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Abstract. We study the problem of how to obtain an integer realiza-
tion of a 3d polytope when an integer realization of its dual polytope is
given. We focus on grid embeddings with small coordinates and develop
novel techniques based on Colin de Verdière matrices and the Maxwell–
Cremona lifting method.

As our main result we show that every truncated 3d polytope with
n vertices can be realized on a grid of size polynomial in n. Moreover,
for a class C of simplicial 3d polytopes with bounded vertex degree, at
least one vertex of degree 3, and polynomial size grid embedding, the
dual polytopes of C can be realized on a polynomial size grid as well.

1 Introduction

By Steinitz’s theorem the graphs of convex 3d polytopes1 are exactly the pla-
nar 3-connected graphs [16]. Several methods are known for realizing a planar
3-connected graph G as a polytope with graph G on the grid [4,7,11,12,13,15].
It is challenging to find algorithms that produce polytopes with small integer
coordinates. Having a realization with small grid size is a desirable feature, since
then the polytope can be stored and processed efficiently. Moreover, grid embed-
dings imply good vertex and edge resolution. Hence, they produce “readable”
drawings.

In 2d, it is well known that planar 3-connected graphs with n vertices can
be drawn on a O(n) × O(n) grid without crossings [5], and a drawing with
convex faces can be realized on a O(n3/2×n3/2) grid [2]. For the realization as a
polytope the best algorithm guarantees an integer embedding with coordinates
at most O(147.7n) [3,11]. The current best lower bound is Ω(n3/2) [1]. Closing
this large gap is probably one of the most interesting open problems in lower
dimensional polytope theory. Recently, progress has been made for a special class
of 3d polytopes, the so-called stacked polytopes. A stacking operation replaces a
triangular face of a polytope with a tetrahedron, while maintaining the convexity
of the embedding. A polytope that can be constructed from a tetrahedron and a

� This work was funded by the German Research Foundation (DFG) under grant
SCHU 2458/2-1.

1 In our terminology polytopes are always considered convex.

S. Wismath and A. Wolff (Eds.): GD 2013, LNCS 8242, pp. 173–184, 2013.
c© Springer International Publishing Switzerland 2013



174 A. Igamberdiev and A. Schulz

sequence of stacking operation is called stacked polytope. The graphs of stacked
polytopes are planar 3-trees. Stacked polytopes can be embedded on a grid that
is polynomial in n [6]. This is, however, the only nontrivial polytope class for
which such an algorithm is known.

In this paper we introduce a duality transform that maintains a polynomial
grid size. In other words, we provide a technique that takes a grid embedding of
a polytope with graph G and generates a grid embedding of a polytope whose
skeleton is G∗, the dual graph of G. We call a 3d polytope with graph G∗ a
dual polytope. If the original polytope has integer coordinates bounded by a
polynomial in n, then the dual polytope obtained with our techniques has also
integer coordinates bounded by a (different) polynomial in n. Our methods can
only be applied to special polytopes. Namely, we require that the graph of the
polytope is a triangulation (the polytope is simplicial), that it contains a K4,
and that the maximum vertex degree is bounded.

For the class of stacked polytopes (although their maximum vertex degree is
not bounded) we can also apply our approach to show that all graphs dual to
planar 3-trees can be embedded as polytopes on a polynomial size grid. These
polytopes are known as truncated polytopes. Truncated polytopes are simple
polytope, that can be generated from a tetrahedron and a sequence of trunca-
tions. A truncation is the dual operation to stacking. This means that a degree-3
vertex of the polytope is cut off by adding a new bounding hyperplane that sep-
arates this vertex from the remaining vertices of the polytope. We show that
all truncated polytopes can be realized with integer coordinates in O(n44). The
approach for this class is more direct, since stronger results for realizations of
stacked polytopes on the grid are known [6].

Duality. There exist several natural approaches how to construct for a given
polytope a dual. The most prominent construction is polarity. Let P be some
polytope that contains the origin. Then P ∗ = {y ∈ R

d : xT y ≤ 1 for all x ∈ P}
is a realization of a polytope dual to P , called its polar. The vertices of P ∗

are intersection points of planes with integral normal vectors, and hence not
necessarily integer points. In order to scale to integrality one has to multiply P ∗

with the product of all denominators of its vertex coordinates, which may cause
an exponential increase of the grid size.

A second approach uses the classic Maxwell–Cremona correspondence tech-
nique (also known as lifting approach) [10], which is applied in many embedding
algorithms for 3d polytope realization. The idea here is to first draw the graph
of the polytope as a convex 2d embedding with an additional equilibrium condi-
tion. The equilibrium condition guarantees that the 2d drawing is a projection
of a convex 3d polytope, furthermore the polytope can be reconstructed from its
projection in a canonical way (called lifting) in linear time. There is a classical
transformation that constructs for a 2d drawing in equilibrium a 2d drawing of
its dual graph, also in equilibrium. This drawing is called the reciprocal diagram.
The induced lifting realizes the dual polytope, but it does not provide small in-
teger coordinates for two reasons. First, the weights that define the equilibrium
of the reciprocal diagram are the reciprocals of the weights in the original graph.
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Second, the lifting realizes the dual polytope in projective space with one point
“over the horizon”. The second property can be “fixed” with a projective trans-
formation. This, however, makes a large scaling factor for an integer embedding
unavoidable. Also the reciprocal weights are difficult to handle without scaling
by a large factor.

Structure and notation. As a novelty we work with Colin de Verdière matrices
to construct small grid embeddings. In order to make these techniques (as intro-
duced by Lovász) applicable we extend this framework slightly; see Sect. 2. In
Sect. 3 we then present the main idea, combining the classical lifting approach
with the methods of Sect. 2, which finds applications in the following sections,
where the results on truncated polytopes and triangulations are presented.

Throughout the paper we denote by G the graph of the original polytope,
and by G∗ its dual graph. For any graph H we write V (H) for its vertex set,
E(H) for its edge set and N(v,H) for the set of neighbors of a vertex v in H .
Since we consider 3-connected planar graphs, the facial structure of the graph
is predetermined up to a global reflection [17]. The set of faces is therefore
predetermined, and we name it F (H). For convenience we denote an edge (vi, vj)
as (i, j). A face spanned by vertices vi, vj , and vk is denoted as (vivjvk). A
graph obtained from H by stacking a vertex v1 on a face (v2v3v4), is denoted as
Stack(H ; v1; v2v3v4). For convenience we use |p| for the Euclidean norm of the
vector p. We denote the maximum vertex degree of a graph G as ΔG. Finally,
we write G[X ] for the induced subgraph of a vertex set X ⊆ V (G).

2 3d Representations with CDV Matrices

In this section we review some of the methods Lovász introduced in his paper
on Steinitz representations [9]. In our constructions throughout the paper every
face of any graph is realized such that all its vertices lie on a common plane.
From this perspective drawings of graphs in R

3 and the realizations of their
corresponding polyhedra are the same objects.

Definition 1. We call a straight-line embedding (u1, . . . , un) ∈ (R3)
n
of a pla-

nar 3-connected graph G in R
3 a cone-convex embedding iff the cones over its

faces, Cf = {λx | x ∈ f, λ > 0}, f ∈ F (G) are convex and have disjoint interi-
ors.

In other words, an embedding is a cone-convex embedding if its projection to
the sphere S = {|x| = 1} is a convex drawing of G with edges drawn as geodesic
arcs. We remark that the vertices of a cone-convex embedding are not supposed
to form a convex polytope.

Definition 2. Let (u1, . . . , un) be an embedding of a graph G into R
d. We call

a symmetric matrix M = [Mij ]1≤i,j≤n a CDV matrix of the embedding if

1. Mij = 0 for i �= j, (i, j) �∈ E(G), and
2.

∑
1≤j≤n Mijuj = 0 for 1 ≤ i ≤ n.

We call a CDV Matrix positive if Mij > 0 for all (i, j) ∈ E(G).
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We call the second condition in the above definition the CDV equilibrium con-
dition.

The CDV equilibrium condition can also be expressed in a slightly different,
more geometric form as

∑

j∈N(i,G)

Mijuj = −Miiui for 1 ≤ i ≤ n. (1)

Hence, a positive CDV Matrix witnesses that every vertex of the embedding can
be written as a convex combination of its neighbors using symmetric weights.
The following lemma appears in [9], we include the proof since it illustrates how
to construct a realization out of a CDV matrix.

Lemma 1 (Lemma 4, [9]). Let (u1, . . . , un) be a cone-convex embedding of
a graph G with a positive CDV matrix [Mij ]. Then every face f in G can be
assigned a vector φf s.t. for each adjacent face g and separating edge (i, j)

φf − φg = Mij(ui × uj), (2)

where f lies to the left and g lies to the right from −−→uiuj. The set of vectors {φf}
is uniquely defined up to translations.

Proof. To construct the family of vectors {φf}, we start by assigning an arbitrary
value to φf0 (for an arbitrary face f0); then we proceed iteratively. To prove the
consistency of the construction, we show that the vectors (φf − φg) sum to zero
over every cycle in G∗. Since G as well as G∗ is planar and 3-connected, it suffices
to check this condition for all elementary cycles of G∗, which are the faces of
G∗. Let τ(i) denote the set of counterclockwise oriented edges of the face in G∗

dual to vi ∈ V (G). Then, combining 1 and 2 yields

∑

(f,g)∈τ(i)

(φf−φg) =
∑

j∈N(i,G)

Mij(ui×uj) = ui×
⎛

⎝
∑

j∈N(i,G)

Mijuj

⎞

⎠ = ui×(−Miiui) = 0.

The vectors {φf} are unique up to the initial choice of φf0 . �
Note that there is a canonical way to derive a CDV matrix from a 3d poly-

tope [9]. Every 3d embedding of a graph G as a polytope (ui) possesses a positive
CDV matrix defined by the vertices (φi) of its polar and equation (2). We refer
to this matrix as the canonical CDV matrix.

The following theorem, which is a variation of Lemma 5 in [9], is the main
tool in our construction.

Theorem 1 (based on Lovász [9]). Let (u1, . . . , un) be a cone-convex embed-
ding of a graph G and M a positive CDV matrix for this embedding. Then for
any set of vectors {φf}f∈F (G) fulfilling (2), the convex hull Conv({φf}f∈F (G))
is a convex polytope with graph G∗; and the isomorphism between G∗ and the
skeleton of Conv({φf}f∈F (G)) is given by f → φf .

The proof of the theorem is included in the full version of the paper. It relies on
a projection of the cone-convex embedding onto the sphere and an appropriate
“scaling” of the CDV matrix.
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3 Construction of Cone-Convex Embeddings

In this section we describe how to go from a convex 2d embedding with a positive
equilibrium stress to a cone-convex 3d embedding with a positive CDV matrix.

Definition 3. We call a set of reals {ωij}(i,j)∈E(G) an equilibrium stress for an

embedding (u1, . . . , un) of a graph G into R
d if for each i ∈ V (G)

∑

j∈N(i,G)

ωij(uj − ui) = 0.

We call an equilibrium stress of a 2d embedding with a distinguished boundary
face f0 positive if it is positive on every edge that does not belong to f0.

The concept of equilibrium stresses plays a central role in the classicalMaxwell–
Cremona lifting approach and it is also a crucial concept in our embedding al-
gorithm. The equilibrium stress on a realization of a complete graph arises as a
“building block” in later constructions. The complete graph Kn, embedded in
R

n−2, has a unique equilibrium stress up to multiplication with a scalar. This
stress has an easy expression in terms of volumes related to the embedding. We
use the square bracket notation2

[qiqjqkql] := det

⎛

⎜
⎜
⎝

xi xj xk xl

yi yj yk yl
zi zj zk zl
1 1 1 1

⎞

⎟
⎟
⎠ , where q =

⎛

⎝
x
y
z

⎞

⎠ ,

to obtain a formulation for the equilibrium stress on the K5 embedding.

Lemma 2 (Rote, Santos, and Streinu [14]). Let (u0, u1, . . . , u4) be an inte-
ger embedding of the complete graph K5 onto R

3. Then the set of real numbers:

ωij := [ui−2ui−1ui+1ui+2][uj−2uj−1uj+1uj+2]

(indices in cyclic notation) defines an integer equilibrium stress on this embed-
ding.

Theorem 2. Let (p2, . . . , pn) be a convex 2d drawing of a planar 3-connected
graph G↑ with positive equilibrium stress {ωij} and designated triangular face
f0 = (p2p3p4) embedded as the boundary face. Then we can define a cone convex
embedding (qi) of the graph G = Stack(G↑; v1; v2v3v4) into R

3 equipped with a
positive CDV matrix [Mij ], such that

Mij = ωij for each internal edge (i, j) of the 2d drawing of G↑

and each entry of M is bounded by O(nmaxij |ωij | ·maxi |pi|6).
2 For 2d vectors [pipjpk] is defined similarly.
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Proof. We can assume that (0, 0)T lies inside the embedding of f0. Let (q1, . . . , qn)
be the embedding of the graph G, defined as follows: The embedding of G↑ is re-
alized in the plane {z = 1} and the stacked vertex is placed at (0, 0,−1)T . The
embedding is cone-convex since it describes a tetrahedron containing the origin
with one face that is refined with a plane convex subdivision.

Following the structure of G = Stack(G↑; v1; v2v3v4), we decompose G into
two subgraphs: G↑ = G[{v2, . . . , vn}] and G↓ := G[{v1, v2, v3, v4}].

We first compute a CDV matrix [M ′
ij ]2≤i,j≤n for the embedding (q2, . . . , qn)

of G↑. The plane embedding (pi) of G↑ has the equilibrium stress {ωij}2≤i,j≤n.
Since {q2, . . . , qn} is just a translation of {p2, . . . , pn}, clearly, {ωij}2≤i,j≤n is as
well an equilibrium stress for the embedding (q2, . . . , qn) and we can assign:

M ′
ij :=

⎧
⎪⎨

⎪⎩

−∑
k∈N(i,G↑) ωik i = j,

ωij (i, j) ∈ E(G↑),
0 else.

Now we check the CDV equilibrium condition: for every 2 ≤ i ≤ n

∑

2≤j≤n

M ′
ijqj =

∑

j∈N(i,G↑)

M ′
ijqj +M ′

iiqi =
∑

j∈N(i,G↑)

M ′
ij(qj − qi) + (M ′

ii +
∑

j∈N(i,G↑)

M ′
ij)qi

=
∑

j∈N(i,G↑)

ωij(qj − qi) + (M ′
ii +

∑

j∈N(i,G↑)

M ′
ij)qi = 0.

The last transition holds since both summands equal 0. Hence, [M ′
ij ] is a valid

CDV matrix for the embedding (qi)2≤i≤n of G↑.
As a second step we compute a CDV matrix [M ′′

ij ]1≤i,j≤4 for the embedding
of the tetrahedron G↓. We apply Lemma 2 for the embedding of the K5 formed
by {q0 = (0, 0, 0)T , q1, q2, q3, q4} and receive an equilibrium stress {ω′′

ij}0≤i,j≤4.
We can now derive a CDV matrix [M ′′

ij ]1≤i,j≤4 for the tetrahedron {q1, q2, q3, q4}
based on the equilibrium stresses {ω′′

ij}0≤i,j≤4 as follows: We set

M ′′
ij :=

{
−∑

0≤j≤4,j 	=i ω
′′
ij , i = j,

ω′′
ij , otherwise,

and see that the CDV equilibrium condition holds, by noting

∀i
∑

1≤j≤4

M ′′
ijqj =

∑

1≤j≤4,j 	=i

M ′′
ijqj +M ′′

iiqi =
∑

1≤j≤4,j 	=i

ω′′
ijqj +M ′′

iiqi

=
∑

0≤j≤4,j 	=i

ω′′
ij(qj − qi)− ω′′

i0q0 + (
∑

0≤j≤4,j 	=i

ω′′
ij +M ′′

ii)qi = 0.

The last transition holds since
∑

0≤j≤4,j 	=i ω
′′
ij(qj − qi) = 0 by the definition of

{ωij}, q0 = 0, and
∑

0≤j≤4,j 	=i ω
′′
ij +M ′′

ii = 0 due to the choice of M ′′
ii. One can

easily check that as soon as the origin lies inside the tetrahedron {q1, q2, q3, q4} all
entries M ′′

ij have the same sign. We can assume that [M ′′
ij ] is positive, otherwise

we reorder the vertices {v2, v3, v4}.



A Duality Transform for Constructing Small Grid Embeddings 179

In the final step we extend the two CDV matrices M ′ and M ′′ to G and
combine them. Clearly, a CDV matrix padded with zeros remains a CDV matrix.
Furthermore, any linear combination of CDV matrices is again a CDV matrix.
Thus, we form a CDV matrix for the whole embedding (q1, . . . , qn) of G by
setting:

M := M ′ + λM ′′,

where λ is a positive integer chosen such that M is a positive CDV matrix. This
can be done as follows.

Recall that {ωij} is a positive stress and [M ′′
ij ] is a positive CDV matrix.

Hence, the only six entries in [Mij ] that may be negative are: M23, M34 and
M42 (and their symmetric entries), for which Mij := M ′

ij + λM ′′
ij with M ′

ij < 0
and M ′′

ij > 0. Thus, we choose λ such that M is positive at these entries. To
satisfy this condition we pick

λ =

⌊

max
(i,j)∈{(2,3),(3,4),(4,2)}

(|M ′
ij |/|M ′′

ij |)
⌋

+ 1.

To bound Mij we notice that the entries of M ′′
ij are strictly positive integers, so

λ = O(max |M ′
ij |), while |M ′

ij | = O(n · max |ωij |) and |M ′′
ij | = O(max |ω′′

ij |) =

O(max |pi|6). The bound |Mij | = O(n ·maxij |ωij | ·maxi |pi|6) follows. �

4 Realizations of Truncated Polytopes

In this section we sum up previous results in Theorem 3 and present an em-
bedding algorithm for truncated 3d polytopes in Theorem 4. We will apply
Theorem 3 also in the more general setup of Sect. 5.

Theorem 3. Let G = Stack(G↑; v1; v2v3v4) and (p2, . . . , pn) be an integer pla-
nar embedding of G↑ with boundary face (v2v3v4) and with positive integer equi-
librium stress {ωij}. Then one can construct a grid embedding (φf ) of a convex
polytope with graph G∗ such that

|φf | = O(n2 ·max |ωij | ·max |pi|8).
Proof. We first apply Theorem 2 to obtain a cone-convex embedding (q1, . . . , qn)
of G with a positive CDV matrix [Mij ]1≤i,j≤n. We then apply Lemma 1 and
obtain a family of vectors {φf}f∈F (G∗) fulfilling

φf − φg = Mij(qi × qj), ∀(f, g) dual to (i, j)− edges of G∗ and G.

Due to Theorem 1 the vectors {φf} form a realization of G∗ as a polytope.
To finish the proof we estimate how large the coordinates of the embedding

(φf ) are. To do so, let us again follow the construction of (φf ) as outlined in the
proof of Lemma 1. We pick one face as f0 ∈ F (G), and assign φf0 = (0, 0, 0)T . Let
us now evaluate φfk for some face fk ∈ F (G). The following algebraic expression
holds for all values {φfi}:

φfk = φf0 + (φf1 − φf0 ) + . . .+ (φfk−1
− φfk−2

) + (φfk − φfk−1
).
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0

Fig. 1. A 2d embedding of G↑ (left), the cone-convex embedding of G (center), and
the resulting embedding of the dual (right).

Let us now consider the shortest path f0, f1, . . . , fk in G∗ connecting the faces
f0 and fk. Clearly, k is less than 2n− 3, and hence

|φfk | ≤ 2n · max
(fa,fb)∈E(G∗)

|φfa − φfb | = 2n · max
vi,vj∈V (G)

|Mij(qi × qj)|

= O(n · (n ·max |ωij | ·max |pi|6) ·max |qi|2) = O(n2 ·max |ωij | ·max |pi|8).

The bound for the entries of M is due to Theorem 2. �
Next we apply Theorem 3 to construct an integer polynomial size grid em-

bedding for truncated polytopes. To construct small integer 2d embeddings with
small integer equilibrium stresses we use a Lemma by Demaine and Schulz [6],
which states that the graph of a stacked polytope with n vertices and any dis-
tinguished face f0 can be embedded on a 10n4 × 10n4 grid with boundary face
f0 and with integral positive equilibrium stress {ωij} such that, for every edge
(i, j), we have |ωij | = O(n10).

Theorem 4. Any truncated 3d polytope with n vertices can be realized with in-
teger coordinates of size O(n44).

Proof. Let G∗ be the graph of the truncated polytope and G := (G∗)∗ its dual.
Clearly, G is the graph of a stacked polytope with (n+4)/2 vertices. We denote
the last stacking operation (for some sequence of stacking operations producing
G) as the stacking of the vertex v1 onto the face (v2v3v4) of the graph G↑ :=
G[V \ {v1}]. The graph G↑ is again a stacked graph, and hence, by the Lemma
of Demaine and Schulz, there exists an embedding (pi)2≤i≤n of G↑ into Z

2 with
an equilibrium stress {ωij} satisfying the properties of Theorem 3. We apply
the theorem and obtain a polytope embedding (φf ) of G∗ with bound |φf | =
O(n2 ·max |ωij | ·max |pi|8) = O(n44). �

Figure 1 shows an example of our method. The computations for this example
are included in the full paper.

5 A Dual Transform for Simplicial Polytopes

As we have seen a small grid embedding of a 3d polytope can be computed when
a small integer (though, not necessarily convex) embedding of its dual polytope
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with a small integral positive CDV matrix is known. However, if one wants to
build a dual for an already embedded polytope, one usually does not possess
such a matrix. The canonical CDV matrix associated with any embedding of a
3d polytope is not helpful, since its entries, when scaled to integers, might become
exponentially large. We show in this section how one can tackle this problem for
a special class of polytopes. In particular, we require that the original polytope
is simplicial, it contains a vertex of degree 3, and its maximum vertex degree is
bounded.

Before proceeding, let us review how the canonical stress associated with an
orthogonal projection of a 3d polytope in the {z = 0} plane can be described.
The assignment of heights to the interior vertices of a 2d embedding resulting in a
polyhedral surface is called a (polyhedral) lifting. By the Maxwell-Cremona cor-
respondence the equilibrium stresses of a 2d embedding of a planar 3-connected
graph and its liftings are in 1-1 correspondence. Moreover, the bijection between
liftings and stresses can be defined as follows. Let (pi) be a 2d drawing of a trian-
gulation and let (qi) be the 3d embedding induced by some lifting. We map this
lifting to the equilibrium stress {ωij} by assigning to every edge (i, j) separating
the faces (vivjvk) (on the left) and (vivjvl) (on the right)

ωij :=
[qiqjqkql]

[pipjpk][plpjpi]
. (3)

This mapping is a bijection between the space of liftings and the space of equilib-
rium stresses. The expression (3) is a slight reformulation of the form presented
in Hopcroft and Kahn [8, Equation 11].

We continue by studying the spaces of equilibrium stresses for triangulations.
A graph formed by a cycle v1, . . . , vn with an additional vertex v0, called cen-
ter, that is adjacent to every other vertex, is called a wheel ; we denote it as
W(v0; v1 . . . vn). A wheel that is a subgraph of a triangulation G with vi ∈ V (G)
as center is denoted by Wi. Every triangulation can be “covered” with a set of
wheels {Wi}vi∈V (G), such that every edge is covered four times.

Lemma 3. Let (p0, . . . , pn) be an embedding of a wheel W(v0; v1 . . . vn) in R
2.

Then the following expression defines an equilibrium stress:

ωij =

{
−1/[pipi+1p0] j = i+ 1, 1 ≤ i ≤ n,

[pi−1pipi+1]/([pi−1pip0][pipi+1p0]) j = 0, 1 ≤ i ≤ n.

The equilibrium stress for the embedding (pi) is unique up to a renormalization.

Proof. This stress coincides with (3) from the lifting of W with z0 = 1 and
zi = 0 for 1 ≤ i ≤ n and so is an equilibrium stress. The space of the stresses is
1-dimensional, since the space of the polyhedral liftings is 1-dimensional. �

Definition 4. 1. For a wheel W embedded in the plane we refer to the equilib-
rium stress defined in Lemma 3 as its small atomic stress and denote it as
{ωa

ij(W )}.
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2. Wecall the stress {Ωa
ij(W )} that is obtained by the renormalization of {ωa

ij (W )}
by the factor

∏
1≤j≤n[pjpj+1p0], the large atomic stress ofW .

We point out that the large atomic stresses are products of deg(v0)− 1 triangle
areas multiplied by 2, and so, {Ωa

ij(W )} is a set of integers if W is realized with
integer coordinates.

Theorem 5 (Wheel-decomposition). Let G be a triangulation. Every equi-
librium stress {ωij} of an embedding (p1, . . . , pn) of G can be expressed as a
linear combination of the small atomic stresses on the wheels {Wi}:

ω =
∑

i≤n

αiω
a(Wi),

where the coefficients αi are the heights (i.e., z-coordinates) of the corresponding
vertices vi in the Maxwell–Cremona lifting of (p1, . . . , pn) induced by {ωij}.
Proof. Let (q1, . . . , qn) be the Maxwell-Cremona lifting of (pi) by means of the
stress {ωij}. We rewrite this stress (given by Equation 3) using

[q1q2q3q4] =
∑

1≤i≤4

(−1)i+1zi[pi+1pi+2pi+3],

(with cyclic notation for indices) and obtain

ωij = zi
[pjpkpl]

[pipjpk][plpjpi]
+ zj

[plpkpi]

[pipjpk][plpjpi]
− zk

1

[pipjpk]
− zl

1

[plpjpi]
,

which is exactly the decomposition of ωij into small atomic wheel stresses. �

Theorem 6. Let (q1, . . . , qn) be an embedding of a triangulation G into Z
3,

whose projection (p1, . . . , pn) to the plane {z = 0} is a noncrossing embedding
of G with boundary face (v1v2v3). Then one can construct a positive integer
equilibrium stress {ωij} for the embedding (p1, . . . , pn) such that

|ωij | < (max
i≤n

|qi|)2ΔG +5.

Proof. We start with the equilibrium stress {ω̃ij} as specified by (3) for the
embedding (pi). Since all the coordinates are integers, all stresses are bounded
by

1

L4 ≤ 1

|[pipjpk]||[plpjpi]| ≤ |ω̃ij | ≤ |[qiqjqkql]| ≤ L3,

for L = 2maxi≤n |qi|.
We are left with making these stresses integral while preserving a polynomial

bound. The stress {ω̃ij} can be written as a linear combination of large atomic
stresses of the wheels Wi by means of the Wheel-decomposition Theorem,

ω̃ij = αiΩ
a
ij(Wi) + αjΩ

a
ij(Wj) + αkΩ

a
ij(Wk) + αlΩ

a
ij(Wl).
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Since all points pi have integer coordinates, the large atomic stresses are
integers as well. Moreover, each of them, as a product of deg(vk) − 1 triangle

areas, is bounded by |Ωa
ij(Wk)| ≤ L2(ΔG −1).

To make the ω̃ijs integral we round the coefficients αi down. To guarantee
that the rounding does not alter the signs of the stress, we scale the atomic
stresses (before rounding) with the factor

C = 4max
i,j,k

|Ωa
ij(Wk)|/min

i,j
|ω̃ij |

and define as the new stress:

ωij := �Cαi	Ωa
ij(Wi) + �Cαj	Ωa

ij(Wj) + �Cαk	Ωa
ij(Wk) + �Cαl	Ωa

ij(Wl).

Clearly,

|ωij − Cω̃ij | =
∣
∣
∣
∣
∣
∣

∑

τ=i,j,k,l

(�Cατ 	 − Cατ )Ω
a
ij(Wτ )

∣
∣
∣
∣
∣
∣

≤
∑

τ=i,j,k,l

|Ωa
ij(Wτ )| ≤ 4max

i,j,k
|Ωa

ij(Wk)| = Cmin
i,j

|ω̃ij | ≤ C|ω̃ij |

and so sign(ωij) = sign(Cω̃ij) = sign(ω̃ij).
Therefore, the constructed equilibrium stress {ωij} is integral and positive.

We conclude the proof with an upper bound on its size. Since C < 4 L2(ΔG −1) L4,

|ωij | ≤
∣
∣
∣
∣
∣
∣

∑

τ=i,j,k,l

(Cατ ± 1)Ωa
ij(Wτ )

∣
∣
∣
∣
∣
∣
≤ C|ω̃ij |+

∑

τ=i,j,k,l

|Ωa
ij(Wτ )|

≤ Cmax |ω̃ij |+4max |Ωa
ij(Wk)| ≤ 4 L2ΔG +2 ·L3 +4L2ΔG −2=O(L2ΔG +5).

�
Combining Theorem 6 and Theorem 3 leads to the following result:

Theorem 7. Let (q2, . . . , qn) be an integer embedding of a simplicial 3d polytope
with graph G↑, such that the orthogonal projection into the plane {z = 0} gives
a planar 2d embedding (p2, . . . , pn) with boundary face (v2v3v4). Then we can
construct an embedding (φf )f∈F (G) of a graph dual to G = Stack(G↑; v1; v2v3v4)
with integer coordinates bounded by

|φf | = O(n2 max |qi|2ΔG +13).

We remark that the algorithms following the lifting approach generate em-
beddings that fulfill the conditions of the above theorem. Using a more technical
analysis we can even show that the following stronger version of Theorem 7
holds. The proof of the theorem can be found in the full version of the paper.

Theorem 8. Let G be a triangulation with at least one vertex of degree 3, and
let (qi) be an integer realization of G as a convex polytope. Then there is a
realization (φf )f∈F (G) of the dual graph G∗ as a convex polytope with integer
coordinates bounded by

|φf | < max |qi|O(ΔG).
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