyclomatic number k. Then,

1. K has at most 6k3 vertices and 6k3 edges;
2. cr2(G) = cr2(K);
3. L has at most 6k2 vertices and 6k2 edges;
4. cre2(G) = cre2(L)
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Proof. (1) Since we have at most 2k2 vertices per maximal degree two path, the
total number of vertices is at most 2k2(3k − 3) + 2k − 2 ≤ 6k3. The number of
edges is at most 2k2(3k − 3) + (2k − 2) + (k − 1) ≤ 6k3.

(2) The proof that cr2(G) ≤ cr2(K) is that same as in Lemma 2. To see that
cr2(K) ≤ cr2(G) we suppose that G has been given an embedding that minimizes
cr2(G). The total number of crossings in such an embedding is bounded above
by

(
k
2

)
< k2/2, and in turn the number of crossed edges is less than k2. Thus any

maximal degree two path in G with length greater than 2k2 can be shortened.
(3) and (4) The proof follows by the same argument as in (1) and (2), noting

that there always exists a drawing with at most k crossed edges. ��

We apply the straightforward exact algorithm to the kernel of the graph to
achieve the following result:

Theorem 2. If G is a graph with cyclomatic number k, then cr2(G) can be com-

puted in O(26k
3

(6k3)!+n) time, and cre2(G) can be computed in O(26k
2

(6k2)!+n)
time. If G is a k-almost-tree, then cr2(G) and cre2(G) can be computed in

O(26k
3

(6k3)!n) time and O(26k
2

(6k2)!n) time respectively.

6 Matrix Multiplication Improvement

α

β

γ

δδ

A

B

CC

Fig. 6. Types of crossings

The asymptotic run time for processing each bicon-
nected component in both the one page and two
page cases can be further improved using matrix
multiplication to find the minimum weight triangle
in a graph [27].

We begin with the 1-page case, in which we
improve the run time to O(kO(1)(5k)!ω/3) where
ω < 2.3727 is the exponent for matrix multiplica-
tion [28]. Let N ≤ 5k be the number of vertices in
the kernel K, and for simplicity of exposition, as-
sume that N is a multiple of 3. We construct a new
graph G′ as follows. For each subset S ⊂ K of N/3
vertices in the original kernel K, and for each ordering of S, we create one vertex
in G′. Thus, the number of vertices in G′ is (N/3)! · ( N

N/3

)
= O

(
(N !)1/3

)
. We

add edges in G′ between pairs of vertices that represent disjoint subsets. G′ has
a triangle for every triple of subsets that form a proper partition of V in G.
Thus, each triangle corresponds to an assignment of the vertices to three uni-
formly sized regions and a distinct ordering of the vertices in each region, which
together form a complete layout of G.

We assign a weight to each edge in G′ based on the number of edge crossings
in G between the vertices in the corresponding regions. There are four possible
types of crossing, represented by α, β, γ and δ in Figure 6. For a crossing of type
α, in which all endpoints of a pair of crossing edges in G are contained in the same
region B, we add 1/2 to the weights of edges AB and BC in G′. For β, in which
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a pair of crossing edges in G both start in a region A and end in another region
B, we add 1 to the weight of edge AB in G′. For γ, in which three endpoints of
a pair of edges lie in the same region C, and the fourth lies in a different region
B, we add 1 to the weight of edge BC in G′. Finally, for δ, in which a pair of
crossed edges both have an endpoint in one region A, but their other endpoint in
two different regions B and C, we add 1/2 to the weight of edge AC and 1/2 to
the weight of edge AB in G′. With these weights, the total weight of a triangle
in G′ equals the number of edge crossings in the corresponding layout. The edge
weights for G′ can be computed in O(kO(1)(5k)!2/3) time.

To find the minimum weight triangle we construct the weighted adjacency
matrix A, where Ai,j is given the weight of the edge from i to j or infinity if
no such edge exists. We then compute the min-plus matrix product of A with
itself, which is defined by [A�A]i,j = mink Ai,k+Ak,j . The weight of a minimum
weight triangle in A then corresponds to the minimum entry in A+A�A. From
the minimum weight and corresponding i and j the triangle can be found in
linear time. Thus, the runtime is dominated by computing A � A, which can be
done in O(kO(1)(5k)!ω/3) time using fast matrix multiplication [29, 30].

For the 2-page case we consider each of the 2M edge page assignments sep-
arately, computing the minimum crossing drawing for this assignment using
matrix multiplication. As before we construct a graph G′ with weighted edges
between compatible vertices, such that a minimum weight triangle in G′ corre-
sponds to a minimum weight drawing. Matrix multiplication is then used to find
this minimal weight triangle for each page assignment, yielding a running time
of O(2M (N !)ω/3), where N is the number of vertices and M is the number of
edges in the kernel. Thus, we have the following result:

Theorem 3. If G is a graph with cyclomatic number k, then we can compute:

– cr1(G) and cre1(G) in O(kO(1)(5k)!ω/3 + n) time;

– cr2(G) in O(26k
3

(6k3)!ω/3 + n) time;

– cre2(G) in O(26k
2

(6k2)!ω/3 + n) time.

7 Conclusion

We have given new fixed parameter algorithms for computing the minimum
number of edge crossings and minimum number of crossed edges in 1-page and
2-page embeddings of k-almost trees. To our knowledge, these are the only pa-
rameterized exact algorithms for these drawing styles.

We leave the following questions open to future research:

– For 2-page embeddings, the hardness of finding uncrossed drawings [13]
shows that crossing minimization cannot be FPT in its natural parameter,
the number of crossings. What about 1-page embeddings?

– Can the dependence on k be reduced to singly exponential?
– What other NP-hard problems in graph drawing are FPT with respect to k?
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