Skip to main content

Deterministic Decision Making

  • Chapter
  • First Online:
Planning and Decision Making for Aerial Robots

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 71))

  • 1940 Accesses

Abstract

Decision Making is mission level autonomy and intelligence: Given an agent that can fly and sense its environment, the considered task is to plan intelligent motions and take decisions when required. If one has perfect information of the environmental conditions that will be encountered, a safe path can be constructed. Symbolic planning methods such as hybrid automaton and linear temporal logic are first presented. Symbolic motion planning is the problem of automatic construction of robot control strategies from task specifications given in high level human like language. Some computational intelligence approaches follow such as neural networks, evolution algorithms, decision tables and fuzzy systems. Intelligent decision making, the discipline where planning algorithms are developed by emulating certain characteristics of intelligent biological system is an emerging area of planning. One important application in aerial robotics being the choice of the way points, some operations research methods, such as traveling salesman problem, chinese postman problem and rural postman problem are presented. They enable to formulate and solve such flight planning problems. Finally, some case studies are discussed. The first one concerns surveillance mission using neural networks as function approximation tools to improve computational efficiency of a direct trajectory optimization. The second one proposes a flight route planning technique for autonomous navigation of an aerial robot based on the combination of evolutionary algorithms and virtual potential fields. The third application concerns bridge monitoring. The aerial robot is required to take photos of thousands of points located on an bridge. So the problem of choosing adequate subsets of waypoints appear while the environmental constraints must be verified, the proposed solution uses operational research techniques. The final case is soaring flight for an airplane like robot, as appropriate flight techniques are expected to allow extraction of energy from the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akos Z, Nagy M, Leven S, Vicsek T (2010) Thermal soaring flight of birds and UAV. Bioinspiration Biomimetics 5(4):045003

    Article  Google Scholar 

  2. Albluwi I, Elnagar A (2010) Pursuit evasion in dynamic environments with visibility constraints. In: Liu H (ed), ICIRA 2010, pp 116–129

    Google Scholar 

  3. Altshuler Y, Bruckstein A (2011) Static and expanding grid coverage with ant robots: complexity results. Theoret. Comput. Sci. 41:4661–4674

    Article  MathSciNet  Google Scholar 

  4. Arkin EM, Mitchell JS, Polishchuk V (2010) Maximum thick paths in static and dynamic environments. Comput Geom Theory Appl 43:279–294

    Article  MATH  MathSciNet  Google Scholar 

  5. Atkins E, Moylan G, Hoskins A (2006) Space based assembly with symbolic and continuous planning experts. In: IEEE aerospace conference. doi: 10.1109/AERO.2006.1656009

  6. Bakolas E, Tsiotras P (2012) The Zermelo-Voronoi diagram, a dynamic partition problem. Automatica 46:2059–2067

    Article  MathSciNet  Google Scholar 

  7. Belta C, Bicchi A, Egersted M, Frazzoli E, Klavins E, Pappas G (2007) Symbolic planning and control of robot motion. IEEE Robot Autom Mag 14:61–70

    Article  Google Scholar 

  8. Ben Asher JZ (2010) Optimal control theory with aerospace applications. AIAA Press, Reston

    Book  Google Scholar 

  9. Berger J, Barkaoui M, Boukhtouta A (2007) A hybrid genetic approach for airborne sensor vehicle routing in real-time reconnaissance missions. Aerosp Sci Technol 11(4):317–326

    Google Scholar 

  10. Bertsekas DP (1995) Dynamic programming and optimal control, vol 1. Athena Scientific, Belmont

    MATH  Google Scholar 

  11. Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming, vol 1. Athena Scientific, Belmont

    MATH  Google Scholar 

  12. Bertsimas D, VanRyzin G (2011) The dynamic traveling repairman problem, MIT Sloan paper 3036–89-MS

    Google Scholar 

  13. Bestaoui Y (2011) Bridge monitoring by a lighter than air robot. In: AIAA aerospace sciences meeting including new horizons forum, Orlando

    Google Scholar 

  14. Bestaoui Y (2012) Lighter than air robot planning under uncertain wind. In: 9th International Airship Convention, Ashford, GB

    Google Scholar 

  15. Bestaoui Y, Ait Taleb N, Oukid S (2011) Route planning under uncertainty for a lighter than air Robot in bridge monitoring, In: 3rd CEAS Conference

    Google Scholar 

  16. Bestaoui Y, Dahmani H, Belharet K (2009) Geometry of translational trajectories for an autonomous aerospace vehicle with wind effect. In: 47th AIAA aerospace sciences meeting, Orlando, Florida, paper AIAA-1352

    Google Scholar 

  17. Bestaoui Y, Dicheva S (2010) 3D flight plan for an autonomous aircraft. In: 48th AIAA aerospace sciences meeting, Orlando, Florida, paper AIAA-1352

    Google Scholar 

  18. Bestaoui Y, Kahale E (2011) Time optimal trajectories for an autonomous airship. In: IEEE workshop on robot motion control (ROMOCO 2011). Bukowy Dworek, Poland

    Google Scholar 

  19. Bestaoui Y, Lakhlef F (2010) Flight plan for an autonomous aircraft in a windy environment. In Lozano R (ed) Unmanned aerial vehicles embedded control. Wiley, ISBN-13-9781848211278

    Google Scholar 

  20. Bianchi L (2000) Notes on dynamic vehicle routing–the state of the art. Technical report IDSIA-05-01

    Google Scholar 

  21. Bijlsma SJ (2009) Optimal aircraft routing in general wind fields. J Guid Contr Dyn 32:1025–1029. doi:10.2514/1.42425

    Article  Google Scholar 

  22. Boutilier C, Dean T, Hawks S (1999) Decision theoretic planning: structural assumptions and computational leverage. J. Artif Intell Res 11:1–94

    MATH  Google Scholar 

  23. Bryson AE, Ho YC (1975) Applied optimal control: optimization, estimation and control. Taylor and Francis, New York

    Google Scholar 

  24. Cao Y, Muse J, Casbeer D, Kingston D (2013) Circumnavigation of an unknown target using UAV with and and range rate measurements, arXiv preprint arXiv:1308.6250, 2013 - arxiv.org

    Google Scholar 

  25. Cassandras C, Ding X, Liu X (2011) An optimal control approach for the persistent monitoring problem. In: IEEE conference on decision and control and European control conference (CDC-ECC), pp 2907–2912

    Google Scholar 

  26. Chakravarty A, Langelaan JW (2011) Energy-based long-range path planning for soaring capable unmanned aerial vehicles. AIAA J Guid Control Dyn 34:1002–1015

    Article  Google Scholar 

  27. Chen G, Pham TT (2001) Introduction to fuzzy sets, fuzzy logic and fuzzy control system. CRC Press, New York

    Google Scholar 

  28. Colgren RD (2007) Basic Matlab simulink and stateflow. AIAA Press, Reston Va

    Google Scholar 

  29. Cook WJ (2012) In pursuit of the traveling salesman: mathematics at the limits of computation. Princeton University Press, Princeton

    Google Scholar 

  30. Cotta C, Van Hemert I (2008) Recent advances in evolutionary computation for combinatorial optimization. Springer Berlin

    Google Scholar 

  31. Cummings ML, Marquez J, Roy N (2012) Human automated path planning optimization and decision support. Int J Hum Comput Stud 70:116–128

    Article  Google Scholar 

  32. Dantam N, Stilman M (2012) The motion grammar, Robotics Science and Systems, MIT Press, Cambridge

    Google Scholar 

  33. Dantzig G, Fulkerson R, Johnson S (1954) Solution of a large-scale traveling-salesman problem. J Oper Res Soc Am 2(4):393–410

    MathSciNet  Google Scholar 

  34. Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manage Sci 6(1):80–91

    Article  MATH  MathSciNet  Google Scholar 

  35. Ding X, Belta C, Cassandras CG (2010) Receding horizon surveillance with temporal logic specifications. In: IEEE control and decision conference, pp 256–261

    Google Scholar 

  36. Edelkamp S, Kissman P (2009) Optimal symbolic planning with action costs and preferences. In: International joint conference on artificial intelligence, pp 1690–1695

    Google Scholar 

  37. Etele J (2006) Overview of wind gust modelling with application to autonomous low level UAV control. Contract report, DRDC-OTTAWA-CR-2006-221

    Google Scholar 

  38. Fainekos GE, Girard A, Kress-Gazit H, Pappas GJ (2009) Temporal logic motion planning for dynamic robots. Automatica 45:343–353

    Article  MATH  MathSciNet  Google Scholar 

  39. Fokkink W (2000) Introduction to process algebra. Springer, Berlin

    Book  MATH  Google Scholar 

  40. Frazzoli E, Dahleh MA, Feron E (2008) Maneuver based motion planning for nonlinear systems with symmetries. IEEE Trans Robot 4:355–365

    Google Scholar 

  41. Frazzoli E, Dahleh MA, Feron E (2002) Real time motion planning for agile autonomous vehicles. AIAA J Guid Control Dyn 25:116–129

    Google Scholar 

  42. Frederickson G, Wittman B (2009) Speedup in the traveling repairman problem with unit time window. doi:arXiv:0907.5372[cs.DS]

    Google Scholar 

  43. Gao Z, Gu H, Liu H (2009) Real time simulation of large aircraft flying through microburst wind field. Chin J Aeronaut 22:459–466

    Article  Google Scholar 

  44. Gao CR, Guo J (2010) Pareto optimal coordination of multiple robots with safety guarantees. Auton Robot 32:189–205

    Google Scholar 

  45. Goldberg DE (2008) Genetic algorithms. Addison Wesley publishing company, Massachusetts

    Google Scholar 

  46. Grace J, Baillieul J (2005) Stochastic strategies for autonomous robotic surveillance. In: IEEE Conference on Decision and Control, pp 2200–2205

    Google Scholar 

  47. Guerrero JA, Bestaoui Y, Lozano R (2012) Optimal guidance for rotorcraft platoon formation flying in wind fields. In: Guerrero JA, Lozano R (ed) Unmanned aerial vehicles formation, Wiley-ISTE, ISBN: 978-1-84821-323-4, (2012)

    Google Scholar 

  48. Guerrero JA, Bestaoui Y (2013) UAV path planning for structure inspection in windy environments. J Intell Robot Syst 69:297–311

    Article  Google Scholar 

  49. Guha S, Munagala K, Shi P (2010) Approximation algorithms for restless bandit problems. J ACM (JACM) 58. doi: 10.1145/1870103.1870106

  50. Gulrez T, Hassanien AE (2012) Advances in robotics and virtual reality. Springer, Berlin

    Book  Google Scholar 

  51. Gunetti P, Thompson H, Dodd T (2013) Simulation of a soar based autonomous mission management system for unmammed aircraft. AIAA J Aerosp Inf Syst 10:53–70

    Google Scholar 

  52. Haykin S (2009) Neural networks and learning machines. Pearson Education, New Jersey

    Google Scholar 

  53. Horn J, Schmidt E, Geiger BR, DeAngelo M (2012) Neural network based trajectory optimization for UAV. AIAA J Guid Control Dyn 35:548–562

    Article  Google Scholar 

  54. Hristu-Varsakelis D, Egerstedt M, Krishnaprasad P (2003) On the structural complexity of the motion description language MDLe. In: 42nd IEEE conference on decision and control, pp 3360–3365

    Google Scholar 

  55. Jardin MR, Bryson AE (2001) Neighboring optimal aircraft guidance in winds. AIAA J Guid Control Dyn 24:710–715

    Article  Google Scholar 

  56. Jensen R, Shen Q (2008) Computational intelligence and feature selection. IEEE Press

    Google Scholar 

  57. Jiang C, Chang Y Evolutionary graph based particle swarm optimized fuzzy controller with application to mobile robot navigation in unknown environments

    Google Scholar 

  58. Jiang M, Yu Y, Liu X, Zhang F, Hong Q (2012) Fuzzy-neural network based dynamic path planning. In: 2012 International conference on machine learning and cybernetics, Xian, pp 326–330

    Google Scholar 

  59. Karaman S, Frazzoli E (2008) Vehicle routing with Linear temporal logic specifications: application to multi UAV mission planning. In: AIAA conference on guidance, navigation and control. doi: 10.2514/6.2008-6838

  60. Karimi A, Siarry P (2012) Global simplex optimization, a simple and efficient metaheuristic for continous optimization. Eng Appl Artif Intell 25:48–55

    Article  Google Scholar 

  61. Karimi J, Pourtakdoust SH (2013) Optimal maneuver based motion planning over terrain and threats using a dynamic hybrid PSO algorithm. Aerosp Sci Technol. doi:10.1016/j.ast2012.02.014

    Google Scholar 

  62. Kelley T, Avery E, Long L, Dimperio E (2009) A hybrid symbolic and sub-symbolic intelligent system for mobile robots. In: AIAA infotech \(@\) aerospace conference 2009

    Google Scholar 

  63. Kress-Gazit H, Fainekos GE, Pappas GJ (2009) Temporal logic based reactive mission and motion planning. IEEE Trans Robot 25:1370–1381

    Article  Google Scholar 

  64. Kuroki Y, Young G, Haupt SE (2010) UAV navigation by an expert system for contaminant mapping with a genetic algorithm. Expert Syst Appl 37:4687–4697

    Article  Google Scholar 

  65. Lam TM (ed) (2009) Aerial Vehicles. In-Tech, Vienna

    Google Scholar 

  66. Larsen A, Mardsen O, Solomon M (2002) Partially dynamic vehicle routing models and algorithms. J Oper Res soc 53:637–646

    Article  MATH  Google Scholar 

  67. Lawler EL, Lenstra JK, Rinnoy Kan AHG, Shmoys DB (1995) A guided tour of combinatorial optimization. Wiley, New York

    Google Scholar 

  68. Lee S, Bang H (2007) 3D ascent trajectory optimization for stratospheric airship platforms in the jet stream. AIAA J Guid Control Dyn 30:1341–1352

    Article  Google Scholar 

  69. LeNy J, Feron E, Frazzoli E (2012) On the dubins traveling salesman problem. IEEE Trans Autom Control 57:265–270

    Google Scholar 

  70. Levine W (2011) The control hankbook. CRC Press, Boca Raton

    Google Scholar 

  71. Lin CL, Lee CS, Huang CH, Kao TZ (2012) Unmanned aerial vehicles evolutional flight route planner using the potential field approach. AIAA J Aerosp Comput Inf and Commun 9:92–109

    Article  Google Scholar 

  72. Lorenz RD (2001) Flight power scaling of airplanes, airships and helicopters: application to planetary exploration. AIAA J aircr 38:208–214

    Article  Google Scholar 

  73. Marigo A, Bichi A (1998) Steering driftless nonholonomic systems by control quanta. In: IEEE international conference on decision and control, vol 4, pp 466–478

    Google Scholar 

  74. Martin P, Egerstedt M (2008) Optimal timing control of interconnected, switched systems with applications to robotic marionettes. 9th international workshop on discrete event systems. Goteborg, Sweden, pp 156–161

    Google Scholar 

  75. Mattei M, Blasi L (2010) Smooth flight trajectory planning in the presence of no-fly zones and obstacles. AIAA J Guid Control Dyn 33(2):454–462

    Article  Google Scholar 

  76. Mendel JM, John RI, Liu F (2006) Interval Type 2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14:802–821

    Google Scholar 

  77. Mufalli F, Batta R, Nagi R (2012) Simultaneous sensor selection and routing of UAV for complex mission plans. Comput Oper Res 39:2787–2799

    Article  MATH  Google Scholar 

  78. Mumford CL, Jain LC (eds) (2009) Computational intelligence: collaboration, fusion and emergence. Springer, Berlin, pp 131–173

    Google Scholar 

  79. Obermeyer K, Oberlin P, Darbha S (2012) Sampling based path planning for a visual reconnaissance UAV. AIAA J Guid Control Dynamics 35:619–631

    Article  Google Scholar 

  80. Oikonomopoulos AS, Kyriakopoulos KJ, Loizou SG (2010) Modeling and control of heterogeneous nonholonomic input-constrained multiagent systems. In: 49th IEEE conference on decision and control, pp 4204–4209

    Google Scholar 

  81. Palade V, Danut Bocaniala C, Jain LC (eds) (2006) Computational intelligence in fault diagnosis. Springer, Berlin

    Google Scholar 

  82. Pashilkar AA, Sundararajan N, Saratchandran P (2006) A fault-tolerant neural aided controller for aircraft auto-landing. Aerosp Sci Technol 10:49–61

    Article  Google Scholar 

  83. Pastor E, Royo P, Santamaria E, Prats X (2012) In flight contingency management for unmanned aircraft systems. J Aerosp Comput Inf Commun 9:144–160

    Article  Google Scholar 

  84. Peng Z, Li B, Chen X, Wu J (2012) Online route planning for UAV based on model predictive control and particle swarm optimization algorithm. In: World congress on international control and automation, Beijing, pp 397–401

    Google Scholar 

  85. Plaku E, Hager GD (2010) Sampling based motion and symbolic action planning with geometric and differential constraint. In: IEEE international conference on robotics and automation, pp 5002–5008

    Google Scholar 

  86. Pongpunwattana A, Rysdyk R (2007) Evolution-based dynamic path planning for autonomous vehicles. Stud Comput Intell 70:113–145

    Article  Google Scholar 

  87. Pourtakdoust SH, Kiani M, Hassanpour A (2011) Optimal trajectory planning for flight through microburst wind shears. Aerosp Sci Technol 15:567–576

    Article  Google Scholar 

  88. Prats X, Puig V, Quevedo J, Nejjari F (2010) Lexicographic optimization for optimal departure aircraft trajectories. Aerosp Sci Technol 14:26–37

    Article  Google Scholar 

  89. Rosen KH (2013) Discrete mathematics, Mc Graw Hill, New York

    Google Scholar 

  90. Rozier KY (2011) Linear temporal logic symbolic model checking. Comput Sci Rev 5:163–203

    Article  Google Scholar 

  91. Rutkowski L (2008) Computational intelligence. Springer, Berlin

    Google Scholar 

  92. Samy I, Postlethwaite I, Gu DW (2011) Survey and application of sensor fault detection and isolation schemes. Control Eng Pract 19:658–674

    Article  Google Scholar 

  93. Savla K, Frazzoli E, Bullo F (2008) Traveling salesperson problems for the dubbins vehicle. IEEE Trans Autom Control 53(6):1378–1391

    Article  MathSciNet  Google Scholar 

  94. Schouwenaars T, Mettler B, Feron E (2004) Hybrid model for trajectory planning of agile autonomous vehicles. AIAA J Aeronaut Comput Inf Commun 12:466–478

    Google Scholar 

  95. Schouwenaars T, Valenti M, Feron E, How J, Roche E (2006) Linear programming and language processing for human/unmanned-aerial-vehicle team missions. AIAA J Guid Control Dyn 29(2):303–313

    Article  Google Scholar 

  96. Schwefel HP, Wegener I, Weinert K (2002) Advances in computational intelligence. Springer, Berlin

    Google Scholar 

  97. Seibel CW, Farines JM, Cury JE (1999) Towards hybrid automata for the mission planning of unmanned aerial vehicles. In: Antsaklis V (ed) Hybrid Systems. Springer, Berlin, pp 324–340

    Google Scholar 

  98. Sun TY, Huo CL, Tsai S, Yu Y, Liu C (2011) Intelligent flight task algorithm for UAV. Expert Syst Appl 38:10036–10048

    Article  Google Scholar 

  99. Sundar K, Rathinam S (2012) Algorithms for routing an UAV in the presence of refueling depots. In: Proceedings of the American control conference (ACC), pp 3266–3271

    Google Scholar 

  100. Sutton RS, Barto AG (1998) Reinforcement learning. The MIT Press, Cambridge

    Google Scholar 

  101. Svorenova M, Tumova J, Barnat J, Cerna I (2012) Attraction based receding horizon path planning with temporal logic constraints. In: IEEE 51th control and decision conference, pp 6749–6754

    Google Scholar 

  102. Teinreiro Machado JA, Patkai B, Rudas I (2009) Intelligent engineering systems and computational cybernetics. Springer, Porto

    Book  Google Scholar 

  103. Toth P, Vigo D (2002) The vehicle routing problem. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  104. Treleaven K, Pavone M, Frazzoli E (2013) Asymptotically optimal algorithms for one-to-one pickup and delivery problems with applications to transportation systems. IEEE Trans Autom Control 44:888–894

    MathSciNet  Google Scholar 

  105. Turnbull O, Richards A, Lawry J, Lowenberg M (2006) Fuzzy decision tree cloning of flight trajectory optimization for rapid path planning. IEEE conference on decision and control. San Diego, CA, pp 6361–6366

    Chapter  Google Scholar 

  106. Vinh NX (1993) Flight mechanics of high performance aircraft. Cambridge aerospace series, vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  107. Volkan-Pehlivanoglu Y (2011) A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV. Aerosp Sci Technol. doi:10.1016/j.ast2011.02.006

  108. Vucina D, Loznia Z, Vlak F (2010) NPV based decision support in multi objective design using evolutionary algorithms. Eng Appl Artif Intell 23:48–60

    Article  Google Scholar 

  109. Wang HF, Wen YP (2002) Time-constrained Chinese postman problems. Int J Comput Math Appl 6:375–387

    Google Scholar 

  110. Wang Y, Wei T, Qu X (2012) Study of multi-objective fuzzy optimization for path planning. Chin J Aeronaut 25:51–56

    Article  Google Scholar 

  111. Wilkins DE, Smith SF, Kramer LA, Lee T, Rauenbusch T (2008) Airlift mission monitoring and dynamic rescheduling. Eng Appl Artif Intell 21:141–155

    Article  Google Scholar 

  112. Wongpiromsarn T, Topcu U, Murray RM (2012) Receding horizon temporal logic planning. IEEE Trans Autom Control 57:2817–2830

    Article  MathSciNet  Google Scholar 

  113. Wu PY (2009) Multiobjective mission flight planning in civil unmanned aerial system. Phd Thesis, Queensland university

    Google Scholar 

  114. Wu P, Campbell D, Merz T (2011) Multi-objective 4D vehicle motion planning in large dynamic environment. IEEE Trans Syst Man Cybern 41:621–634

    Article  Google Scholar 

  115. Xia M, Xu Z, Zhu B (2012) Generalized intuitionistic fuzzy Bonferroni means. Int J Intell Syst 27:23–47

    Article  Google Scholar 

  116. Xu L, Stentz T (2010) A fast traversal heuristic and optimal algorithms for effective environmental coverage. In: Matsuoka Y, Durrant-White H, Neira J (eds) Robotics, science and systems. The MIT Press, pp 121–128

    Google Scholar 

  117. Yakimenko OA (2000) Direct method for rapid prototyping of near optimal aircraft trajectory. AIAA J Guid Control Dyn 23:865–875

    Google Scholar 

  118. Yakimenko OA (2011) Engineering computations and modeling in Matlab/Simulink. AIAA Press, Reston Va

    Google Scholar 

  119. Yanushevsky R (2011) Guidance of unmanned aerial vehicles. CRC Press, Boca Raton

    Book  Google Scholar 

  120. Yordanov B, Tumova J, Cerna I, Barnat J, Belta C (2012) Temporal logic control of discrete-time piecewise affine systems. IEEE Trans Autom Control 57:1491–1504

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmina Bestaoui Sebbane .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bestaoui Sebbane, Y. (2014). Deterministic Decision Making. In: Planning and Decision Making for Aerial Robots. Intelligent Systems, Control and Automation: Science and Engineering, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-03707-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03707-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03706-6

  • Online ISBN: 978-3-319-03707-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics