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Abstract. Time memory tradeoff (TMTO) attack has proven to be an
effective cryptanalysis method against block ciphers and stream ciphers.
Since it was first proposed in 1980s, many new ideas have come out to re-
duce the false alarms during the online phase, among which rainbow table
introduced by Oechslin and perfect table introduced by Borst et al. are
notable landmarks. Avoine et al. introduced the checkpoints technique
to detect false alarms using little additional memory without regener-
ating the pre-computed chain. In this paper, we revisit the analysis of
multiple checkpoints in rainbow tradeoff. For non-perfect table we give a
new sight to the computation of the expected decreasing number of chain
regenerations at the k-th iteration. This helps to better understand the
real nature of false alarms and leads us to the same results as the work
of Jung Woo Kim et al. at Indocrypt 2012. For perfect rainbow tradeoff
we give the first way to find optimal positions of multiple checkpoints.
The results are better than previous work of Avoine et al., which only
applies when the perfect table has the maximum number of chains. All
the results are verified through meticulous experiments.

Keywords: time memory tradeoff, rainbow tradeoff, multiple
checkpoints.

1 Introduction

Inverting one-way functions is one of the fundamental problems in cryptography.
Much of cryptanalysis of block ciphers and stream ciphers can be expressed as
the process of computation of pre-images or inversion of one-way functions. A
cryptanalytic time-memory tradeoff (TMTO) is a technique to quickly invert
generic one-way functions with the help of pre-computation. After it was first
introduced by Hellman to perform an attack over DES [7] TMTO has been
applied to many cryptosystems, for example against the GSM algorithm A5/1
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[5], LILI-128 [16] and Windows LM Hash [15]. There are also ongoing research
projects dealing with the implementations, such as the RainbowCrack Project
[1] and the TMTO-based A5/1 Cracking Project [14] etc..

Two common ways to find a pre-image under a one-way function are exhaus-
tive search and table lookup. In an exhaustive search method, one simply tries
all possible keys in order to find the pre-image. With the table lookup method,
one precomputes a table containing all the values of the key and then perform
a search to find a pre-image. Hellman’s TMTO attack achieves a middle ground
between the exhaustive key search and the massive pre-computation of all possi-
ble ciphertexts for a given plaintext. During the pre-computation phase the at-
tacker precomputes sufficiently many chains and only stores the starting points
and ending points in a table. This concise table is used to find the pre-image in
time shorter than an exhaustive search during an online phase.

A major drawback of Hellman’s tradeoff attack is that it is possible to cause
false alarms, when the online chain merges with pre-computed chains. False
alarms significantly decrease the tradeoff efficiency and can increase more than
50% of the cryptanalysis time. After the inspiring work of Hellman, a lot of
work has been done to reduce the cost of false alarms. Perfect table, suggested by
Borst, Preneel, and Vandewalle in 1998, cleans the tables by discarding the merg-
ing and cycling pre-computed chains [6]. Rainbow table, introduced by Oechslin
et al. in 2003, uses a different reduction function for each column of a table [15]
and two different chains can merge only if they have the same key at the same
position of the chain.

In 2005, Avoine, Junod and Oechslin [3] proposed using checkpoints to rule
out false alarms. Additional information on some intermediate points of a chain
are stored in the pre-computed tables, besides the starting points and ending
points. During the online phase the attacker regenerates the pre-computed chain
only when a match of both the ending point and the checkpoints is found. Using
the technique, the cost of false alarms is reduced with a minute amount of
memory. In [4] Avoine et al. presented an analysis of the effects of checkpoints
in perfect rainbow tables when the table contains the MAXIMUM number of
chains. And they did not clearly figure out the way to obtain optimal positions
of multiple checkpoints in these tables. In 2010, Jin Hong et al. established a
theoretical framework of analyzing false alarms [8] and gave a fair comparison of
existing tradeoff algorithms [10]. Related works include the analysis of parallel
distinguished point tradeoff [9], non-perfect table fuzzy rainbow tradeoff [11],
perfect rainbow tradeoff [13] etc.. Analysis of one checkpoint for a single non-
perfect rainbow table was done also in [8]. Analysis of multiple checkpoints for
a non-perfect rainbow table was performed in [12].

In this paper we revisit the analysis of multiple checkpoints in rainbow trade-
off. For non-perfect rainbow tradeoff, when computing the expected decreasing
number of false alarms at the k-th iteration, [12] used the approximation of
z0 ≈ m(1 + k) and zu ≈ m(1 + k − cu). They applied the same reasoning
approach as [8] to analyze false alarm costs, by simply ignoring collisions and
treating the pre-computed chains as independent chains. However this might not
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be obvious1. We adopt a natural approach to compute the expected chains to
be regenerated, with random selection of points at the k-th iteration. This leads
us to identical results but explains the real nature of false alarms. For perfect
rainbow tradeoff, considering that in most cases the perfect table has not the
maximum number of chains due to the limit of pre-computation, we give the
first way to find optimal positions of multiple checkpoints, even when the table
is not maximum. All our results are verified through meticulous experiments.

The rest of the paper is organized as follows. We first introduce the theo-
retical framework of pre-image under function iteration and fix some notations
in Section 2. In Section 3, we present our work on checkpoints for non-perfect
rainbow tradeoff. In Section 4, we present our work on checkpoints for perfect
rainbow tradeoff. In Section 5, we conclude the paper.

2 Theoretical Background

In this section we give some definitions that are used in the remainder of the
paper.

2.1 Time Memory Tradeoff Attack

Let F : N → N be the one-way function to be inverted. In an off-line phase,
we build m Hellman chains of length t with the form demonstrated in Fig. 1.
A nice property of a chain is that we do not need to store all the elements in
it. By knowing the starting point, we can recalculate the successive elements
in the chain. So we just store the pairs of starting points and ending points
{(SPj , EPj)}mj=1 in one table. Suppose l tables are constructed. A different re-
duction function ri is used in the i-th table, and we denote ri(F (x)) by Fi(x).
In the online phase, the goal is to find the unknown key by making use of the
pre-computed tables. The attacker is given y0 = F (x0) and has to find x0. To
search for x0 in the i-th table, recursively he applies Fi to ri(y0) and check
if some Yk = (Fi)

k(x0) appears as an ending point in the table. Whenever
a match Yk = EPj is found, he regenerates the corresponding pre-computed
chain by computing x = Xj,t−k+1 = (Fi)

t−k(SPj). There is a large chance that
(Fi)(x) = Y1, i.e. F (x) = F (x0).

Rainbow table uses a different reduction function for each column of a table.
A rainbow chain is of the form

SPj = Xj,1
F−→ Yj,1

r1−→ Xj,2
F−→ Yj,2

r2−→ · · · F−→ Yj,t
rt−→ EPj ,

and two different chains can merge only if they have the same key at the same
position of the chain.

Checkpoint is a technique for resolving false alarms (false alarms occur if an
online chain merges with pre-computed chains) without regenerating the chain,

1 Note that the table becomes a perfect table if we treat the pre-computed chains as
independent. And a perfect table is meant to cause less false alarms than a non-
perfect table.
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SP1 = X1,1
F−→ Y1,1

r−→ X1,2
F−→ Y1,2

r−→ · · · F−→ Y1,t
r−→ EP1

...
...

SPj = Xj,1
F−→ Yj,1

r−→ Xj,2
F−→ Yj,2

r−→ · · · F−→ Yj,t
r−→ EPj

...
...

SPm = Xm,1
F−→ Ym,1

r−→ Xm,2
F−→ Ym,2

r−→ · · · F−→ Ym,t
r−→ EPm

Fig. 1. Structure of a Hellman table

applicable to both Hellman and rainbow tradeoffs. Besides the starting points
and ending points, additional information on some intermediate points are also
stored. During the online phase the attacker regenerates the pre-computed chain
only when a match of both the ending point and the checkpoints is found. Sup-
pose a 1-bit information bj about the intermediate point Xj,t−c is extracted by
a function G, i.e. bj = G(Xj,t−c). During the online phase at the k-th iteration
if an alarm is encountered and k ≥ c, then we have

Pr{bj = G(Yk−c)|Xj,t−c �= Yk−c} ≈ 1

2
.

Hence the comparison of checkpoint information can be used to filter out false
alarms without regenerating the pre-computed chain.

2.2 Pre-image under Function Iteration

In this subsection we present previous results concerning the size of a pre-image
set under an iteration of functions. The framework was established in [8] to
analyze the cost of false alarms in Hellman tradeoff and rainbow tradeoff.

We consider a random one-way function F : N → N , where N is a set of size
N . Note that in Hellman tradeoff and rainbow tradeoff, the one-way function
F is followed by a reduction function. Considering F as a random function, the
following results are applicable to both Hellman tradeoff and rainbow tradeoff.
We denote the k-times iteration of F by F k = F ◦ · · · ◦F . It is well known that if
m0 distinct random inputs are subject to F k, the expected image size denoted
by mk can be approximated by

mk ≈ N

N/m0 + k/2
. (1)

Definition 1. An i-node with respect to a mapping is an element of the range
space with exactly i-many pre-images. For each non-negative integers i and k,
let

Rk,i(F ) = {y ∈ N|y is an i-node under F k},
Dk,i(F ) = {x ∈ N|F k(x) ∈ Rk,i(F )}
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denote the set of i-nodes and pre-images of i-nodes, associated to the mapping
F k. An element of Rk,i(F ) will be referred to as an (F k, i)-node and the proba-
bility of a random point from the range space N to be an (F k, i)-node is

pk,i =
|Rk,i|
N

.

For each non-negative integer k, fix a notation

Pk(x) =

∞∑

i=0

pk,ix
i,

for the formal power series relating to (Fk, i)-node ratios.

A closed form approximation for function Pk(x) is given in [8].

Theorem 1.

Pk(x) = 1− 2(1− x)

2 + k(1 − x)
.

The number of points that are F k-equivalent to a set of points is formulated
by the following theorem, given the image space size. The theorem is frequently
used by our later analysis and will not be explicitly specified.

Theorem 2. Let D0 ⊂ N be a set of randomly chosen points. If the number of
distinct elements in Dt = F t(D0) is mt, then the pre-image of Dt under F k is
expected to be of size

mt(1 + k)(1 − mtk

4N
).

3 Checkpoints for Non-perfect Rainbow Tradeoff

In this section, we analyze the expected number of chains to be regenerated
due to false alarms and the expected decreasing number of chain regenerations
by checkpoints in a single non-perfect rainbow table. Note that if an online
chain matches a common ending point of several pre-computed chains, then
all these chains will have to be regenerated for false alarm verification. In [12]
and [8], they compute the expected number of false alarms by simply ignoring
the collisions in pre-computed chains and treating the pre-computed chains as
independent chains. However the reasoning might not be obvious. We adopt a
natural approach to compute the expected number of chains to be regenerated at
the k-th iteration. This leads us to identical results but explains the real nature
of false alarms.

We consider a non-perfect rainbow table constructed from m0 = m distinct
starting points RT0 ⊂ N . Denote the chain length by t. For 1 ≤ k ≤ t, denote
the number of distinct elements in RTk = F k(RT0) by mk, then we have mk ≈

N
N/m+k/2 . We first study the expected number of pre-images of F k(x) under F t

that belongs to RT0, with a random selection of x ∈ N at the k-th iteration.
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0 t-k t

x

Definition 2. If we randomly choose a point x ∈ N and assume F k(x) ∈ RTt,
then denote the number of pre-images of F k(x) under F k that belongs to RTt−k

by C(k, k), and denote the number of pre-images of F k(x) under F t that belongs
to RT0 by C(k, t).
Proposition 1.

pk,i =

⎧
⎪⎪⎨

⎪⎪⎩

k

k + 2
i = 0

4

k(k + 2)
· (1− 2

k + 2
)i i ≥ 1

.

Proof. Recall from Theorem 1 that

Pk(x) =
∞∑

i=0

pk,ix
i = 1− 2(1− x)

2 + k(1− x)
.

For i ≥ 1,

P(i)
k (x) = 4 · i! · ki−1 · (2 + k(1− x))−(i+1).

According to the Maclaurin Series Expansion, we have

pk,i =
P(i)
k (0)

i!
=

4

k(k + 2)
· (1− 2

k + 2
)i,

if i ≥ 1. When i = 0, pk,i = Pk(0) =
k

k+2 . 
�

Proposition 2.

C(k, k) = (mt−k·k
N + 2)2

mt−k·k
N + 4

, C(k, t) = (mt−k·k
N + 2)2

mt−k·k
N + 4

· m

mt−k
.

Proof. Randomly choose a point x ∈ N , denote by random variable A the num-
ber of pre-images of F k(x) under F k. Since pk,i is the proportion of i-nodes in the
domain space and every i-node has i pre-images under F k, then the probability
of a random x to produce an (F k, i)-node is

Pr{A = i} = Pr{F k(x) is an i-node under F k} = i · pk,i.
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Denote by random variable B the number of pre-images of F k(x) under F k that
belongs to RTt−k. Then for j ≤ i, we have

Pr{B = j|A = i} = Cj
i (1−

mt−k

N
)i−j(

mt−k

N
)j ,

P r{B �= 0|A = i} = 1− (1− mt−k

N
)i.

By the law of total probability, for j ≥ 1 we have

Pr{B = j} =

N∑

i=j

Pr{B = j|A = i} · Pr{A = i}

=
N∑

i=j

Cj
i (1−

mt−k

N
)i−j(

mt−k

N
)j · 4

k(k + 2)
· i(1− 2

k + 2
)i,

P r{B �= 0} =

N∑

i=1

Pr{B �= 0|A = i} · Pr{A = i}

=

N∑

i=1

[1− (1− mt−k

N
)i] · 4

k(k + 2)
· i(1− 2

k + 2
)i.

Thus

C(k, k) =
m∑

j=1

j · Pr{B = j|B �= 0}

=

m∑

j=1

j ·∑N
i=j C

j
i (1 − mt−k

N )i−j(mt−k

N )j · 4
k(k+2) · i(1− 2

k+2 )
i

∑N
i=1[1− (1 − mt−k

N )i] · 4
k(k+2) · i(1− 2

k+2 )
i

=

∑m
j=1 j ·

∑N
i=j C

j
i (1− mt−k

N )i−j(mt−k

N )j · 4
k(k+2) · i(1− 2

k+2 )
i

∑N
i=1[1− (1− mt−k

N )i] · 4
k(k+2) · i(1− 2

k+2 )
i

=

∑N
i=1

∑i
j=1 j · Cj

i (1 − mt−k

N )i−j(
mt−k

N )j · 4
k(k+2) · i(1− 2

k+2 )
i

∑N
i=1[1− (1− mt−k

N )i] · 4
k(k+2) · i(1− 2

k+2 )
i

=

∑N
i=1 i · mt−k

N · 4
k(k+2) · i(1− 2

k+2 )
i

∑N
i=1[1− (1− mt−k

N )i] · 4
k(k+2) · i(1− 2

k+2 )
i

≈
mt−k

N · t3 ∫∞
0 x2e−

2t
k+2x dx

t2
∫∞
0

x(1 − e−
mt−kt

N x) · e− 2t
k+2x dx

≈ (
mt−k·k

N + 2)2

mt−k·k
N + 4

.
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Given a random x ∈ RTt−k, the expected number of pre-images of x under
F t−k that belongs to RT0 is m0

mt−k
, then we have

C(k, t) = C(k, k) · m0

mt−k
=

(
mt−k·k

N + 2)2

mt−k·k
N + 4

· m

mt−k
.


�
Non-perfect Rainbow Tradeoff without Checkpoints. For a non-perfect
table without checkpoints, at the k-th iteration during the online phase, the
probability of an alarm is Pr{F k(x) ∈ RTt} = 1

N {mt(1 + k)(1 − mtk
4N )}. The

expected number of chains to be regenerated for every alarm is C(k, t). Then
the expected number of chains to be regenerated at the k-th iteration is

C(k, t) · 1

N
{mt(1 + k)(1 − mtk

4N
)} ≈ m(1 + k)

N
. (2)

Thus the expected number of chains to be regenerated due to false alarms at the
k-th iteration is 1

N (m(1 + k)−m). It is exactly what the authors claimed in [8].

Non-perfect Rainbow Tradeoff with n Checkpoints. Let c1, c2, · · · , cn
(c1 < c2 < · · · < cn) be the positions of n 1-bit checkpoints. That is the n
checkpoints are located at the (t − cj)-th columns for j = 1, · · · , n. Let c0 = 0
and cn+1 = t.

We compute the expected number of chains to be regenerated at the k-th
iteration such that cj < k ≤ cj+1 (j = 1, · · · , n). Given a random x ∈ N , we
have

Pr{F k−cj (x) ∈ RTt−cj} =
mt−cj (1 + k − cj)

N
[1− mt−cj (k − cj)

4N
].

In such a case, an alarm always occurs and the expected number of chains to be
regenerated is

Pr{F k−cj (x) ∈ RTt−cj} · C(k − cj , t− cj) =
m(1 + k − cj)

N
.

For 0 ≤ u ≤ j − 1,

Pr{F k−cu(x) ∈ RTt−cu} =
mt−cu(1 + k − cu)

N
[1− mt−cu(k − cu)

4N
].

Then the expected number of pre-computed chains that merge with an online
chain before the (t− cu)-th column is

Pr{F k−cu(x) ∈ RTt−cu} · C(k − cu, t− cu) =
m(1 + k − cu)

N
.

Thus the expected number of pre-computed chains that merge with an online
chain between the (t− cu+1)-th column and the (t− cu)-th column is

m(1 + k − cu)

N
− m(1 + k − cu+1)

N
.
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In such a case, an alarm occurs with probability 1/2j−u. Therefore the expected
number of chains to be regenerated at the k-th iteration such that cj < k ≤ cj+1

(j = 1, · · · , n) is

m(1 + k − cj)

N
+

j−1∑

u=0

1

2j−u
[
m(1 + k − cu)

N
− m(1 + k − cu+1)

N
].

Combined with Equation (2), we get the expected decreasing number of chains
to be regenerated due to checkpoints. This simplifies to the same results as
in [12].

Simulation Results. Our one-way function is built from a reduced version
of MD5 hash function with N = 224. We built our pre-computed table from
m = 216 different starting point and the chain length is t = 300. Table 1 shows
that Proposition 2 agrees well with the experiment.

Table 1. Verification of Proposition 2

k
C(k, t)

Theory Experiment

50 1.6363 1.6333

100 1.6900 1.6916

150 1.7473 1.7230

200 1.8087 1.8199

250 1.8745 1.8661

300 1.9453 1.9507

4 Checkpoints for Perfect Rainbow Tradeoff

Perfect rainbow table is constructed by eliminating merged chains and thus re-
duces the cost of false alarms. Most rainbow tables available online are perfected
before they are released to the public. It requires much more pre-computation
for the generation of a perfect table, because chains with duplicate endpoints
are removed.

We consider a perfect rainbow created with m0 starting points and denote the
chain length by t. Then we expect to collect m = N

N/m0+t/2 non-merging chains.

Let r = m0t
N be the pre-computation coefficient. When a perfect table is created

with m0 = N starting point, we have m = N
N/m0+t/2 = 2N

t+2 , and the table is

referred to as a maximal perfect rainbow table. Let r̄ = mt
N , then r̄ ≤ 2t

t+2 ≈ 2.
Table 2 shows that building a maximal perfect rainbow table (with r̄ close to 2)
is very costly and is seldom used in practice. An analysis of multiple checkpoints
in maximal perfect tables was given in [4]. In this section, we give the first way
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Table 2. Relations in a perfect rainbow table

r r̄ success rate r r̄ success rate

1.0607 0.6931 50% 1.6911 0.9163 60%

3.0251 1.2040 70% 4.5178 1.3863 75%

8.2407 1.6094 80% 18.4363 1.8971 85%

to find optimal positions of multiple checkpoints even when the perfect table is
not maximum.

Suppose n checkpoints are located at the (t− cj)-th columns for j = 1, · · · , n
(c1 < c2 < · · · < cn). Let c0 = 0 and cn+1 = t. In a perfect table for every false
alarm only one chain need to be regenerated, so we only need to compute the
probability of false alarms at the k-th iteration, for cj < k ≤ cj+1 (j = 1, · · · , n).
Given a random x ∈ N , we have

Pr{F k−cj (x) ∈ RTt−cj} =
m(1 + k − cj)

N
[1− m(k − cj)

4N
].

In such a case, an alarm always occurs. For 0 ≤ u ≤ j − 1,

Pr{F k−cu(x) ∈ RTt−cu} =
m(1 + k − cu)

N
[1− m(k − cu)

4N
].

Thus the probability of a merge of the online chain with pre-computed chain
between the (t− cu+1)-th column and the (t− cu)-th column is

m(1 + k − cu)

N
[1− m(k − cu)

4N
]− m(1 + k − cu+1)

N
[1− m(k − cu+1)

4N
].

In such a case, an alarm occurs with probability 1/2j−u. Also the expected
number of alarms at the k-th iteration without checkpoints is

Pr{F k(x) ∈ RTt} =
m(1 + k)

N
(1− mk

4N
).

Therefore the expected decreasing number of false alarms at the k-th iteration
such that cj < k ≤ cj+1 (j = 1, · · · , n) is

D(k, j) =
m(1 + k)

N
(1− mk

4N
)−

{
m(1 + k − cj)

N
[1− m(k − cj)

4N
]

+

j−1∑
u=0

1

2j−u

(
m(1 + k − cu)

N
[1− m(k − cu)

4N
]− m(1 + k − cu+1)

N
[1− m(k − cu+1)

4N
]

)}

=
1

N
{(1− 1

2j
) ·m(1 + k)(1− mk

4N
)−

j−1∑
u=0

1

2j−u
m(1 + k − cu+1)(1− m(k − cu+1)

4N
)}.

The k-th iteration of the online phase is executed with probability (1 − m
N )k

and every verification of a false alarm requires (t− k + 1) iterations of F . This
leads us to the following theorem.
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Theorem 3. The decreasing number of invocations of F due to n checkpoints
(c1 < c2 < · · · < cn) is

S =

n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1) ·D(k, j) · (1− m

N
)k}. (3)

Simplification. We rewrite Equation (3) to the sum of 4 parts.

S.1 =
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{(1− 1

2j
) ·m(1 + k)(1− mk

4N
) · (1− m

N
)k},

S.2 = −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
·
j−1∑
u=0

1

2j−u
m(1 + k)(1− mk

4N
) · (1− m

N
)k},

S.3 = −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{m · (m(2k + 1)

4N
− 1) ·

j−1∑
u=0

cu+1

2j−u
· (1− m

N
)k}},

S.4 =

n∑
j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{m

2

4N
·
j−1∑
u=0

c2u+1

2j−u
· (1− m

N
)k}}.

Computation of S.2:

S.2 = −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
·
j−1∑
u=0

1

2j−u
m(1 + k)(1− mk

4N
) · (1− m

N
)k}

= −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
· (

j−1∑
u=0

1

2j−u
) ·m(1 + k)(1− mk

4N
) · (1− m

N
)k}

= −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
· (1− 1

2j
) ·m(1 + k)(1− mk

4N
) · (1− m

N
)k}

= −S.1.

Computation of S.3:

S.3 = −
n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{m · (m(2k + 1)

4N
− 1) ·

j−1∑
u=0

cu+1

2j−u
· (1− m

N
)k}}

≈ −mt2

N
·

n∑
j=1

{[
∑

cj<k≤cj+1

(1− k

t
) · (mt

2N
· k
t
− 1)e−

mt
N

· k
t ] · 1

t
·
j−1∑
u=0

cu+1

2j−u
}

≈ −mt2

N

n∑
j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtx
N (

mt

2N
· x− 1) dx ·

j−1∑
u=0

cu+1

2j−u
}.
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Computation of S.4:

S.4 =

n∑

j=1

{
∑

cj<k≤cj+1

(t− k + 1)
1

N
{m

2

4N
·
j−1∑

u=0

c2u+1

2j−u
· (1 − m

N
)k}}

=
m2t2

4N2
·

n∑

j=1

{[
∑

cj<k≤cj+1

(1− k

t
)e−

mt
N · kt ] · 1

t
·
j−1∑

u=0

c2u+1

2j−u
}

=
m2t2

4N2
·

n∑

j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtx
N dx ·

j−1∑

u=0

c2u+1

2j−u
}.

Thus Equation (3) simplifies to

S = −mt2

N

n∑
j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtx
N (

mt

2N
· x− 1) dx ·

j−1∑
u=0

cu+1

2j−u
}

+
m2t2

4N2
·

n∑
j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtx
N dx ·

j−1∑
u=0

c2u+1

2j−u
}.

Simulation Results. We experiment with N = 224, m = 65536, t = 300.
Table 3 shows the experiment results with 3 checkpoints, located at the 177-th,
218-th and 251-th columns. We used Maple to obtain these optimal positions.
The data are averaged over 10000 random inversion targets. The success proba-
bility (69.5%) is also close to the theoretical expectation (69.02%).

Table 3. Experiment for 3 checkpoints

without checkpoint with 3 checkpoints
Theory Experiment Theory Experiment

#total operations 30255 30154 26687 26540

#operation for FA 8812 8833 5265 5219

#false alarms 69.4235 69.4529 42.8058 42.0807

5 Conclusion

Checkpoint is a useful technique to quickly rule out false alarms with a little
additional memory. While the positions of checkpoints significantly affect the
tradeoff efficiency, one of the key issue is to locate the optimal setting of multiple
checkpoints. In this paper, we revisited the analysis of multiple checkpoints in
rainbow tradeoff. For non-perfect table we gave a new sight to the computation of
the expected decreasing number of false alarms at the k-th iteration. This helps
to better understand the real nature of false alarms. For perfect rainbow table,
we obtained the first full analysis applicable even if the perfect rainbow table is
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not maximum. Considering in practice the table available are mostly perfect and
not maximum, this part of our work is of value to the ongoing research projects,
e.g. the RainbowCrack Project. Through experiment we saw a drastic decrease
of cost due to false alarms, with only little additional memory.
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A When Multiple Tables Are Used

It is easy to translate the results to the case when l tables are processed in
parallel. We just give the results and omit the proof.

Corollary 1. For non-perfect rainbow tables with the parameters m, t, and l,
where l is number of tables. Given n checkpoints c1 < c2 < · · · < cn, the expected
number of f invocations that can be removed through checkpoints is

l
∑

j=1

n

⎧
⎨

⎩
∑

cj<k≤cj+1

(t− k + 1) · m
N

j−1∑

u=0

( cu+1

2j−u

)
·
∏

(1 − mt−i

N
)l

⎫
⎬

⎭ .

Corollary 2. For perfect rainbow tables with the parameters m, t, and l, where
l is number of tables. Given n checkpoints c1 < c2 < · · · < cn, the expected
number of f invocations that can be removed through checkpoints is

−mt2l

N

n∑

j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtlx
N (

mt

2N
· x− 1) dx ·

j−1∑

u=0

cu+1

2j−u
}

+
m2t2l

4N2
·

n∑

j=1

{
∫ cj+1/t

cj/t

(1− x)e−
mtlx
N dx ·

j−1∑

u=0

c2u+1

2j−u
}.

B Maple Code for Optimal Checkpoints in Perfect
Rainbow Tradeoff

> with(Optimization);
> N := 2^24;
> m := 65536;
> t := 300;
> l := 3;
> n := 4;
> c := array(1 .. n);
> S := {}:
> for i from 1 to n-1 do
> S := S union {c[i] <= c[i+1]}
> end do:
> S := S union {c[n] <= t}:
> eval(
> -m^2*l*t^3/N/N/2*sum(int((1-x)*x*exp(-m*t*l/N*x),
> x=c[j]/t..c[j+1]/t)*sum(c[u+1]*2^(u-j),u=0..j-1),
> j=1..n-1)+m*l*t^2/N*sum(int((1-x)*exp(-m*t*l/N*x),
> x=c[j]/t..c[j+1]/t)*sum(c[u+1]*2^(u-j),u=0..j-1),
> j=1..n-1)+m^2*t^2*l/4/N/N*sum(int((1-x)*exp(-m*t*l/N*x),
> x=c[j]/t..c[j+1]/t)*sum((c[u+1])^2*2^(u-j),u=0..j-1),
> j=1..n-1)):
> Maximize(%,S, assume=nonnegative);
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