A Secure and Efficient Scheme for Cloud Storage
against Eavesdropper

Jian Liu, Huimei Wang, Ming Xian, and Kun Huang

State Key Laboratory of Complex Electromagnetic Environment Effects on
Electronics and Information System, National University of Defense Technology,
Changsha, 410073, China
1jabc7300@nudt.edu.cn

Abstract. Cloud storage system, which can be viewed as a large collec-
tion of individually unreliable storage nodes, is potential to be faced with
the threat of data loss and leakage, due to node failure and eavesdropped
by an intruder. As a solution, secret sharing scheme stores the data re-
dundantly across the distributed storage system(DSS) and it is able to
protect data security against f-eavesdropper without need of secret key
management mechanism, however, it do not provide regeneration prop-
erty. Combining the regenerating code with the secret sharing scheme is
an effective approach to address this drawback, yet all the schemes that
have been proposed in previous work are conducted under the perfect-
security criterion and leads to an unaffordable loss of the storage capacity
while the number of observed nodes ¢ get close to threshold k. In this pa-
per we adopt the weak-security criterion and give a formal description of
“Secure DSS against an f-eavesdropper”. Applying a secure hash func-
tion and concatenated with the Product-Matrix minimum bandwidth
regenerating(PM-MBR) code, our scheme significantly improves the se-
crecy capacity and keeps the loss of data rate constantly in a low level
with any ¢. As the analysis result indicates, our scheme, which provides
sufficient security, repair efficiency and storage efficiency, is more suitable
for practical systems. Moreover, we introduce another approach as an ex-
tension, which combines the All-Or-Nothing Transform with PM-MBR,
and finally achieves a secure storage against f-eavesdropper without loss
of data rate.

Keywords: Cloud Storage, Eavesdropper, PM-MBR, Data Confiden-
tiality, Hash Function, All-Or-Nothing Transform, Secrecy Capacity.

1 Introduction

Cloud storage system is now increasing attracting individuals and organizations
to outsource their data from local to remote cloud servers. However, many con-
sumers are still feel hesitant, since they lose their control on the data which
maybe lost and leaked by incidents. To deal with node failure and compromised
by an attacker, which leads to data loss and leakage, the system is desired to
provide both storage reliability and confidentiality. In general, a cloud storage
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system is considered as a large-scale distributed storage system(DSS) which con-
sists of many independent storage nodes.

For reliable storage, DSS stores the data redundantly(e.g., by using (n, k)RS
code) on a collection of individually unreliable storage nodes, such that the data
can be recovered from active nodes even if a small set of nodes fails. However,
the repair-bandwidth is so high up to the size of original file when only one node
fails in this scenario. A repair-efficient scheme, called regenerating codes(RC),
was proposed in [1], where the tradeoff between the storage capacity of single
node and the repair-bandwidth was studied, furthermore codes that achieve two
extreme points, which are known as minimum storage regenerating (MSR) codes
and minimum bandwidth regenerating (MBR) codes, were introduced. Moreover,
explicit construct methods for MBR and/or MSR codes that allow ezact re-
pair|24] were presented in [2-4].

Besides reliability, storage confidentiality is also a significant property for
DSS. Paulo et al.[5] considered a scenario in which a large, private file is to
be stored securely and there exists an intruder may gain access to some storage
nodes in the DSS, but not all. Assuming that the intruder only can eavesdrop on
compromised nodes but cannot modify the data stored on them, it’s desirable to
ensure that the intruder is unable to recover the whole file or any of its parts. A
straightforward solution is that, first encrypt the file using a secret key and then
partition the resulting cryptogram into multiple shares that can be spread over
the storage nodes. However, such cryptographic solution introduces the need for
secret key management mechanism|6], which increases the overall complexity
and the resources demanded by the system. The secret sharing scheme provides
an effective solution without secret key management. In a secret sharing scheme,
one divides a secret into shares, and a threshold number of shares is sufficient to
recover the original secret but any number of shares(obtained by the intruder)
smaller than the threshold reveal no information about the secret|d, (7, I8, [16].
Some other practical application of the combination of secret sharing scheme and
erasure codes was proposed in |9, [10], these schemes applied cryptography but
without need of key management and distribution. Even though all the schemes
above provide reconstruction and security of data shares, they do not provide
the property of regenerating the share as was stored in the failed node.

To address this drawback, combining RC with the secret sharing scheme is
an effective way. It is noted that schemes following this way have been also
studied in [11+14]. S.Pawar et al.[11] gave the upper bound of secrecy capacity
for secure (n, k,d)-DSS against passive eavesdroppers and proposed achievable
approach, based on nested MDS and RSKR-repetition codes, in the bandwidth-
limited regime for repair degree d = n — 1. Further more, literature [13, |14]
proposed information-theoretically secure MBR and/or MSR. codes that achieve
the secrecy capacity in [11]. Moreover, Rawat et al.|12] gave tighter bound on the
secrecy capacity of a DSS at the MSR point, and presented an approach based
on Gubidulin precoding to achieve the upper bound for certain system param-
eters. However, all these schemes achieve the perfect-security criterion, that is,
intruder eavesdropping ¢ < k nodes gets no information of the original file stored.
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By mixing a certain number of random symbols with original data before en-
coded by RC, these schemes lead to a decrease of the file size that can be securely
stored in the DSS and the loss of secrecy capacity is unaffordable when ¢ get
close to k. Take [13] for example, a (n = 6,k = 3,d = 4) PM-MBR is applied,
the storage capacity is 94, in the presence of an intruder that can eavesdrop
the data on two nodes, we need the ratio of random symbols up to 7/9 of the
storage capacity to be added to achieve the perfect-security, and thus the data
rate 2/9 is unbearable. Considering the fact that perfect security criterion is too
strict and leads to above disadvantages, we adopt the weak-security criterion|15)]
in our work instead. In case of weak-security criterion, intruder cannot get any
“meaningful” information of the stored data symbols when eavesdropping ¢(< k)
storage nodes.

In this paper, we focus on designing an efficient scheme for DSS, which pro-
vides not only data reliability but also data security against passive eavesdrop-
pers. Taking the PM-MBR code|3] as the basis of our scheme, it satisfies the
regeneration property(i.e., can regenerate a lost share with low bandwidth). Us-
ing a hash function or AONT|22] as the preprocessing procedure before data
symbols are encoded by minimum bandwidth regenerating code, our scheme
achieves the weak security criterion, which is sufficient in practical distributed
storage scenario. Simultaneously the data capacity securely stored in the DSS
is significantly improved, and the loss of data rate is kept constantly in a low
level(equal to zero in case of AONT) for any ¢(< k) with fixed (n, k, d).

Similar problem has been considered in the research field of multicast-network
applying network coding|19]. |15, 22, 23] showed that weakly secure network
coding can achieve the security with a higher multicast rate compared with
perfect secure network coding|20, 21]. Inspired by the achievement of |15, 22, 23],
their ideology is introduced into our research for building a secure distributed
storage system against eavesdropper with high secrecy capacity. However, we
use totally different models and methods in our work. To our best knowledge,
few papers strived in this direction applying weak security criterion to DSS.

Contributions: Our main contribution in this paper is to provide a secure
and efficient scheme, which exploits the Product-Matrix framework[3], for DSS.
The proposed scheme provides the following guarantees:

— Weak-Security Property: We assure that an intruder who can eavesdrop any
{(< k) out of n storage nodes is unable to recover any individual original
data symbol. To be viewed as a secret sharing scheme, however, our scheme
does not apply secret key management and distribution mechanism.

— Reconstruction Efficiency: Since the regenerating code utilized by us satisfies
MDS property, our proposed scheme is resilient to node failures, that is, a
data collector is able to reconstruct the original data file as long as there are
k out of n storage nodes active.

— Regeneration Efficiency: We combine minimum bandwidth regenerating code
with secret sharing scheme, thus ensure that our scheme not only provides
security guarantees, but also satisfies regeneration efficiency, i.e., low repair-
bandwidth when node failure happens.
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— Secure Storage Efficiency(High Secure Data Rate): We apply a secure hash
function in the preprocessing procedure, and then concatenated with PM-
MBR code. This approach is effective to improve secure data capacity, and
keep the loss of data rate constantly in a low level. Moreover, another
construction method with All-Or-Nothing Transform(AONT) is presented,
which can achieve the secure storage without loss of data rate.

Organization: The rest of this paper is organized as follows. In Section 2
we introduce the system model, intruder model and some preliminaries for our
scheme. Our proposed scheme is detailed described in Section 3 and evaluated
in Section 4. In Section 5 we briefly present another construction method and
analyze the essence of its security. Finally, we conclude this paper Section 6.

2 Model and Preliminaries

2.1 System Model

We consider the cloud storage to be a large-scale DSS, which consists of three
components, i.e., the source node s, n active storage nodes and data collector
DC'. There’s an incompressible data file F of M symbols(each belonging to a
finite field F,) in the source node s. We assume that each storage node has a
storage capacity of o symbols and is individually unreliable and may fail over
time.

The source node s split, encode the file 7 and then distribute the coded result
to the n connected storage nodes {v1,va, ...v, }. Any DC who can connect to any
k out of n active nodes should be able to retrieve the M symbols and reconstruct
the original file . We term this the MDS property of the DSS. To maintain the k-
out-of-n MDS property, failed node must be immediately replaced by newcomer
with same storage capacity a. In our work, we focus on the case of symmetrical
repair, where the newcomer connects to arbitrary d active nodes out of the
remaining active nodes and downloads equal amount of symbols, say 3, from
each. The repair degree d is a system parameter satisfying k < d < n — 1. The
corresponding repair bandwidth of the system is defined as v = df in this paper.
Thus we define such a DSS as D(n, k, d). For instance, the DSS depicted in Figlll
corresponds to D(4,2,3) which is operating at (o,7v) = (2,3) with functional
repair, the failed node v; is replaced by the newcomer vs in this scenario.

Moreover, for the reason that the functional repair|24] has some inherent
security shortcomings for DSS in the presence of an eavesdropper, in this paper
our presented scheme employs the exact repair where the newcomer regenerates
an exact copy of the lost data and thus a = df. Specifically, the PM-MBR code
proposed by Rashmi et al.[3] is applied. Besides, we denote the storage capacity
of the DSS as £, which was derived by [1] and:

k
L= Zmin{(d—i—&—l)ﬁ,a} (1)
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F =la,,a,,b,b,]
M=4

DC

Fig. 1. D(4, 2, 3) under repair

Note that the right-hand side of Eq.(]) can be reduced to Zfzo[(d —i+1)5] in
case where PM-MBR code is applied|3].

2.2 Intruder Model

We consider an (¢1, {2) eavesdropper, which can access the stored data of nodes
in set €1, and additionally can access both the stored and downloaded data of the
nodes in set eq, with |e1| = ¢; and |ea| = f5. The eavesdropper is passive and can
only read the data on the observed nodes without modifying it. This is the same
eavesdropper model considered in [12]. For the MBR code used in this paper,
we have df = «, i.e., a replacement node stores all the data that it downloads
during its repair. Thus an eavesdropper does not obtain any extra information
from the data that is downloaded for repair. Without loss of generality, we can
assume that ¢ = ¢(¢ < k),¢> = 0, and then the intruder model is simplify to
the (-eavesdropper. In addition, the eavesdropper is assumed to have complete
knowledge of the storage and coding schemes employed by the DSS. As a result,
the intruder can choose any ¢ nodes from the initial storage nodes and/or the
replacement nodes. For example in Fig[llwith £ = 1, the replacement node vs is
compromised by the intruder and shown in grey background.

2.3 Security Criterion

Here we first introduce perfect security criterion and then present our definition
of the secure DSS against the f-eavesdropper in this subsection.

Let S = [31,32,53,...,3L]T be a random vector uniformly distributed over
IF(? , representing the incompressible data file at the source node. Each symbol
of S denoted by s;(i = 1,2,...,L) is independent random variable uniformly
distributed over F,. Let H(S) denotes the entropy of the random variable S.
The S is encoded into n shares ¢; € Fg. For each i € {1,2,..,n}, a share ¢; is
stored in node v;. Let B be a collection of k active nodes randomly chosen from

all n storage nodes, and define Cp := {¢; : v; € B}. Similarly, we let E be the
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collection of nodes that can be observed by the eavesdropper, and |E| = ¢ < k
in our work, thus define Cr := {¢; : v; € E}.
Then the reconstruction property (or k-out-of-n MDS property) of the DSS,
can be written as:
H(S|Cp) =0,  |B|=k. (2)

and the perfect security condition implies:
H(S|Cg) = H(S), |E| =¢ < k. (3)

The Eq.(B]) can be interpreted that the eavesdropper cannot get any informa-
tion about the original vector S = [s1, 82, 83, ..., 5|7, even she is able to obtain
the data shares on ¢ compromised nodes. As mentioned above, this security cri-
terion is too strict and unnecessary in practical scenario. Notice the fact that an
intruder who get the s; & s;(i # j) is also unable to recover the symbols s; and
sj, 1e., I(si;8 @ s;) = I(sj;8 @ sj) = 0, because these symbols are uniformly,
independently and randomly distributed over F,. Therefore, it is sufficient that
an intruder cannot get any “meaningful” information of each symbol in original
vector S to guarantee the data secure against the ¢-eavesdropper(¢ < k), which
is called the weak-security criterion|[15]. We present the definition of a secure
DSS following such criterion:

Definition 1. (Secure DSS against an (-eavesdropper): A DSS is said to be
secure against an £-eavesdropper, if, for any set E of size { < k,

I(s;CE) = 0,(i = 1,2, ..., L) (4)

Where s; denotes the symbol of the data file S, and Cg represents data observed
by the eavesdropper. Besides, we denote the file size that can be secure stored in
the DSS as L.

Under the weak-security condition|15], our proposed scheme can achieve a
higher secure data capacity as discussed in Section 4.

2.4 Product-Matrix MBR Code

Rashmi et al.[3] proposed the first construction of general and optimal exact-
regenerating code such as (a)(n, k,d) MBR code for all values of (n,k,d),and
(b)(n, k,d) MSR code for all values of (n, k,d) where d > 2k — 2. In general, in
order to obtain a lower repair bandwidth, all n, k, d should satisfy k < d < n—1.
As the basis of our work, we briefly review the Product-Matrix MBR code here.

As assumed in [13], we set 8 = 1. It is reasonable since that any higher value
of B can be obtained by a simple concatenation of the 8 = 1 code. Thus the
PM-MBR code with 8 = 1 and o = d can be interpreted as an (n X «) code
matrix C', where each row corresponds to one storage node of the DSS, i.e., the «
elements in the i*" row represent the o symbols stored in node v;(i = 1,2, ...,n).
The code matrix C is a product of two matrices: a fixed encoding matrix ¥, «q
and a message matrix Mgxa, i.€., Cnxa = Ynxd - Maxa-
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The encoding matrix ¥, x4 has the form as ¥,,xq = [Pnxr  Apx(d—k)] Where
the matrices @, xr and A, (q—k) are chosen to satisfy (i)any & rows of ¢ are
linearly independent, and (ii)any d rows of ¥ are linearly independent, thus, a
Vandermonde or Cauchy Matrix is applicable.

The message matrix My«, contains the symbols of the data file to be stored
in a redundant fashion. From Eq.(d)) we get that the stored symbols amount to
L= k(Qd;kH) = k(k;l) + k(d — k) in the DSS employing the PM-MBR code.
The message matrix Mgy, is of the following form

Ukxk Viex (d—k)
dea - .
Visa—k)  Od—k)x(d—k)

The Ugxi in the above expression denotes a symmetric matrix, thus the k(k; b

components in the upper-triangular half of the matrix are filled up by k(k; b

distinct message symbols drawn from the £ message symbols. The remaining
k(d — k) message symbols are used to fill up the matrix Vi (4—x). The Vi de-
notes the transpose of matrix Vi (4—x), and the O_p)x(i—k) denotes the zero
matrix with all zero components. To keep things simple, we use these denotations
without the subscript in the rest of this paper.

3 Our Proposed Scheme

3.1 Notation and Definition

The original data file of size L is represented by a vector S = [s1, 52, ..., sp|T, with
s; € Fq,i =1,2,..., L. Supposing that the file has been optimally compressed,
then the symbols s;(i = 1,2, ..., L) are independent random variables uniformly
distributed over the finite field F,. Let K denotes a set of random symbols and
|K| = L,, and each symbol is chosen independently and uniformly across the
elements of F,. In addition, we make use of suitable one-way function, i.e., a
secure hash function defined as follow, in our scheme.

Definition 2. (Secure Hash Function): The function h(key,e) : key x X =Y
where key € Fy, for VX € Fy(r € N*), the result Y € Fy, is secure if the following
conditions satisfy:

(1)Given a hash value y € Ty, it’s hard to find any x € Fy(r € N*) in
polynomial time such that y = h(key,x);

(2)Given any x € Fy(r € N*),the hash value y = h(key,x) can be easily got
i polynomial time;

(3)Given any x € Fy(r € N*), it’s hard to find 2" € F(r € N*) that have the
same hash value in polynomial time, i.e., h(key,z') = h(key, ).

To keep things simple, we define that h(x) = h(z,z) with « € F, in the following
subsection.

Besides, we denote the i*” row of the encoding matrix ¥ as ;. In order to
meet the requirement of ¥, we adopt the Vandermonde matrix to be the encoding
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matrix. The message matrix is represented by M. All the elements of matrix ¥
belong to the finite field Fy, thus, ¢ > n. Further, we set 8 = 1 in the scenario
of D(n, k,d) in which our scheme executes.

3.2 Detailed Scheme

Our scheme is consisted of four procedures shown as follows:

1) Preprocessing Procedure:

step 1: Generate a set K that contains L, = d — k 4+ 1 random symbols
{k1, k2, ...kr.}, where each symbol is independently, randomly and uniformly
distributed over F;

step 2: Let S’ be a set with cardinality Ls(< L), and the elements of S’ are
the symbols drawn from the incompressible data file S = [s1, sa, ..., s1.|T, here we
set 8" = {s1,82,...s1_} without loss of generality. In the scenario of D(n, k, d),
Ly=L— L, ="M (g — k4 1);

step 3: Let sk = h(ky, kal||ks]|...||kL, ), where ka||ks]|...||kr, denotes the con-
catenation of the random symbols k;(i = 2,3, ...L,.). Utilizing the hash value sk
to preprocess the original data symbols, we get the result P = {p1,pa,...pr.}
where p1 = 51 @ h(sk), p; = s; ® h(sk, s1]|sz2]|...||si—1)(@ > 1,i € N*);

2) Encoding and Distributing Procedure:

step 1: Note that Ls + L, = L, we populate the message matrix M with
elements in P and K. To be specific, place the symbols of P into the first k — 1
rows and hence first £ — 1 columns of the symmetric matrix M, the rest position
of submatrix U and V of M is filled with L, random symbols of K (an example
is shown in Fig[2);

step 2: Choose n elements from F, and then generate a Vandermonde matrix
to be the encoding matrix ¥. According to the encoding method of PM-MBR,
we multiply the matrix ¥ and M to get the Product-Matrix C =¥ - M.

step 3: Extracting each row(denoted by c¢;) of the Product-Matrix C as a
share(of size d) of encoded data, the source node distributes them to the corre-
sponding storage node v;, 1 = 1,2, ...n.

3) Regeneration Procedure:

Supposing that node vy (f € [n]) fails at a time, the regeneration process of
our scheme is the same as that in traditional PM-MBR codel3]:

step 1: Notice that the share stored on the node vy is ¢y = ¥y M. The re-
placement for the failed node f connects to an arbitrary set {h;|1 <i < d} of d
remaining nodes.

step 2: Fach of these d nodes passes on the inner product (ﬁ’hiM)l/J} to the
replacement node. Thus from these d nodes, the replacement node obtains the
d = o symbols, i.e., Crep = y'/resz/ch, where Wyep, = [Uny, Vhyy oo, Yn,] 1S invert-
ible by construction.

step 3: Replacement node performs matrix inversion on ¥,., and multiplies
WL with Cpep. Thus My can be recovered, since M is symmetric, (M1%)" =

rev

Yy M is precisely the data stored in the node prior to failure.
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4) Reconstruction Procedure:

When a data collector try to reconstruct the original data file stored in the
(n, k,d)-DSS, it firstly perform the same action as traditional PM-MBR code[3],
then recover original symbols:

step 1: Data collector connects to k out of n active storage node, let ¥po =
[®pc  Apc] be the corresponding k rows of ¥. Thus the data collector gains
the symbols YpcM = [PpcU+ ApcV?  @pcV]. Being a submatrix of Vander-
monde matrix, @pc is nonsingular. Hence, by multiplying the matrix ¥poM on
the left by @Blc, one can recover first the matrix V' and subsequently the matrix
U. Thus, all symbols in set K and P are gained by data collector;

step 2: Compute the sk = h(ky, k2||ks]|...||kr,.) from K, and then the original
symbols in set S’ = {s1,52,...51.} can be got in the way: s1 = p1 ® h(sk),
si = p; ® h(sk, s1||s2]l...||si=1), (2 < i < Ly and ¢ € N*). Finally, the original
data file stored in the system is reconstructed.

3.3 An Example

Detailed description of our scheme above should be tedious and stuffy, how-
ever, in order to make our scheme seems more concrete, we illustrate it with an
example similar to [13] in this subsection.

Ezample 1. Let (n,k,d) = (6,3,4), then with 8 = 1,we get e =d =4, L, = 2,
Ly =7 and £ = 9. Our scheme is designed over the finite field F7. The (6 x 4)
encoding matrix ¥ is chosen as a Vandermonde matrix with its it* row as ¢; =
i 2 3.

As depicted in Figl2l the original data symbols s1, sg, ..., s7 drawn from the
incompressible data file F are first preprocessed with the random symbols in K,
and then placed into the first two rows and first two columns of the message ma-
trix My 4. In the end, the matrices U and V' are populated by the preprocessed
symbols in P = {p;}7_; and random symbols in K = {ky, ko }:

b1 P2 P3 Pe
U=|p2 ps bps5|, V=pr
D3 D5 kl kg

Further, M4«4 is multiplied on the left with the Vandermonde matrix ¥s«4 and
thus product-matrix Cgx4 can be generated. Each row of Cgx4 denoted by ; M
corresponds to the share ¢; stored on storage node v;(i = 1,2, ...,6).

4 Discussion

In this section, we evaluate the security property of D(n,k,d) applying our
scheme, as well as its advantages in the aspects of secure data capacity and
repair bandwidth over previous work. Then the computation cost of the proposed
solution is compared against original PM-MBR scheme.
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Random Symbols
K =tk ko

(o] (57

Encoding Matrix

1
PM-MBR cod:
code Node v | [ s M

Message Matrix

Fig. 2. An example with (n,k,d) = (6,3,4)

4.1 Security Analysis

To prove that our presented scheme is secure against an ¢-eavesdropper(¢ < k)
in the (n, k, d)-DSS, we make use of the method appeared in [13] at first.

Lemma 1. For any Cg representing the shares {c; : v; € E} stored on the node
collection E(|E| = ¢ < k) eavesdropped by the intruder, no information about
the random symbols set K is revealed, i.e., the mutual information between the
random symbols and the eavesdropped shares is zero, that is

I(K;CEp) =0 ()

Proof. To prove Eq.(#]), our scheme can be interpreted as a particular case of
the construction method in [13], where £ = k — 1, £ = Cg, and Y = K. Since
original data symbol s;(i = 1,2,...,Ls) in S is independently, randomly and
uniformly distributed over F,, and so is the hash value, thus p; = s1 @ h(sk)
and p; = s; @ h(sk, s1||s2]]--.||si—1)(2 < i < Ly, i € N*) all satisfy independent,
random and uniform distribution over F, as well. Then the preprocessed symbols
set P = {pi}iL;1 can be equivalent to the random symbols set R = {n-}f;l
denoted in previous literature[13].

Based on the above analysis, our proof proceeds in the same manner as
[13](Section II), that is, H(P|Cg,K) = 0, H(Cg) < Lg proved firstly, and
finally I(K;Cg) = 0 can be obtained. We do not present the details here due to
lack of space.

Thus the f-eavesdropper cannot obtain any information about the set XK. 0O

Theorem 1. The {-eavesdropper(t < k) cannot get any “meaningful” informa-
tion of the original data symbols from Cg, i.e., the mutual information between
each s;(i =1,2,...Ls) and eavesdropped shares set Cg, that is

I(s;:Cp) =0,(i=1,2, ..., L) (6)

Proof. As shown in Lemma 1, the {-eavesdropper cannot obtain any information
of the K, the mutual information between sk = h(ky, k2||...||kL,.) and Cg comes
to zero. This is determined by the property(3) of the function h(key, e) defined
in Definition 2. Similarly, we can get I(h(sk); Cg) = 0;

Next, we will show that the mutual information between original symbol
si(i = 1,2,...L) and Cg is zero. We use the inductive method here, and take
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i = 1 in the beginning, s; = p; @ h(sk), since p; is an independent and random
variable uniformly distributed in F,

1(s1;CEg) = I(p1 @ h(sk);Cg) =0 (7)

can be obviously obtained. For ¢ > 2, assuming that I(s;—1; Cg) = 0, since s; and
s; are independent for ¢ # j, and that the hash function is secure against colli-
sion(property (3) in Definition 2), thus we see that I(h(sk, s1||s2||...||si-1); Cr) =
0. Finally we get that

I(s5;Cg) = I(pi ® h(sk, s1||s2]|.--||$i-1): C5) =0, (2 <i < Lg,i € (N)*) (8)

since p; satisfies independent, random and uniformly distribution over F,.
Thus, equation(@) can be achieved for any ¢ € [Lg], i.e., and the

D(n,k,d) applying our scheme is secure against ¢-eavesdropper as shown in

Definition 1. O

In essence, notice that the input parameter of the secure hash function p; =
h(key,e) differs from each other for any ¢ = 1,2,...L, and each element of
P = {p1,po,..pr.} is “encrypted” with different key(similar to one-time pad).
Thus an intruder is unable to obtain any information of each original data symbol
s; without knowledge about the hash value sk(see Lemma 1), even though she
has obtained some preprocessed symbols p; (i € [Ls]).

4.2 Repair-Bandwidth and Secrecy Capacity Analysis

Obviously, our scheme satisfies the MDS property(see Section 1), thus we analyze
its repair and storage performance in such scenario: an D(n,k,d) with each
storage node capacity up to «, the mewcomer connects to d nodes out of the
active ones when node failure happens, thus repair-bandwidth v = dg. In such
scenario, user accessing any k out of n storage nodes can recover the original
data file, however, access to any ¢ < k does not leak any information about each
original data symbol. So our proposed method can be viewed as a secret sharing
scheme.
Before the analysis, we define data rate as follows at first:

R — L"SEC — L"SEC (9)

Lk min{(d—i+1)8,a}

where L. denotes the secrecy capacity of the system, and £ denotes the storage
capacity of D(n, k, d) using symmetrical repair.

Firstly, we will show that our scheme is repair efficiently compared to previ-
ous secret sharing schemes. Paulo F. Oliveira et al.[5] present a coding method
and realize multi-secret sharing scheme, their schemes improved the secrecy
capacity compared to Shamir’s (k,n)-threshold scheme[l6] and Bessani’s
(k, L,n)-threshold scheme|§]. As shown in Figll Paulo’s scheme provides an
secrecy capacity up to the storage capacity. However, all their repair-bandwidth
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is so high up to the same as the Reed-Solomon coding scheme, that v = da =
ka. Combined with MBR code, our secret sharing scheme provides the repair-
bandwidth the same as minimum bandwidth regenerating code, that is, v =
dB = «a, which is much lower than schemes in [B, , @] Even though both
the secrecy capacity and storage capacity of our scheme is slightly lower than
Paulo’s schemeet al. ﬂa}, as well as data rate is lower than 1, that is affordable
and allowable in practise.

. Repair Bandwidth Secrecy Capacity Storage Capacity Secure Data Rate Security
Various Schemes .
14 Liec L R Criterion
RS code ka 0 ka 0 No
k
MBR code o 0 kd — ) B 0 No
Paulo’s Scheme [5] ka ka ka 1 Weak
k ‘ k 0 —(2d +1)¢
Shah's Scheme [13] a {kd—(zﬂﬁ—[ld—[zﬂﬁ {kd‘[zﬂﬁ _k27(2d+1)k Perfect
k k 2(d—k+1)
s kd — —(d—k+1 kd — -
Ours a { [ZHI’ ( B { [2)}3 K2d—k+1) Weak

Fig. 3. Comparison of repair-bandwidth and secure storage performance

N.B. Shah's Scheme

---4--- Qur Scheme

Data Rate
o o o o
5 o & o

°
o

)

2 4 6 8 \10
Number of Nodes Observed by Eavesdropper

Fig. 4. An example with (n, k, d) = (15, 10, 13)

Next we will show that our scheme provides secure storage efficient(i.e., Higher
Data Rate) guarantee relative to other similar work. | gave methods to
construct schemes providing both the regenerating property and secure storage
against eavesdroppers. But all these techniques provide perfect-security with
expense of storage capacity so high, even unbearable. Taking N.B.Shah’s work
on secure MBR, ] for example without loss of generality, the random symbols
amount to [¢d — (5)]& need to be mixed with the original symbols, and the data

kd—(5)18—[¢d— (& 2_
e R = e = MR, O = - oGl
the intruder can eavesdropped more nodes for £ < k. Figll shows an example
for (n,k,d) = (15,10,13), we can see that the data rate is lower than 20%

decrease rapidly when
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and intolerable to us when ¢ > 7. However, our scheme achieve a higher data
rate (approximate 95% in Figll) and it does not vary with ¢(< k) when the
parameters (n, k,d) are fixed. Although this comes at the expense of reduced
security, the weak-security is enough in practical scenario.

4.3 Computation Cost Analysis

Comparing with the PM-MBR scheme[3], our solution leads to additional compu-
tation cost for the purpose of security. Taking (n, k, d) as the design parameters,
we could get the overhead of our scheme. The Preprocessing Procedure takes
O(d?) Hash operations and O(d?) Xor operations in order to obtain the set P
from the original symbol set S. The number of operations taken by the second
and third procedure is equal to that of the original PM-MBR scheme. Especially
in the Regeneration Procedure, where the ¥,., is chosen to be a Vandermonde
matrix, O(d) + O(d?) + O(dlog d?) arithmetic operations are needed to repair
the failed node. The Reconstruction Procedure firstly perform the same recover
action as conventional PM-MBR and then recover original symbols, as a inverse
precess of the first procedure, step 2 of this procedure takes the same amount
of operations as the first procedure. Totally, our scheme takes 20(d?) Hash op-
erations and 20(d?) Xor operations more than traditional PM-MBR codes, but
this overhead is rather smaller than schemes exploit encryption mechanism.

5 Divergent Thinking

As is mentioned above, we utilize the secure hash function and PM-MBR code,
and finally achieve the weak security guarantee with the loss of data capacity
kept in a low level. As shown in Figl3] data rate of our scheme is a constant(close
to 100%) when the parameters (n, k, d) are fixed. A natural question arises: is
it possible to achieve the storage security against f-eavesdropper without loss
of the data capacity? The answer is yes, now we briefly introduce a construct
method below. Here the AONT(All-Or-Nothing Transform) |L7] 7 is introduced
first.

T (X1, X2, .., Xp) = (Y1,Y5,...,Y,) with X;,Y;(i = 1,2,...,n) drawn from
a finite field Fy. The work in [18] considers AONT and addresses unconditional
security with respect to a single block of the original message. In other words,
someone who have obtained the symbols Y7, Y5, ..., Y,, is unable to invert the
transform 7" and recover each X; when m < n, if and only if m = n the transform
is invertible, this is an important property of the AONT.

Replace the preprocessing procedure in our scheme with an AONT, and take
the original data symbols s1, s2, ..., 51, as input of the AONT, then we can get
result symbols P = {p1,p2, ..., Pr, }. Next, fill the result symbols into the message
matrix M. Denoting a subset of P as P, and each symbol of P is placed into
the first £ — 1 rows and first £ — 1 columns of the symmetric matrix M, thus
|P| = k@d;kﬂ) — (d — k + 1). Reviewing the conclusion of Lemma 1, we know
that the intruder who eavesdrops ¢ < k nodes cannot obtain any information
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of the subset P\ P.Asa result, the eavesdropper is impossible to recover each
single original symbol s; because she did not obtain all the result symbols in
P = {p1,p2,...,0L.}, i.e., I(s;;Cg) = 0. Obviously, without using the random
symbols(as K in above scheme), we can also achieve a secure storage against
l-eavesdropper with Ly = £ and thus R = 1, i.e., without loss of data capacity.

We must recognize the fact that the security of both the two schemes, respec-
tively utilizing secure hash function and AONT, relies on the perfect security
of K and partial elements of P (these elements are placed in the position of
massage matrix M except that in the first £ — 1 rows and first kK — 1 columns, we
denote these elements as a set Q). Thus, making full use of the set Q, we believe
that various schemes with good properties can be constructed. In the future, we
will make an intensive research in this aspect.

6 Conclusion

In this paper, we proposed an efficient scheme which provides not only data
reliability but also data security against passive ¢-eavesdroppers in DSS, based
on the Product-Matrix framework. To be viewed as a combination of minimum
bandwidth regeneration code with secret sharing scheme, our scheme offers more
advantages over previous work. Other than data security against eavesdrop-
per, it satisfies both the MDS property and regeneration property (the repair-
bandwidth is as low as the MBR code).

Considering the fact that similar repair efficient scheme all provide perfect
security criterion for data stored in the system, however, this criterion is too strict
to be practical, because it leads to an unaffordable loss of the storage capacity
while ¢ get closer to k. In contrast, we adopt the weak security criterion instead,
and give a definition of “Secure DSS against an f-eavesdropper”. Utilizing a
secure hash function and Product-Matrix framework, our scheme finally achieves
a high secrecy capacity and constant data rate close to 1 with fixed (n, k, d). The
analysis result indicates that, our scheme is sufficiently secure, repair efficient,
storage efficient and suitable for practical systems.

Furthermore, another approach was introduced, which combines the All-Or-
Nothing Transform with PM-MBR code, thus achieving a secure storage against
l-eavesdropper without loss of data rate.
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