Skip to main content

Fundamental Aspects of Coronal Mass Ejections

  • Living reference work entry
  • First Online:
Handbook of Cosmic Hazards and Planetary Defense

Abstract

The most violent frequently reoccurring events in the solar system are coronal mass ejections. During a high energy cycle of the Sun, or solar max, these can happen as often as six times a day. If the most extreme of these events are focused so they directly impact Earth, the force of impact can be the equivalent of a huge number of nuclear bombs that can generate an electromagnetic pulse (EMP) with devastating effect. Such a pulse could cripple the world’s electrical grids and knock out most satellites in orbit. This chapter describes the so-called CME phenomenon and current understanding of why and how they occur. The final element of the chapter discusses the Earth’s naturally occurring protective systems that minimize the impact of these otherwise deadly occurrences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aschwanden MJ, Nitta NV, Wåulser J-P, Lemen JR, Sandman A, Vourlidas A, Colaninno RC (2009) First measurements of the mass of coronal mass ejections from the EUV dimming observed with STEREO EUVI A+B spacecraft. Astrophys J 706:376–392

    Article  Google Scholar 

  • Berkeley Center for Science Education – Multiverse. Exploring magnetism in solar flares. http://cse.ssl.berkeley.edu/segwayed/lessons/exploring_magnetism/in_Solar_Flares/s4.html. Last access 1 Mar 2014

  • Burkepile JT et al (2004) Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. J Geophys Res Space Phys 109(A3):CiteID A03103

    Google Scholar 

  • Cargill PJ (2004) On the aerodynamic drag force acting on interplanetary coronal mass ejections. Sol Phys 221:135–149

    Article  Google Scholar 

  • Chen J (1996) Theory of prominence eruption and propagation: interplanetary consequences. J Geophys Res 101:27499–27519

    Article  Google Scholar 

  • Chen PF (2011) Coronal mass ejections: models and their observational basis. Living Rev Sol Phys 8(1):1–92

    MATH  Google Scholar 

  • Colaninno RC, Vourlidas A (2009) First determination of the true mass of coronal mass ejections: a novel approach to using the two STEREO viewpoints. Astrophys J 698:852–858

    Article  Google Scholar 

  • Davies JA et al (2009) A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophys Res Lett 36(L02102)

    Google Scholar 

  • DeForest CE et al (2011) Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2, Astrophys J 738:103–115

    Google Scholar 

  • Dryer M, Smart DF (1984) Dynamical models of coronal transients and interplanetary disturbances. Adv Space Res 4:291–301

    Article  Google Scholar 

  • Fry CD, Sun W, Deehr CS, Dryer M, Smith Z, Akasofu S-I, Tokumaru M, Kojima M (2001) Improvements to the HAF solar wind model for space weather predictions. J Geophys Res 106:20985–21001

    Article  Google Scholar 

  • Gopalswamy N (2004) A global picture of CMEs in the inner heliosphere. In: Poletto G, Suess ST (eds) The sun and the heliosphere as an integrated system, vol 317, Astrophysics and space science library. Kluwer, Dordrecht/Boston, pp 201–251

    Chapter  Google Scholar 

  • Gopalswamy N (2010) The CME link to geomagnetic storms. In: Kosovichev AG, Andrei AH, Roelot J-P (eds) Solar and stellar variability: impact on earth and planets. IAU symposia, vol 264, Brazil, 3–7 Aug 2009. Cambridge University Press, Cambridge/New York, pp 326–335

    Google Scholar 

  • Gopalswamy N, Kundu MR (1993) Structure of a fast coronal mass ejection from radio observations. Adv Space Res 13:75–78

    Article  Google Scholar 

  • Gopalswamy N, Lara A, Yashiro S, Nunes S, Howard RA (2003) Coronal mass ejection activity during solar cycle 23. In: Wilson A (ed) Solar variability as an input to the Earth’s environment, International Solar Cycle Studies (ISCS) symposium. ESA special publication, vol SP-535, Tatranska Lomnica, 23–28 June 2003. ESA, Publications Division, Noordwijk, pp 403–414

    Google Scholar 

  • Gopalswamy N, Xie H, Yashiro S, Usoskin IG (2005) Coronal mass ejections and ground level enhancements. In: Sripathi Acharya B et al (ed) Proceedings of the 29th international cosmic ray conference, vol 1, Pune, 3–10 Aug 2005. Tata Institute of Fundamental Research, Mumbai, pp 169–172

    Google Scholar 

  • Gopalswamy N, Mikic Z, Maia D, Alexander D, Cremades H, Kaufmann P, Tripathi D, Wang Y-M (2006) The pre-CME Sun. Space Sci Rev 123:303–339

    Article  Google Scholar 

  • Harrison RA et al (2008) First imaging of coronal mass ejections in the heliosphere viewed from outside the sun-earth line. Solar Phys 247:171–193

    Google Scholar 

  • Holman G Space weather: what impact do solar flares have on human activities? Source: http://hesperia.gsfc.nasa.gov/sftheory/spaceweather.htm. Last access 1 Mar 2014

  • Howard TA (2011) Three-dimensional reconstruction of coronal mass ejections using heliospheric imager data. J Atmos Sol Terr Phys 73:1242–1253

    Article  Google Scholar 

  • Howard TA et al (2006) Tracking halo coronal mass ejections from 0-1 AU and space weather forecasting using the Solar Mass Ejection Imager (SMEI). J Geophy Res: Space Physics 111(A4)

    Google Scholar 

  • Howard TA et al (2007) On the evolution of coronal mass ejections in the interplanetary medium. The Astrophysical Journal 667(1):610–625

    Google Scholar 

  • Howard TA, Tappin SJ (2010) Application of a new phenomenological coronal mass ejection model to space weather forecasting. Space Weather 8, S07004

    Article  Google Scholar 

  • Hudson HS, Webb DF (1997) Soft X-ray signatures of coronal ejections. In: Crooker N, Joselyn JA, Feynman J (eds) Coronal mass ejections, vol 99, Geophysical monograph. American Geophysical Union, Washington, DC, pp 27–38

    Chapter  Google Scholar 

  • Hundhausen AJ (1999) Coronal mass ejections. In: Strong KT, Saba JIR, Haisch BM, Schmelz JT (eds) The many faces of the sun: A summary of the results from NASA’s solar maximum mission. Springer-Verlag, New York, pp. 143

    Google Scholar 

  • Jackson BV (1992) Remote sensing observations of mass ejections and shocks in interplanetary space. In ˇSvestka Z, Jackson BV, Machado ME (eds) Eruptive solar flares, proceedings of colloquium no 133 of the international astronomical union, held at Iguaz.u, Argentina, 2–6 Aug 1991. Lecture notes in physics, vol 399. Springer, Berlin/New York, pp 248–257

    Google Scholar 

  • Jackson BV, Buffington A, Hick PP, Clover JM, Bisi MM, Webb DF (2010) SMEI 3-D reconstruction of a coronal mass ejection interacting with a corotating solar wind density enhancement: the 2008 April 26 CME. Astrophys J 724:829–834

    Article  Google Scholar 

  • Lugaz N, Hernandez-Charpak JN, Roussev II, Davis CJ, Vourlidas A, Davies JA (2010) Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys J 715:493–499

    Article  Google Scholar 

  • Manchester WB IV, Gombosi TI, De Zeeuw DL, Sokolov IV, Roussev II, Powell KG, Kota J, Toth G, Zurbuchen TH (2005) Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophys J 622:1225–1239

    Article  Google Scholar 

  • Manoharan PK (2010) Ooty interplanetary scintillation – remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys 265:137–157

    Article  Google Scholar 

  • Mittal N, Narain U (2010) Initiation of CMEs: a review. J Atmos Sol Terr Phys 72:643–652

    Article  Google Scholar 

  • Phillips T Solar shield: protecting the North American power grid. NASA Science News. http://science.nasa.gov/science-news/science-at-nasa/2010/26oct_solarshield/. Last access 1 Mar 2014

  • Pick M, Vilmer N (2008) Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun–Earth connection. Astron Astrophys Rev 16:1–153

    Article  Google Scholar 

  • Plunkett SP et al (2000) Simultaneous SOHO and Ground-Based Observations of a Large Eruptive Prominence and Coronal Mass Ejection. Sol Phys 194:371–391

    Article  Google Scholar 

  • Pulkkinen T (2007) Space weather: terrestrial perspective. Living Rev Sol Phys 4:1

    Google Scholar 

  • Robbrecht E et al (2009) Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant. Astrophys J 691:1222–1234

    Article  Google Scholar 

  • Rust DM (2003) The helicial flux rope structure of solar filaments. Advances in Space Research 32(10):1895–1903 (AdSpR Homepage)

    Google Scholar 

  • Saito K, Tandberg-Hanssen E (1973) The Arch Systems, Cavities, and Prominences in the Helmet Streamer Observed at the Solar Eclipse, November 12, 1966. Solar Physics 31(1):105–121 (SoPh Homepage)

    Google Scholar 

  • Smith Z, Dryer M (1990) MHD study of temporal and spatial evolution of simulated interplanetary shocks in the ecliptic plane within 1 AU. Sol Phys 387–405:12

    Google Scholar 

  • St Cyr OC et al (2000) Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J Geophys Res 105(A8):18169–18186

    Article  Google Scholar 

  • Tappin SJ (2006) The deceleration of an interplanetary transient from the Sun to 5 AU. Sol Phys 233:233–248

    Article  Google Scholar 

  • Tappin SJ, Howard TA (2010) Reconstructing CME structures from IPS observations using a phenomenological model. Sol Phys 265:159–186

    Article  Google Scholar 

  • Tousey R (1973) The solar corona. In: Rycroft MJ, Runcorn SK (eds) Space research XIII, proceedings of open meetings of working groups on physical sciences of the 15th plenary meeting of COSPAR, Madrid, 10–24 May 1972. Akademie, Berlin, pp 713–730

    Google Scholar 

  • Vourlidas A, Buzasi D, Howard RA, Esfandiari E (2002) Mass and energy properties of LASCO CMEs. In: Wilson A (ed) Solar variability: from core to outer frontiers, proceedings of the 10th European solar physics meeting, Prague, 9–14 Sept 2002. ESA, vol SP-506

    Google Scholar 

  • Vourlidas A, Howard RA, Esfandiari E, Patsourakos S, Yashiro S, Michalek G (2010) Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys J 722:1522–1538

    Article  Google Scholar 

  • Vourlidas A, Howard RA, Esfandiari E, Patsourakos S, Yashiro S, Michalek G (2011) Erratum: comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys J 730:59

    Article  Google Scholar 

  • Webb DF, Howard TA (2012) Coronal mass ejections: observations. Living Rev Sol Phys 9:3

    Google Scholar 

  • Webb DF, Howard RA (1994) The solar cycle variation of coronal mass ejections and the solar wind mass flux. J. Geophys. Res 99(A3):4201–4220

    Google Scholar 

  • Webb DF et al (2006) Solar Mass Ejection Imager (SMEI) observations of coronal mass ejections (CMEs) in the heliosphere. J Geophys Res: Space Physics 111(A12)

    Google Scholar 

  • Wood BE, Howard RA (2009) An empirical reconstruction of the 2008 April 26 coronal mass ejection. Astrophys J 702:901–910

    Article  Google Scholar 

  • Wu ST et al (2001) Numerical magnetohydrodynamic (MHD) modeling of coronal mass ejections (CMEs). Space Sci. Rev 95:191

    Google Scholar 

  • Yashiro S, Gopalswamy N, Michalek G, St Cyr OC, Plunkett SP, Rich NB, Howard RA (2004) A catalog of white light coronal mass ejections observed by the SOHO spacecraft”. J Geophys Res 109:A07105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alexandre Wuensche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Wuensche, C.A. (2014). Fundamental Aspects of Coronal Mass Ejections. In: Allahdadi, F., Pelton, J. (eds) Handbook of Cosmic Hazards and Planetary Defense. Springer, Cham. https://doi.org/10.1007/978-3-319-02847-7_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02847-7_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02847-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics