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Abstract. A graph layout describes the processing of a graph G by a
data structure D, and the graph is called a D-graph. The vertices of G are
totally ordered in a linear layout and the edges are stored and organized
in D. At each vertex, all edges to predecessors in the linear layout are
removed and all edges to successors are inserted. There are intriguing
relationships between well-known data structures and classes of planar
graphs: The stack graphs are the outerplanar graphs [4], the queue graphs
are the arched leveled-planar graphs [12], the 2-stack graphs are the
subgraphs of planar graphs with a Hamilton cycle [4], and the deque
graphs are the subgraphs of planar graphs with a Hamilton path [2]. All
of these are proper subclasses of the planar graphs, even for maximal
planar graphs.

We introduce splittable deques as a data structure to capture planarity.
A splittable deque is a deque which can be split into sub-deques. The
splittable deque provides a new insight into planarity testing by a game
on switching trains. Here, we use it for a linear-time planarity test of a
given rotation system.

1 Introduction

In a graph layout, the vertices are processed according to a total order, which
is called linear layout. The edges correspond to data items that are inserted to
and removed from a data structure: Each edge is inserted at the end vertex
that occurs first according to the linear layout and is removed at its other end
vertex. These operations obey the principles of the underlying data structure,
such as “last-in, first-out” for a stack or “first-in, first-out” for a queue. Stack
layouts (also known as book embeddings) and queue layouts have been studied
extensively, e. g., in [4, 5, 7, 8, 10–12, 16, 18], and are used for 3D drawings of
graphs [16], in VLSI design [5] and in other application scenarios [12]. Moreover,
Gauss codes and permutation networks of two parallel stacks are characterized
by two-stack graphs [14].

Graph layouts are a powerful tool to study planar graphs. A graph G is a
D-graph if it has a layout in D. The stack graphs are the outerplanar graphs,
and the 2-stack graphs are the subgraphs of planar graphs with a Hamiltonian
cycle [4]. Heath et al. [8, 12] have characterized queue graphs as the arched
leveled-planar graphs. Such graphs have a planar drawing with vertices placed
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on levels. Inter-level edges connect vertices between two adjacent levels and intra-
level edges (the arches) connect the left-most vertex to accessible vertices on the
right side. In [2], we have characterized the proper leveled-planar graphs, i. e.,
the arched leveled-planar graphs without arches, as the bipartite queue graphs.
Graph layouts can be extended to subdivisions where edges of the graph are
replaced by paths. A graph is planar if and only if it has a subdivision that has
a layout in two stacks [8].

In [1, 2], we have studied double-ended queue (deque) layouts: A deque has
two ends, a head and a tail, and items can be inserted and removed at both
sides. It can emulate two stacks and additionally allows for queue edges, i. e.,
edges inserted and removed at opposite sides. In [2], we have shown that the
surplus power of a deque in comparison to two stacks captures the difference
between Hamiltonian paths and cycles: A graph is a deque (2-stack) graph if
and only if it is the subgraph of a planar graph with a Hamiltonian path (cycle).
In fact, a planar embedding of a graph with a Hamiltonian path reflects the way
the edges are processed in the deque: Fig. 1(c) shows an embedded graph with
the Hamiltonian path 1, 2, 3, 4, 11, 12, 13, which is the linear layout. An edge to
the right of the path, e. g., edges e6 and e9, is inserted and removed at the tail
of the deque whereas the queue edges change sides, e. g., e3 and e4 are inserted
at the tail and removed at the head. Although more powerful than two stacks,
not all planar graphs are deque graphs since there are maximal planar graphs
with no Hamiltonian path and the respective decision problem is NP-hard [2].
Yannakakis has shown that four stacks are sufficient and necessary for all planar
graphs [17]. However, there are non-planar graphs that have a layout in four
and even three stacks. This raises the following question: What is the additional
operation a deque must perform to layout exactly the planar graphs? It turns
out that the ability to split the deque into pieces is the adequate operation. We
show that a graph is planar if and only if it is a splittable deque (SD) graph.

Our proof takes an algorithmic viewpoint: We give a linear-time algorithm to
test whether or not a rotation system is planar, which uses the SD to process all
edges. A rotation system defines the counterclockwise order of edges around each
vertex and it is planar if it admits a plane drawing of the graph. In a nutshell, the
algorithm is a depth-first search (DFS) which tries to process all edges in the SD
according to the rotation system. Planarity follows if this is possible. Otherwise,
an edge that cannot be processed, e. g., removed from the deque, causes a crossing.
The algorithm is a means to an end for our characterization of planarity and there
are other algorithms especially designed for solving the same problem [6]. Never-
theless, our algorithmhas the benefit that it operates on an elementary data struc-
ture, i. e., a deque, which is very simple in comparison to other ones used for general
planarity tests [15]. Note that any two-cell embedding on a surface of genus k can
be defined by a rotation system. In particular, it is not sufficient to only test lo-
cally at each face whether the rotation system causes crossings. Another challenge
are crossings between edges incident to the same vertex, which are ignored in the
general case. As the SD exploits the structure of a graph’s DFS tree, our charac-
terization is related to the characterization of planarity by de Fraysseix et al. [9].
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The SD also provides a playful characterization of planarity: At GD 2012,
we presented the poster “Testing Planarity by Switching Trains” [3]. There,
the edges are modeled as cars which have to be appended at the head and
tail of a train which models the deque. The vertices are train stations which
are the sources and destinations of the cars and, at junctions, the train can be
split. We also implemented a Java game1, which uses the time-reversed variant
of the SD, i. e., the mergeable deque. The player is asked to switch the cars
such that all can be removed at their destination station. The graph under-
lying a game level is obtained from a GraphML file. If it is possible to bring
all cars to their destination without an error, then the underlying graph is
planar.

2 Preliminaries

We consider simple, undirected, and connected graphs G = (V,E) with ver-
tices V and edges E such that |V | ≥ 2. A graph G = (V,E) is planar if it has
a plane drawing which maps the vertices to distinct points in the plane and
edges {u, v} to Jordan arcs from u to v such that Jordan arcs do not cross ex-
cept at common end points. A rotation system Rv defines a cyclic order of edges
around each vertex v. From a plane drawing, we obtain a planar rotation system
which is the counterclockwise ordering of the edges around each vertex in the
drawing. Given a rotation system Rv, each edge e has a successor edge Succv(e)
and a predecessor edge Prev(e) at vertex v.

A DFS tree T = (V,ET ) is a rooted, directed spanning tree of G obtained
from a DFS traversal starting at a root vertex r. We assume that the tree edges
ET are directed from the parent to its children. We denote by u → v that

(u, v) ∈ ET . By u
+→ v, we denote a path of tree edges (at least one) from u

to v. Vertex u is an ancestor of v and v is a descendant of u. By u
∗→ v, we

denote u = v or u
+→ v. T partitions E into tree edges ET and forward edges F .

For each forward edge {u, v} ∈ F , there is a path u
+→ v where u is an ancestor

of v.
A linear layout if a total ordering ≺ of the vertices. If u ≺ v, then u is called

predecessor of v and v successor of u. In a graph layout, a vertex v can be seen
as a processing unit that receives as input a data structure from which v’s edges
to predecessors are removed and edges to successors are inserted. Insertions and
removals obey the modus operandi of the data structure. The resulting data
structure is the output of the vertex and the input to the immediate successor.
The input to the first and output of the last vertex is empty.

A deque is a doubly linked list whose content is denoted by C = (e1, . . . , ek),
where e1 is at the head h and ek is at the tail t. The empty deque is denoted by
(). We denote by ei ∈ C that ei is in C and by ei �C ej that i < j in C. We omit
the subscript in �C if it is clear from the context which configuration is meant.

1 http://www.infosun.fim.uni-passau.de/br/games/derail.jar

http://www.infosun.fim.uni-passau.de/br/games/derail.jar
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An edge e ∈ C can be removed if it is situated at the head or the tail of C. In
the following, we denote by Cv the input of vertex v.

Let G = (V,E) be a graph endowed with a rotation system and assume that
G contains Hamiltonian path p = (v1, . . . , vn). Path p is a (degenerate) DFS
tree of G and it induces a linear layout with vi ≺ vj if and only if i < j for
all 1 ≤ i, j ≤ n. The edges on p are directed from each vertex to its immediate
successor. A rotation system ofG defines the order in which the edges are inserted
to and removed from a deque and Algorithm 1 shows how: It takes as input a
vertex v and its rotation system Rv along with a deque Cv. ep and es are the
edges to the immediate predecessor and successor of v on p, respectively. The
value ⊥ indicates that v is the first or last vertex. Let vi with 1 < i < n be an
inner vertex of p. Its rotation system is sketched in Fig. 1(a). In Algorithm 1,
all edges eh1, . . . , e

h
k between ep and es are inserted and removed at the head in

counterclockwise order of the rotation system (lines 1–4). An edge is removed if
it points to a predecessor and it is inserted if it points to a successor. We say
that these edges are to the left of p at v. Then, at v, all edges et1, . . . , e

t
l to the

right of p between ep and es are processed at the deque’s tail in reversed, i. e.,
clockwise, order of the rotation system (lines 5–10). Whereas an edge can always
be inserted, removing might not be possible if the edge is not accessible at the
corresponding side of the deque. In this case, Algorithm 1 aborts and returns ⊥.
At the endpoints v1 and vn of p, the rotation system can be divided at an
arbitrary position. In this case, Algorithm 1 processes all edges at the head. Note
that the edges of the Hamiltonian path p are not processed in the deque. The
reason is that these edges can always be processed canonically without interfering
with any other edges: First of all, the edge to the immediate predecessor is
removed at the head and, last of all, the edge to the immediate successor is
inserted at the head. Hence, we can safely ignore all edges on p. We say that a
rotation system admits a deque layout if subsequently calling ProcessDeque for
all vertices v1, . . . , vn in order never returns ⊥ and the input to v1 is the empty
deque and so is the output of vn. From [2], we obtain the following proposition.

Proposition 1. The rotation system of a graph with a Hamiltonian path is
planar if and only if it admits a deque layout.

For an example, consider Fig. 1(c). The input of vertex 3 is the deque with
content (e4, e3) and edge e6 is inserted to the tail of the deque, which results
in (e4, e3, e6). Consider edge e′ which crosses e6. This is also reflected in the
deque layout: At vertex 4, e4 is removed at the deque’s head and e′ inserted
to the tail resulting in (e3, e6, e

′). At vertex 11, e6 must be removed at the tail
which is not possible since e′ is in its way.

3 The Splittable Deque

The SD enhances the deque by allowing it to be split. This is the dual to the
mergeable deque of Kosaraju [13]. In order to define SD layouts, we generalize
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Algorithm 1. ProcessDeque

Input: vertex v with rotation system Rv = (e1, . . . , ek), deque Cv, edges ep (es)
to immediate predecessor (successor); or ⊥ if v is first (last)

Output: new content of the deque or ⊥ if deque layout is not possible
1 e ← Succv(ep) if ep �= ⊥, else Succv(es)
2 while e �= es ∧ e �= ep do
3 if e is edge to successor then Cv.insertAtHead(e)
4 else Cv.removeAtHead(e) or return ⊥ if not possible e ← Succv(e)

5 if es �= ⊥ ∧ ep �= ⊥ then v is an inner vertex
6 e ← Prev(ep)
7 while e �= es do
8 if e is edge to successor then Cv.insertAtTail(e)
9 else Cv.removeAtTail(e) or return ⊥ if not possible

10 e ← Prev(e)

11 return Cv

linear layouts to tree layouts. A tree layout is an ordered DFS tree T = (V,ET )
of a graph G, i. e., a DFS tree in which the children of each inner vertex are
totally ordered from left to right. Remember that the linear layout of a deque
layout describes the processing pipeline, i. e., if u is the immediate predecessor of
v, then the output of u is the input of v. With a tree layout T , a vertex v can have
multiple immediate successors, namely, its children w1, w2, . . . , wl in order. For a
graphG, let T = (V,ET ) be a tree layout with root r. The input Cr = () of root r
is empty. Let Cv = (e1, . . . , ek) be the input of vertex v ∈ V and let w1, . . . , wl

be the children of v in T in order. Assume for now that v has at least one child.
At first, Cv is split into l ≤ 1 consecutive and disjoint pieces cw1 , . . . , cwl

, where
Cv is the concatenation of cw1 , . . . , cwl

. These l pieces constitute l new SDs. Each
forward edge from an ancestor of v in T has to be removed and each forward
edge to a descendant has to be inserted at one of these SDs. The SD obtained
from cwi after all removals and insertions is the input Cwi of child wi. If v is a
leaf, its output must be empty. If T is a path, the SD is never split and behaves
like a deque. A graph is an SD graph if it has a tree layout such that all edges
can be processed in the SD.

For an example, consider the graph in Fig. 1(b) whose rotation system can be
obtained from the drawing. The vertices are numbered according to a DFS run
starting at root 1. The red, dashed edges are ignored for the moment. All tree
edges are directed from parent to children and drawn bold. In Fig. 1(d), the tree
layout as defined by the DFS tree is displayed where the children are ordered
from left to right according to the rotation system. In fact, the rotation system as
shown in Fig. 1(d) is equal to the one obtained from Fig. 1(b). In the example, the
input SD of vertex 4 is C4 = (e5, e2, e1, e4, e3, e6). At vertex 4, the SD is split into
three pieces c5 = (e5, e2), c10 = (e1), and c11 = (e4, e3, e6). Afterwards, forward
edge e4 is removed at the head of c11. We obtain C5 = (e5, e2), C10 = (e1), and
C11 = (e3, e6) as inputs to vertices 5, 10, and 11, respectively. In principle, C4 can
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Fig. 1. (a) shows how a path splits the rotation system of a vertex and at which side
of the deque the edges are processed. A planar graph with its DFS tree (directed and
bold drawn edges) is shown in (b) and its tree layout in (d) along with the input SD
for some vertices. (c) shows a path from the root to a leaf in the DFS tree, which
corresponds to a deque layout.

also be split such that c10 = (e1, e4) and c11 = (e3, e6) and then e4 is removed at
the tail of c10. This ambiguity occurs at vertices with more than one child and
does not influence the property of a graph of being an SD graph.

4 Testing Planarity of a Rotation System by the SD

In this section, we prove our main result.

Theorem 1. A graph G is an SD graph if and only if G is planar.

To prove this theorem, we use Algorithm 2 which uses the SD to test whether a
given rotation system is planar. By showing its correctness, Theorem 1 follows.
Algorithm 2 defines the recursive routine PlanarRS which takes as input a ver-
tex v endowed with a rotation system, a tree layout T , the input SD Cv for v, and
the tree edge ea from its parent p in T or ⊥ if v is the root. The tree layout T is
obtained from a prior DFS run, where the children of each vertex v are ordered
from left to right as given by the rotation system. In a nutshell, PlanarRS first
splits Cv into pieces cw1 , . . . , cwl

, one for each of v’s children w1, . . . , wl, and
then removes and inserts all forward edges according to the rotation system of
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Algorithm 2. PlanarRS

Input: vertex v with rotation system Rv = (e1, . . . , ek), tree
layout T = (V,ET ), SD Cv, tree edge ep from parent p or ⊥ if v is the
root

Output: true R is planar; false if one of e1, . . . , ek causes a crossing
1 if v is leaf then return whether ProcessDeque(v,Rv , Cv, ep,⊥) = ()
2 w1, . . . , wl ← children of v in ET
3 Split Cv into pieces cw1 , . . . , cwl such that ∀e ∈ cwi : e is removed at v, wi or one

of wi’s descendents or return false if this is not possible

4 foreach wi ∈ {w1, . . . , wl} do R̃i←[ ]; removed[wi] ← false S ← empty stack
5 e1, . . . , ek ← rotation system of v with e1 = ep if v is not root; else e1 = (v, w1)

foreach e = e1, . . . , ek do
6 wi ← child wi with e ∈ cwi , e is removed at descendant of wi, or e = (v, wi)

7 if e is forward edge then R̃i.append(e) if S .top() = wi then continue
with next edge in line 5 if wi ∈ S then

8 while S .top() �= wi do
9 wi′ ← S .pop(); removed[wi′ ] ← true

10 Cwi′ ← ProcessDeque(v, R̃i′ , cwi′ , ep, (v, wi′))
11 if Cwi′ = ⊥ then return false else if

¬PlanarRS(wi′ ,Rwi′ , T , Cwi′ , (v, wi′)) then return false

12 else if ¬removed[wi] then S .push(wi) else return false

13 while ¬S .isEmpty() do
14 wi ← S .pop()
15 Cwi ← ProcessDeque(v, R̃i, cwi , ep, (v, wi))
16 if Cwi = ⊥ then return false else if ¬PlanarRS(wi,Rwi , T , Cwi , (v, wi))

then return false

17 return true

v. Afterwards, it recursively calls PlanarRS for all its children. If at some point,
the SD cannot be split adequately or an edge cannot be removed, false is re-
turned and propagated back to the initial caller of PlanarRS. Otherwise, true
is returned. In the following, we assume that in a drawing of G which respects
the rotation system no pair of edges crosses more than once and no edge crosses
any of the tree edges: As the tree layout T itself contains no cycles, it is always
planar regardless of the rotation system. Also, all forward edges can be drawn
such that they cause no crossing with any tree edge. This is also reflected in the
SD where all tree edges can be processed canonically without interfering with
any forward edge: After splitting the SD, the tree edge from the parent can be
removed at the head of the first SD and, as the last step, each tree edge to
child wi can be inserted at the head of the SD for child wi. As with the deque,
we only consider forward edges in the SD layout.

To actually insert and remove forward edges to an SD, PlanarRS uses the
routine ProcessDeque. The observation behind is that a deque is a special case
of the SD, namely, whenever the tree layout is a path: Let G be a graph endowed
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with a rotation system and T be a tree layout of G. Further, let p be a path from
the root to a leaf of T and denote by Gp the subgraph of G induced by p which
inherits G’s rotation system. For instance, the subgraph Gp for the root-to-leaf

path p = 1
+→ 13 in Fig. 1(d) is shown in Fig. 1(c). Gp’s rotation system is planar

if and only if it admits a deque layout by Proposition 1. Hence, if G’s rotation
system is planar, then the rotation system on every root-to-leaf path admits a
deque layout. In PlanarRS, all edges that lie on a common root-to-leaf path p
are processed in the SD just like in a deque. If this is possible, then the rotation
system of each root-to-leaf path is planar. This is already reflected in line 1: If
v is a leaf, then the SD is not split and must be emptied by ProcessDeque and
true is returned if and only if ProcessDeque returns an empty SD.

In line 3, the SD Cv is split into pieces cw1 , . . . , cwl
such that for each edge e ∈

cwi edge e is removed at v, wi or one of wi’s descendants. If this is not possible,
false is returned. Consider edge e′′ in Figs. 1(b) and (d), which crosses edge e1.
Edge e1 is inserted at the head at vertex 1 and e′′ at the tail at vertex 2, i. e.,
e1 � e′′. At vertex 4, the deque has to be split such that e1 ∈ c10 and e′′ ∈ c5.
However, as e1 � e′′ and vertex 5 is left of vertex 10, this is not possible. In
general, we obtain the following lemma:

Lemma 1. Let e and e′ be two forward edges in Cv such that e (e′) is removed
at wi (wi′) or one of its descendants. It is possible to split Cv such that e ∈ cwi

and e′ ∈ cwi′ if and only if e and e′ do not cross.

Proof. We assume that e and e′ are inserted at u and u′ and removed at x and

x′, respectively. Since e and e′ are forward edges, there are paths p = u
+→ v →

wi
∗→ x and p′ = u′ +→ v → wi′

∗→ x′.
⇐: We prove the contrapositive and assume that Cv cannot be split such that

e ∈ cwi and e′ ∈ cwi′ . Either e and e′ are inserted to the same side of the deque
or to different sides. For the first case, assume that e and e′ are both inserted at
the head and, w. l. o. g., wi is left of wi′ in the total order of children at v. This
implies that e′ �Cv e. This situation is depicted in Fig. 2(a). Remember that
PlanarRS inserts and removes edges to the SD as with a deque. Hence, both
edges e and e′ are to the left of p and p′ at u and u′, respectively. There is a
cycle formed by path p and forward edge e. In a drawing of G which respects
the rotation system, this circle encloses a region R (dark shaded in Fig. 2(a))
such that R does not contain wi′ . As e′ �Cv e, e is inserted before e′ and,
thus, either u is an ancestor of u′, or u = u′ and the rotation system at u is
Ru = (. . . , e, . . . , e′, . . . , ed, . . .), where ed is the tree edge from u to u’s child
on p. In either case, the edge curve of e′ starts within region R and must end
outside R which inevitably causes a crossing with e. The reasoning if e and e′

are inserted at the tail is analogous.
In the second case, e and e′ are inserted at different sides where, w. l. o. g., e is

inserted at the tail and e′ at the head (cf. Fig. 2(b)). Hence, e′ �Cv e. Since Cv
cannot be split adequately, this implies that wi must be left of wi′ at v. Again,
let R be the region enclosed by p and e (dark shaded in Fig. 2(b)) such that
R contains wi′ . As e is to the right of p at u and e′ to the left of p′ at u′, the
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Fig. 2. The two cases where the SD cannot be split appropriately (Figs. (a) and (b)).
Fig. (c) sketches nesting sectors and Fig. (d) clashing sectors.

edge curve of e′ starts outside of R and must reach x′ within R which leads to
a crossing with e.

⇒: Again, we prove the contrapositive. We have two cases: Either e and e′ lie
on the same side of p and p′ at u and u′, respectively, or on different sides. For
the first case, we assume w. l. o. g. that wi is left of wi′ at v. If a crossing between
e and e′ is unavoidable, then u is either an ancestor of u′, or u = u′ and rotation
system of u is Ru = (. . . , e, . . . , e′, . . . , ed, . . .), where ed is the tree edge from u
to u’s child on p (Fig. 2(a)). In either case, e is inserted at the head before e′

and e′ �Cv e. Thus, Cv cannot be split such that e ∈ cwi and e′ ∈ cwi′ . For the
second case, e lies to the right of p and e′ to the left of p′ (w. l. o. g.). Thus, e is
inserted at the tail and e′ at the head and e′ �Cv e. If a crossing between e and
e′ is unavoidable, then wi is to the left of wi′ at v (cf. Fig. 2(b)) and, again, Cv
cannot be split such that e ∈ cwi and e′ ∈ cwi′ . ��

Let Rv = (e1, . . . , ek) be the rotation system of v such that e1 is the tree edge
from v’s parent if v is an inner vertex of T . If v is the root, then e1 is the tree
edge to v’s first child w1. After Cv is successfully split into pieces cw1 , . . . , cwl

,
PlanarRS finds for each piece a subsequence of Rv which contains all forward
edges that must be removed from and inserted to cwi . A sector R̃i of child wi

is a subsequence of v’s rotation system such that all edges in R̃i are forward
edges incident to an ancestor of v or a descendant of wi. Further, for each
forward edge e there is exactly one sector R̃i with e ∈ R̃i. If the rotation system
is planar, then all sectors must properly nest: Consider Fig. 2(c) in which v
has five children corresponding to five subtrees. In the rotation system of v,
the sector that corresponds to subtree 2 encloses the sector corresponding to
subtree 1, and the sector belonging to 3 encloses both. Let R̃i = (ep, . . . , eq)

and R̃i′ = (ep′ , . . . , eq′) be two sectors of Rv = (e1, . . . , ek). We say that R̃i

and R̃i′ clash if there exist edges er ∈ R̃i and er′ ∈ R̃i′ with p < p′ < r < r′

(see Fig. 2(d)) or r < r′ < q < q′.
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Lemma 2. In a planar rotation system, no pair of sectors clash.

Proof. Assume for contradiction that G’s rotation system is planar but the sec-
tors R̃i = (ep, . . . , eq) and R̃i′ = (ep′ , . . . , eq′) clash. Let er ∈ R̃i and er′ ∈ R̃i′

be edges with p < p′ < r < r′. The reasoning for the case r < r′ < q < q′ is
similar. The situation is shown in Fig. 2(d). There is a circle formed by v, ep,
er and a simple path between the endpoints of ep and er distinct from v. In a
plane drawing of G respecting the rotation system, this circle encloses a region
R (shaded in Fig. 2(d)) such that it contains the endpoints of ep′ and er′ other
than v. As p < p′ < r < r′, the edge curve of er′ starts outside of R and ends
inside which leads to a crossing; a contradiction. ��

Corollary 1. In a planar rotation system, all pairs of sectors R̃i = (ep, . . . , eq),

R̃i′ = (ep′ , . . . , eq′) with p < p′, are either disjoint, i. e., p ≤ q < p′ ≤ q′, or
nesting, i. e., p < p′ < q′ < q.

If all sectors are disjoint or nesting, we can construct a plane drawing at ver-
tex v given plane drawings of all subgraphs that belong to the subtrees of v’s
children. To test if the sectors are nesting, PlanarRS uses a stack in which v’s
children w1, . . . , wl are inserted and removed. Further, for each child wi, it main-
tains the boolean variable removed[wi] which stores if wi has been removed from
the stack. PlanarRS subsequently processes all edges e of v in order of the ro-
tation system (line 5). In line 6, the child wi “responsible” for e, is determined,
i. e., either e is the tree edge from v to wi, or e is a forward edge and must be
removed from cwi or e must be inserted at v and is removed at a descendant of
wi. If e is a forward edge, it is appended to sector R̃i. If wi is currently on top of
the stack, no further action is needed (line 7). If wi ∈ S, all children wi′ on the
stack are removed until wi is on top. For all removed children wi′ , removed[wi′ ]
is set to true. If wi /∈ S and removed[wi] = false, wi is pushed onto the stack
(line 12).

If wi is not in the stack and has previously been removed, false is returned
(line 12) as the rotation system is not planar for the following reasons: Child wi

has been removed in a previous iteration when another child wi′ further below
in the stack needed to be on top. Let R̃i = (ep, . . . , eq) be the sector of wi and

R̃i′ = (ep′ , . . . , eq′) the sector of wi′ . wi′ has been inserted to S before wi and,
thus, p′ < p. In the iteration when wi is removed from S, the edge of the iteration
is er′ ∈ Rwi′ . Further, there is an edge er ∈ Rwi when wi would be reinserted

with r′ < r. Altogether we get p′ < p < r′ < r and, hence, R̃i and R̃i′ clash.
Thus, the rotation system of G is not planar by Lemma 2.

Whenever a child wi′ is removed from S, it must never be inserted again
and, hence, R̃i′ must contain all edges to be processed in cwi′ . In line 10,

ProcessDeque is called with sector R̃i′ and cwi′ as parameters. Remember that
ProcessDeque needs two edges on a path which divide the rotation system into
a left and right half. Here, these two edges are the tree edge from the parent
of v, if existent, and the tree edge from v to wi′ . If the return value Cwi′ of
ProcessDeque is ⊥, not all edges could be processed in the deque and the rota-
tion system is not planar by Proposition 1. Thus, false is returned in line 11.
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Otherwise, PlanarRS is called recursively on wi′ with input deque Cwi′ (line 11).
After all forward edges of the rotation system are processed, all children remain-
ing in S are removed (lines 13–16) and ProcessDeque and PlanarRS are called.
If all calls of PlanarRS return true, the rotation system of each root-to-leaf
path is planar and so are the rotation systems at each vertex with more than
one child.

Lemma 3. PlanarRS in Algorithm 2 returns true if and only if the rotation
system of its input graph is planar.

Since PlanarRS obeys the SD’s modus operandi, Theorem 1 follows. Each edge
is inserted and removed exactly once. Further, in the loop from lines 5–12 each
forward edge is processed at most twice during the algorithm and, by using the
DFS numbers, it is possible to decide in time O(1) in which subtree the end
vertex of a forward edge lies. Also, each vertex is inserted at most twice to the
stack for each edge. The operation that needs more arguing is splitting the deque
(line 3) for which also a linear running time can be achieved.

Whenever PlanarRS returns false, the edges that cause a crossing can be
determined: If one of the calls of ProcessDeque returns ⊥, then an edge could
not be removed from the SD since at least one other edge is blocking its way.
Hence, these edges must cross. If the SD cannot be split adequately (line 3),
then we obtain one of the situations as in Figs. 2(a) or (b) and the edges which
prevent the SD from being split adequately are those that cause a crossing. Last,
if some of v’s children wi were reinserted into the stack (lines 12 and 16), then
the corresponding sectors would be classhing and, hence, there exist two edges
that cross according to the proof of Lemma 2 (see Fig. 2(d)).

5 Conclusion

We characterized planarity by graph layouts in the splittable deque (SD): Al-
though a stack, two stacks, or the deque characterize large classes of planar
graphs, they do not capture all. We enhanced the deque by a split-operation and
showed that it characterizes planarity. For our proof, we devised a linear-time
algorithm operating on the SD to test the planarity of a rotation system. If it
is not planar, the operations on the SD indicate crossing edges. Our test also
works for graphs with multi-edges. Given a rotation system, it defines the order
of order of insertions and removals to the SD. Conversely, given the order of
insertions and removals to the SD, we can find a (planar) rotation system. So a
planarity testing algorithm can use the SD to find an embedding of a graph.
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7. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 339–358 (2004)
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