Type-Based Analysis of Protected Storage
in the TPM

Jianxiong Shao, Dengguo Feng, and Yu Qin

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences
{shaojianxiong, feng,qin_yu}@tca.iscas.ac.cn

Abstract. The Trusted Platform Module (TPM) is designed to enable
trustworthy computation and communication over open networks. The
TPM provides a way to store cryptographic keys and other sensitive val-
ues in its shielded memory and act as Root of Trust for Storage (RTS).
The TPM interacts with applications via a predefined set of commands
(an API). In this paper, we give an abstraction model for the TPM
2.0 specification concentrating on Protected Storage part. With identi-
fication and formalization of their secrecy properties, we devise a type
system with asymmetric cryptographic primitives to statically enforce
and prove their security.

Keywords: TPM, Trusted computing, Type system, API analysis.

1 Introduction

The Trusted Platform Module (TPM) is a system component designed to estab-
lish trust in a platform by providing protected storage, robust platform integrity
measurement, secure platform attestation and other security mechanisms. The
TPM specification is an industry standard [12] and an ISO/TEC standard [11]
coordinated by the Trusted Computing Group. The TPM is separate from the
system on which it reports (the host system) and the only interaction is through
the interface (API) predefined in its specification.

In the last few years, several papers have appeared to indicate vulnerabili-
ties in the TPM API designs. These attacks highlight the importance of formal
analysis of the API commands specifications. A number of efforts have analyzed
secrecy and authentication properties of protocols using model checkers, theorem
provers, and other tools. Backes et al. used ProVerif to obtain the first mech-
anized analysis of DAA protocol[2]. In [6], a TPM impersonation attack was
discovered when sharing authdata between users are allowed. Lin described an
analysis of various fragments of the TPM API using Otter and Alloy[10]. In [9],
an analysis of the TPM API was described by using finite state automata. De-
laune et al. used the tool ProVerif to analyze the API commands and rediscover
some known attacks and some new variations on them[7].

Most of the established work on formal analysis of TPM API commands and
protocols focus on original TPM 1.2 specification, whose latest revision [12] is in

S. Qing et al. (Eds.): ICICS 2013, LNCS 8233, pp. 135-{[50] 2013.
© Springer International Publishing Switzerland 2013

136 J. Shao, D. Feng, and Y. Qin

2006. However, Trusted Computing Group (TCG) has published the TPM 2.0
specification on their website in 2012. The new version of the TPM specification
has several changes from previous versions especially on the protected storage
part. In this paper, we conduct a formal analysis of the protected storage part
of API commands in the TPM 2.0 specification w.r.t secrecy property. A formal
security proof of secrecy, in the presence of a Dolev-Yao attacker who have
complete control over all the existent sessions, is first proposed based on a core
type system statically enforcing API security.

Our present work extends the line of research by exploring a language-based,
static analysis technique that allows for proving the security of key management
API commands. In [4], Centenaro et al. devise a language to specify PKCS#11
key management APIs at a fine granularity. We utilize their abstraction of key
templates in our model but devise a new type system to check information flow
properties for cryptographic operations in security APIs. Moreover, we devise a
new set of assignment commands to specify the internal functions according to
Trusted Platform Module Library (TPML) 2.0, Part 4: Supporting Routines.

For the core type system, although Centenaro et al. considered the integrity
(they call it trust) for keys, the key with high integrity in their model must
be with high confidentiality. It cannot be used to formalize asymmetric cryp-
tographic primitives since the public key should be with high integrity but low
confidentiality. In our model, we devise a new type system with more specific
types for asymmetric cryptographic primitives. Actually in this sense our result
is more in the line of [I3], in which Keighren et al. proposed a type system based
on the principles of information flow to investigate a much stronger property
noninterference for a general model. Yet they gave no language to express the
internal commands and did not consider the integrity level. We apply the types
of keys from [8III4], in which the types of the payload are determined by the
types of the key. We also consider the integrity level, which is different from [13].

The paper is organized as follows. In section 2 we give a brief introduction to
the protected storage part of the TPM 2.0 specification and describe the simple
language for modeling TPM commands. In section 3 we introduce the core type
system statically enforcing API security. In section 4 we apply the type system
to our model of the TPM API commands, which we prove to be secure. We
conclude in section 5.

2 Overview of the TPM Protected Storage

Trusted Platform Module (TPM) is defined as the Root of Trust for Storage
(RTS) by TCG, since the TPM can be trusted to prevent inappropriate access
to its memory, which we call Shielded Locations. TPM protections are based
on the concept of Protected Capabilities and Protected Objects. A Protected
Capability is an operation that must be performed correctly for a TPM to be
trusted. A Protected Object is data (including keys) that can be accessed to
only by using Protected Capabilities. Protected Objects in the TPM reside in
Shielded Locations. The size of Shielded Locations may be limited. The effective

Type-Based Analysis of Protected Storage in the TPM 137

memory of the TPM is expanded by storing Protected Objects outside of the
TPM memory with cryptographic protections when they are not being used and
reloading if necessary.

2.1 Protected Storage Hierarchy

In the TPM 2.0 specification, the TPM Protected Objects are arranged in a tree
structure, which is called Protected Storage Hierarchy. A hierarchy is constructed
with storage keys as the connectors to which other key objects or connectors may
be attached. A Storage Key, acting as a parent, protects its children when those
objects are stored out of the TPM. Storage keys should be used in the process of
creation, loading, duplication, unsealing, and identity activation. However, such
keys cannot be used in the cryptographic support functions.

When creating a new object on the device, two commands are needed. In
the command TPM2 Create(), a loaded storage key should be provided as the
parent and a loadable creation blob protected by it is created. The keys used in
this protection are derived from a seed in the sensitive area of the parent object.
Then the command TPM2 Load () may load the creation blob into the TPM with
a handle returned. The new key can be used by reference to its handle.

We focus on the process of duplication, which needs three commands. Dupli-
cation allows an object to be a child of an additional parent key. In the command
TPM2 Duplicate(), a loaded object for duplication and its new parent handle
should be provided and a duplication blob is returned. The duplication blob is
protected in a similar way to the creation blob except that the seed is random
and protected by new parent’s asymmetric methods to guarantee that only the
new parent may load it. In this way, the storage key must be asymmetric. In
the command TPM2 Import (), the duplication blob is transformed to a loadable
blob, which can be loaded in TPM2 Load ().

An object might be connected to another hierarchy by two ways. One is to
duplicate it directly by the process above. The other is to duplicate one of its an-
cestors and it can be loaded by its creation blob. The hierarchy attributes of an
object, FixzedParent and FizedTPM, indicate how the object can be connected
to another hierarchy. An object with FizedParent SET means it cannot be du-
plicated directly and with FizedTPM SET means all of its ancestors have Fized-
Parent SET. Thus an object with FizedParent CLEAR must have Fixed TPM
CLEAR. The attribute FizedTPM of an object depends on FizedTPM in its
parent and FizedParent in itself. The hierarchy attributes setting matrix is in
Table [

The consistency of the hierarchy settings is checked by internal function
PublicAttributesValidation() in object templates (when creating) and in
public areas for loaded objects (when loading) or duplicated objects (when im-
porting). The root of a hierarchy is denoted as the Primary Object which is
protected by keys derived from a Primary Seed and its attributes. The Primary
Object can be seen as a child object of a virtual object with FizedTPM SET.

138 J. Shao, D. Feng, and Y. Qin

Table 1. Allowed Hierarchy Settings
Parent’s FizedTPM Object’s FizedParent Object’s FizedTPM

CLEAR CLEAR CLEAR
CLEAR SET CLEAR
SET CLEAR CLEAR
SET SET SET

2.2 Object Structure Elements

According to the TPM 2.0 specification, each object has two components: public
area and sensitive area. The former contains the fields objectAttributes and
type. For an asymmetric key object, the public key should also be contained in
the public area. The sensitive area includes an authorization value (authValue),
a secret value used to derive keys for protection of its child (seedValue), and
the private key (sensitive) dependant on the type of the object.

For the public area, the attributes of the object (objectAttributes) are in 5
classes: hierarchy, usage, authorization, creation, and persistence. The hierarchy
attributes have been discussed above.

The usage of an object is determined by three attributes: restricted, sign, and
decrypt. An object with only decrypt SET may use the key in its sensitive area
to decrypt data blobs that have been encrypted by that key (for symmetric key)
or the public portion of the key (for asymmetric key). Thus we call it Decryption
Key Object. An object with both decrypt and restricted SET is used to protect
the other objects when they are created or duplicated. A restricted decryption
key is often referred to as a Storage Key Object. An object with sign SET may
perform signing operation and with both sign and restricted SET may only sign
a digest produced by the TPM. This two kinds of objects corresponds to the
secure platform attestation. On the viewpoint of the protected storage, they
act the same way as the Decryption Key Objects and could not be used as the
Storage Key Objects. It is the same case for a legacy key with both sign and
decrypt SET. It is not allowed for an object with all the three attributes SET.
Thus we divide all the objects into two groups: Decryption Key Object and
Storage Key Object which correspond to the leaf node and the branch node.

For the sensitive area, seedValue is required for Storage Key Objects. It is
an obfuscation value for Decryption Key Object.

3 Modeling the TPM APIs

3.1 A Language for Modeling TPM Commands

In this section, we extend the work of [4] to get an imperative language which
is more suitable to specify the protected storage part of TPM 2.0 APIs.

Type-Based Analysis of Protected Storage in the TPM 139

Values and Expressions. Let C and F respectively denote the set of atomic
constant and fresh values with C (| F =). The former specifies any public data,
including the templates of the key objects and the usage of the key derivation
function (kdf). The latter is used to model the generation of new fresh values such
as the sensitive values and the seed values of the key objects. We introduce the
extraction operator f < F in [4] to represent the extraction of the first 'unused’
value f from F. It is obvious that the extracted values are always different. We
define the values in Table 2l For the sake of readability, we let v denote a tuple
(v1,- -+, vk) of values.

Table 2. Definition of Values and Expressions

v,v',h = values e = expressions

val atomic fresh value T,y variables

tmp template kdf (usg, z) key diversification
usg {STORAGE,INTEGRITY} ek(x) encryption key
kdf (usg,v) key diversification senc(x,y) sym encryption
senc(v’,0) sym encryption aenc(z,y) asym encryption
ek(v) encryption key hmac(z,§) hmac computation

aenc(v’,¥) asym encryption
hmac(v',¥) hmac computation

We use template to describe the properties of the key objects. Denoted by tmp,
a template is represented as a set of attributes. Set an attribute for a key object
is to include such an attribute in its template set. Formally, a template tmp
is a subset of {W, E, A, S, N, F}. First, two attributes are used to identify the
groups of key objects: W (wrap) for Storage Key Object; E (encryption) for
Decryption Key Object. Second, we use A (Asymmetric) and S (Symmetric)
to specify the field type in the public area of the key object. Third, for the
hierarchy attributes Fized TPM and FizedParent, we use N (Non-FizedParent)
to denote FizedParent CLEAR and F to denote FizedTPM SET. We do not
specify the other attributes since they are irrelevant to the protected storage
hierarchy. As in section 2, (W, E), (A, S5), (N, F), and (W, S) are on the list of
conflicting attribute pairs. Actually, the allowable combination of the attributes
can only be of the form {W, A, N/F}, {E,A,N/F}, and {E,S, N/F} where
N/F means N, F or neither. We have 3 kinds of key objects which is denoted
by mode: the Storage Key Object, the Symmetric Decryption Key Object, and
the Asymmetric Decryption Key Object. We abstract such restrictions and focus
on a particular set of all allowable templates of keys denoted by g, which we call
the security policy. In our model, p contains the above 9 possible templates.

Constant value usg € {STORAGE,INTEGRITY} is a label to specify
the usage of the key derived from the Seed stored in a Storage Key Object.
STORAGE means a symmetric key and INTEGRITY means an HMAC key.
We use kdf (usg,v) to denote a new key obtained via key derivation function
from label usg and a seed value v. senc(v’,?) performs symmetric encryption

140 J. Shao, D. Feng, and Y. Qin

on a tuple of values 0. ek(v) denotes the public encryption key value corre-
sponding to the private key v and can be published. Notice that we model
a cryptographic scheme where the encryption key can be recovered from the
corresponding decryption key, which means decryption keys should be seen as
key-pairs themselves. aenc(v’, 0) and hmac(v', 0) denote, respectively, the asym-
metric encryption and the HMAC computation of the tuple © with the key v'.

As in [, we use a set of expressions to manipulate the above values.
Table 2] gives the formalization of expressions which are similar to those of val-
ues. Expressions are based on a set of variables V. We introduce the memory
environment M : 2 — v in [4] to denote the evaluation of variables. For simplic-
ity, we let & denote a tuple (x1, - -, x,) of variables and M(Z) = ¥ the evaluation
M(z1) = vy, -+, M(z,) = v,. Expression e in an environment M evaluating to
v is denoted by e [M v. It is trivial to derive the semantics of evaluation for the
expressions in Table 2

Handle-Map. In the TPM 2.0 specification, objects are referenced in the com-
mands via handles. We use a key handle-map H : h — (tmp, vy, vx) from a subset
of atomic fresh values F to tuples of templates, seed values and key values. We
do not consider the Authentication mechanisms in the TPM. This corresponds
to a worst-case scenario in which attackers may gain access to all keys available
in the TPM without knowing their values. Thus, for the sensitive area, we only
need to model the field seedValue by vs; and sensitive by wvi. The type of
sensitive values vy and v is dependant on the template tmp.

API Commands and Semantics. We devise a set of internal functions ac-
cording to the supporting routines in Trusted Platform Module Library 2.0 for
object and hierarchy.

An API is specified as a set A = {c1, -+, ¢, } of commands. Each command
contains a binding of values to variables and a sequence of inner execution of
clauses as follows:
cu=AL.p
p u=¢| x := e| return §| p1;p2| (x¢, x5, xk) := checkTemplate (yn, tmp)|

xi := genKey (y;)|zs := genSeed (y¢)|xn := ObjectLoad (ys, Yk, yt)|
(XpAsXina) :=PAV (YpA, Yina)|T = f
f = sdec (ykayc” adec (ykayc” checkHMAC (ykayhmacvgv)'

All of the free variables (variables that have no evaluation) in clauses p appear
in input parameters & = (x1,-- -, 2,). We will only focus on the API commands
in which return ¢ can only occur as the last clause. Intuitively, € denotes the
empty clause; x := e is an evaluation of variable x; p1; p recursively specifies the
sequential execution of clauses. chechTemplate retrieves ks, ky,, and tmp’ of a key
object loaded on the device, given its handle by requiring the template to match
some pattern tmp. genKey and genSeed generate a new key value or seed value,
given its template y;. ObjectLoad loads a new key object with its sensitive values
and an allowable template. PAV checks the hierarchy attributes in the template

Type-Based Analysis of Protected Storage in the TPM 141

ypa of the parent object should be compatible with that in the template ;4
of an input object according to Table [II The other three internal functions f
are cryptography operations provided by the TPM and cannot be used directly
by user applications. sdec and adec respectively specify the symmetric and
asymmetric decryption. The decrypting function fails (ie. is stuck) if the given
key is not the right one. checkHAMC checks whether ypmae = hame(yg, §,) and
if so, ¥, is evaluated to &, or otherwise, it fails. A call to an API command
¢ = MNaxy,---,2k).p, written as ¢(vq, - - -, vg), binds variables x4, - - -, 2, to values
v1,- -+, Vg, executes p and outputs the value given by return g.

For convenience, it is required that all the variables on the left side of the
assignment clauses may appear only once. This does not limit the capability of
our model since the repeated variables can be rewrite to different names.

An API command ¢ working on a configuration contains a memory environ-
ment M and a key handle-map H, which is denoted as (M, H,p). Operation
semantics are expressed as follows.

elnv
(M,H,z:=e)—(MU[z—v],H,e)
H(M(yn))=(vt,vs,vk),tmpCus
(M,H,(z¢,x g,ack) —checkTemplate(yh,tmp)>—>(MU[xt'—>vt,acsb—ws,xkﬁvk],H,.f;')

v F, M (y)Ep vsF,M(ye)Ep
<]VI,H,mk::genKey(yt)) (MU[zp—vg],He)’ (M,H,xs:=genSeed(y¢))—(MU[zs—vs),H,e)
’Uh<—.7:]v[(yt)ep
(M, H,zp:=0bjectLoad(ys,yr,yt))— (MU[zp—vp], HUlvp— (M (yi), M (ys) . M (yx))].€)
Yrdark,ycdamrsenc(k,v yrdnk, ypiMae7Lc(ek k),0)
(M,H,Z:=sdec(yg,yc)) > (MU[E—D],H,e) > (M,H,&:=adec(yg,yc))—~>(MU[E—T],H,e)
M(ypa),M(yina) €@, FEM (ypa)=N/FEM (yina), FEM (ypa)=F¢M (yina)
(M,H,zinaA:=PAV(ypa,Yina)) > {MU[zina>M (yina)],H,e)

Yred v ks Tod M 0 Ynmacl M HMAC (k,0)

(M, H,z:=check HMAC(yx,Ynmac,v))—{(MU[E—7],H,e)

(M. H.pr)—(M' H &) (M,H.pr)— (M’ ,H ')
(M,H,p13p2)—~(M',H' ,p2)’ (M,H,p1;p2)— (M’ ,H’,p';p2)
a:A:Z’.p,(MEU[il—)f)],H,p)—><]VI/,H',7‘etu7‘n e>,e¢M/v

a(®) g mrv

We explain the second rule and the other rules are similar. For the function
checkTemplate, it evaluates y, in M, finds the key referenced by the handle
M(yp), and checks whether tmp C v;. If so, it may store the key object in the
tuple variables (x¢, xs, x), noted MU [z — vy, 25 — vs, 2 — vg]. The last rule
is standard for API calls on a configuration. The API command are executed
and the returned value is given as the output value of the call. Notice that we
cannot observe the memory used internally by the device. The only exchanged
data are input parameters and the returned value. This is the foundation for the
attacker model.

3.2 Attacker Model and API Security

The attacker is formalized in a classic Dolev-Yao style. The knowledge of the
attacker is denoted as a set of values derived from known values V' with his
capability. Let V' be a finite set of values, The knowledge of the attacker (V)
is defined as the least superset of V' such that v,v" € K(V) implies

(1) (v,v") € K(V)

(2) senc(v,v’) € K(V)

142 J. Shao, D. Feng, and Y. Qin

(3) aenc(v,v’) € IC(

(4) if v = senc(v',v"), then v"" € K(V)

(5) if v = aenc(ek(v’),v"”), then v" € K(V)

(6) kdf (v,0") € K(V)

(7) hmac(v,v") € K(V)

API commands can be called by attackers in any sequences and with any
parameters in his knowledge. The returned values will be added to his set of
known values and enlarge his knowledge. Formally, An attacker configuration is
denoted as (H, V) and has a reduction as follows:

ce Ayvy v € K(V),c(v1,~~~,vk)¢H’Hlv
(H, V) —=a(H,VU{v})

The set of initial known values Vj contains all the atomic constant values in C.
For all Asymmetric key value v € F,ek(v"”) € V. The set of initial handle-map
Hj is empty. In our model, —% notes multi-step reductions.

The main property of the Protected Storage Hierarchy required by TPM 2.0
specifications is secrecy. More specifically, the value of private keys loaded on a
TPM should never be revealed outside the secure device, even when exposed to
a compromised host system.

Formally, the sensitive keys available on the TPM should never be known by
the attacker, as well as the seed in a Storage Key. The definition of Secrecy of
API commands follows.

Definition 1 (Secrecy). Let A be an API. A is secure if for all reductions of
attacker configuration (0, V) —% (H, V), we have

Let g be a handle in H such that H(g) = (tmp, vs,v;) and F € tmp. Then,
vs, vk & K(V).

The language in section 2.2 can be used to model the TPM 2.0 API commands
of protected storage part. We give a brief specification on them and conclude
they preserve secrecy in section 4.

4 Type System

4.1 A Core Type System

In this section, we present a type system to statically enforce secrecy in API
commands. At first, we introduce the concept of security level [§], a pair ocor,
to specify the levels of confidentiality and integrity. We consider two levels:
High(H) and Low(L). Intuitively, values with high confidentiality cannot be
read by the attackers while data with high integrity should not be modified by
the attackers.

While it is safe to consider a public value as secret, low integrity cannot be
promoted to high integrity. Otherwise, data from the attackers may erroneously
be considered as coming from a secure device. Therefore, we have the confiden-
tiality and integrity preorders: L Co H and H C; L. We let o¢ and o7 range
over {L, H}, while we let o range over the pairs oco; with ocoy C O'CO'I iff

Type-Based Analysis of Protected Storage in the TPM 143

oc Cco O'IC and o7 Cy O'/I. It gives the standard four-point lattice. Formally, type
syntax T is as follows:

T ::=0|p°|SeedK°[||¢pK° [T,

where
ou=oco;=LLILHHLHH
p ::= Unwrap|Dec|Sym|Any
@ == p|Wrap|Enclhmac.

Each type has an associated security level denoted by £(T'). For basic types
we trivially have £(0) = 0. As expected, we have L(pK°[T]) = o and L(p?) = 0.
Tt is nature to define L& (T) and L£7(T) for confidentiality and integrity levels.

In type syntax T, o is the type for general data at such level. p? is the type
of templates. label p specifies the mode of the key object which depends on its
template. Unwrap denotes the Storage Key Object; Dec denotes the Asymmetric
Decryption Key Object; Sym denotes the Symmetric Decryption Key Object;
Any is the top mode including all the three modes. All templates are public.
Yet the templates with F' are generated by the TPM and cannot be forged.
Thus they have a security level LH. The other templates with attribute N or
without any hierarchy attributes may be forged by the attackers via the process
of duplication or loading. Thus they have a security level LL. The types are as
follows:

W,A, F €tmp E A Fetmp E,S F€tmp
Ftmp : Unwrap“® "+ tmp : DectH®’ = tmp : SymEH’

W,Actmp, F¢tmp E;Actmp, F¢tmp E,S€tmp, F ¢ tmp
Ftmp : Unwrap®t ° Ftmp: Dectt ° Fitmp: Symit

The type ¢K°[T] describes the key values at security level o which are used
to perform cryptographic operations on payloads of type T. For the sake of
readability, we let T denote a sequence Tt, - - -, Ty, of types and use T : T to type
a sequence x1,- - -, &, of variables. Label ¢ specifies the usage of the key values.
Intuitively, Seed value is stored as v, in a Storage Key Object to be used for the
derivation of HMAC key and symmetric key which are used for the protection
of the other objects; Wrap and Unwrap are a pair of asymmetric keys stored
as v in a Storage Key Object used in the process of duplication; Enc and Dec
are similar but stored in a Decryption Key Object; Sym is used in symmetric
encryption and decryption; hmac is used in the computation of HMAC for the
protection of integrity.

Based on security level of types, we have subtyping relations. Formally, < is
defined as the least preorder such that:

(1) o1 < o9iff o1 T 09;

2) LL < oKLV [LL,...,LL],LL < p"* LL < Seed K 1]);

(2)
(3) pK° [T] < 0,SeedK°[] < o,p° < o;
(4) pK° {T} < AnyK?° {T} ,p7 < Any°.

144 J. Shao, D. Feng, and Y. Qin

It is obvious that subtyping relationship does not compromise the security,
since T < T" implies £(T) C L(T").

Typing Expressions. After the definition of types, we introduce a typing
environment I : x — T, namely a map from variables to their respective types.
Type judgement for expressions is written as I' F e : T meaning that expression
e is of type T under I'. The typing rules for expressions are described as follows.

I'(z)=T Ite:T' T'<T TH&:T1, Moo Ty
P o [Sub] T L= [tuple] TH(&1,20):(Th, o)
I'z:Seed K H [, usg=STORAGE I'+az:Seed K“[|,usg=STORAGE
[kdf SH] F)—kdf(usg,ac) SymKHH[T] s [kdf SL] I'kdf (usg,x):SymKEE[LL,---,LL]?
I'ta:Seed K*H [|,usg=INTEGRITY I'ta:Seed KXY [|,usg=INTEGRITY
[kdeH] I'tkdf (usg,x):hmacKHH [f"] [kdeL] I'tkdf (usg,x):hmacKLE[LL, - ,LL] ’
I'+z:UnwrapK°CI [T} [K] I'+xz:DecK7CI [T]
Ihek(x):WrapK o1 [T)’ ENCR] Prek(a):Enek Lot [T]
ITha:SymK°CI[T],M-§:T L Iha:hmacKCoI [T],IH§:T,0" 1=01Upe 7 L1 (T)
I'+senc(z,j): Loy ’ [ma] I'"HMAC(z,j):Lor _ ’
W Itz WrapK° O [T|,[H§:T Iha:EncKC?I[T|,MH§:T
[rap] I'taenc(z,y):Lor I'taenc(z,y):Lor

[var]

[wrapK]

[Sym]
, [End]

Rules [var], [sub], and [tuple] are standard to derive types directly from I’
or via subtyping relationship. Rules [kdfSH]|, [kdfSL], [kdfIH], and [kdfIL)]
states that given a seed and its usage, we may derive a new key of the se-
curity level inherited from the seed. The security level of the seed value can
only be HH (Trusted) or LL (Untrusted). Rules [wrapK] and [encK] says
that if an asymmetric decryption key k, is of type pK7¢!] ~] where p ranges
over {Unwrap, Dec}, then the corresponding encryption key ek(k;) is of type
pKo1[T). Notice that the confidentiality level is L(Low), since public keys are
allowed to be known to the attacker, while the integrity level is the same with
its decryption key. Rules [Sym], [Wrap], and [Enc| state the encryption of data.
The type of the operand e is required to be compatible with that of the payload
which is specified by the type of the key. The integrity level of the ciphertext
should be the same with that of the key. Rules [hmac] requires that the integrity
level of the HMAC should be o7 | ;o7 £1(T), which represents the lowest in-
tegrity level of oy and each level of L;(T') while T € T. The reason for it is the
fact that if the attacker may generate either the HMAC key or the plaintext,
he could modify the computation of HMAC. Ciphertexts and the HMAC can be
returned to the caller and consequently their confidentiality level is L.

Typing API Commands. Type judgement for API commands is denoted as
I' = p meaning that p is well-typed under the typing environment I". For sim-
plicity, we write I'(Z) = T or & — T for the binding of variables & = (z1, - - © Tn)
respectively to their types T = (Th,- -+, T,). The judgement for API commands
is formalized as follows.

Type-Based Analysis of Protected Storage in the TPM 145

YeeA TI'Fc . I'te:T I'ix—TrFp I'tp1 I'Fps
[API] ¢S 0 7%, [assign] TFei=ep [seq] F"pl%f[zj) ;
I'typ:LL YTePTS(t =Tz—-T+ I'ryr:SymK?|T| Iz—Tkp
[checktmp] " VA2 NS ump)= IO TP [sde] - ; ’
m.fcfic;kTemplate(yh,,ZWFLIZE)J]p I'+z:=sdec(yk,yc);p
o I'tyi:Any Iap—AnyK T)p o I'tyy:LL xg—LLEp
lgenK ey — H] Fl—oLclg=genKey(yt);pHH slgenKey — L] I'rzy:=genKey(y:);p ’
Thye: A Iz —SeedK - : T
[genSeed — H] * "™ ﬁﬁ’ms::geigeed;;)m 0 P lgenSeed — L] I}?gfjggf:;@gég;f’,
[ObjLoad — H] I'Fys:Seed KT | Mryp:pK T T) Drye:pt™ Dap—LLEp
! I+ LFL'_xz’*fObszCtlL“gad(szsL’ykfyt);p LLF ,
; _ Yst Yk Yi: \T p
[Ob]LOCLd {J] I'xp:=0bjectLoad(ys,Yx,yt);P ’
Ibyg:DecK® [T| Ihye:T Ia—Trp Li(T)=L=>I&—(LL,,LL)Fp

[Dec] _ I'b#E=adec(yy,ye)ip ’
U IhyUnwrapK[T] ryeT DamsTrp Li(T)=L=>[@—(LL,LL)Fp
[Unwrap] TriE:=adec(yk,ye);p ’

[PAV _ H] I—'F(ypA,yi"A):(UnwrapLH,LL) F,zi,LAHAnyL”I Fp
I FWMA):(:LIZAXIE)%?W"A);pLLF ’
_ YpA,YinA):) sTin AF> P
[PAV — L] I'taina:=PAV (ypa,Yina);p ’
Fl—yk:hmacK”[T ra—TkFp
[CthMAC] F’ii::CheCkHMAC(yk’yh'mac’gv)ﬂ’ ’
I+#:(LL,LL LL :
Z:(LL,,), [command] I'+zy:LL I'tz,:LL T'kp

[return] = p1 o TEATy, g p

Most of the above rules are standard. We just explain [checktmp] and [PAV].
The details of the others are in full version [16]. Rule [checktmp] is adapted form
the same rule in [4]. We have to type-check all the permitted templates tmp’ in
o matching the checked template tmp, such that tmp C tmp’. The Permitted
Templates Set is denoted as

PTS(tmp, p) = {(p"71, Seed K171 [], pK 11 [T])|
JFtmp’ € p,tmp C tmp’A - tmp’ : plot}.

For example, if tmp = {W}, the permitted templates matching with tmp
are {W, A}, {W,A, N}, and {W, A, F}. The corresponding types are (p“%,
Seed KV, pKET)) and (pPH, Seed KHH[], pKHH([T)]), where p = Unwrap.
We need to type-check the following clauses under the assumption that z
may have all the types in PT'S. Meanwhile, PTS({W, F}, p) = (Unwrap™®,
Seed K*H[|, Unwrap™[T]). The rules [PAV — H] and [PAV — L] are used
for public hierarchy attributes validation. The purpose for PAV is to check the
consistency of hierarchy attributes between the parent object and the child. The
former rule says that if the parent object has the attribute Fized TPM (F), then
any allowable combination of the hierarchy attributes would be fine for the child.
The latter rule states that if the template of the parent object does not include
the attribute F, then F cannot be in the template of the child.

4.2 Properties of the Type System

In this section, some properties of our Type System are introduced, including
the main result, well-typed APIs are secure. The proof of the main theorem can
be found in the full version [16]. Centenaro, et al.[4] have proposed the notion of

146 J. Shao, D. Feng, and Y. Qin

value well-formedness in their type system in order to track the value integrity
at run-time. Their judgement was based on a mapping @ from atomic values
to types. We follow this method but lay more restriction on the foundation of
this typing environment for values to obtain more valuable properties. Rules for
typing values are given in Table. They are close to those for typing expressions.

empty] ¢+ 0,
OFD,v¢dom(0),T=pK [T],SeedK” 1= (pe{Sym,Dec,Unwrap,hmac}Ac=HH)
OuU{val—T}+0 - ’
O(val)=T Orv:T!, T'<T Or5:T,0Fv": T
[atom] OFval:T ? [SUb] Otuv:T ’ [tuple] @}7(571,');(T7T/) ’
Otv:SeedKTH || usg=STORAGE Otv:Seed KL [|,usg=STORAGE
H ’ p L ’
[kde] @def(usg,v):SymKHH[T} ’ [kde } OFkdf (usg,v):SymKLL[LL,..-,LL]’
Otv:SeedKTH || usg=INTEGRITY Otv:Seed KL [|,usg=INTEGRITY
[kdeH] Ok kdf (usg,v):hmacK HH [T] ’ [kdf]L] OFkdf (usg,v):hmacKLL[LL,.--,L L]’
OFv:UnwrapK°CoI [T OFv:DecK?Co1 [’f’]

Lo b1, [encK] Lottt
Okek(v):WrapKLo1[T] Otek(v):EncKLoI[T
Orv':SymK°CI|T|,60+5:T Orv':hmacK°CI [T],0+5:T,0' ;=07U L1 (T)

,-[} [HMAC] [} L TET
Otsenc(v’,v): Loy ’ - - OFHMAC(v',0): Loy _ ’
W O :WrapKCI [T],0F:T O+v':EncK?CoI[T|,0F5:T
[Tap] Otaenc(v’,0): Lot Otaenc(v’,0): Lot

[Env]

[wrapK]

[Sym]
, [Enc]

However, two additional rules [empty] and [env] are set to define the well-
formedness of our typing environment ©. The rule [env] requires that © does
not contain multiple bindings for the same value. Moreover, only atomic fresh
keys at a security level of HH are allowable. It is sound because in operation
semantics for commands in section 2.2, atomic fresh keys can only be generated
by genKey and genSeed, which are internal functions that cannot be touched by
the attackers. On the basis of these rules, some properties for the types of key
values can be obtained by easy induction on the derivation of © v : ¢ K ”[T].

Proposition 1 (Private Keys). If © - (), © - v : ¢K°[T], and ¢ € {Seed,
Sym, Dec, Unwrap, hmac}, then o € {HH, LL}.

Proposition 2 (Low Keys). If O + (), then © + v : ¢K L[T] implies T =
LL,--- LL.

Proposition 3 (Public Keys). If @ - (), © - v : ¢K°[T], and ¢ €
{Wrap, Enc}, then o € {LH, LL}.

The next proposition says the type of private key is unique, if it has a security
level of HH.

Proposition 4 (Uniqueness of Key Types). Let © - (. If © - k : ¢K° [T
and © F k : ¢/ K° [f’] with ¢, ¢ € {Seed, hame, Sym, Unwrap, Dec}, then
c=0c.lfc =0 = HH, we also have ¢ = ¢'.

The notion of well-formedness for memory environment follows the definition
3 in [4] except that we add item (1), which requires © is well formed. With this
requirement, we may apply proposition 1 to 4.

Definition 2 (Well-formedness).The judgement of well-formedness for mem-
ory environment and key handle-map is denoted as I, @ - M, H if

(1) © B, ie., the typing environment © is well formed by the typing rules
[empty] and [Env];

Type-Based Analysis of Protected Storage in the TPM 147

(2) IOFM, ie, M(z) = v,I'(z) =T implies O v : T}
(3) @ H. Let H(h) = (tmp, vs, vg). = tmp : p*H implies O I v, : Seed KHH]],
Ok v : pKHH[T]; Ftmp : LL implies @ - vs : LL, © - vy : LL.

As we have mentioned above, the security level o restrict the capability of
attackers such that they can read from LL, LH and modify LL, HL. Due to
pKH [T} < LH < LL and the subtyping rule, we may assume the knowledge
of attackers has a security level of LL. Proposition 5 proves that if we only give
the attacker atomic values of type LL, all the values that can be derived from
his capability are of a security level LL. In the proof of this proposition, we may
use proposition 2 (Low Keys) in some cases.

Proposition 5 (Attacker typability). Let © - 0, © - H and V be a set of
atomic values. Suppose Vv € V,0(v) = LL. Then, v’ € K(V) implies © - v : LL
if v’ is an atomic values, and © - v’ : (LL,---, LL) if v’ is a tuple.

Lemma 1 states that in a well-formed memory, each expression has a type
matched with its evaluation. Lemma 2 states that well-typed commands remain
well-typed at run-time and preserve well-formedness of typing environment.

Lemma 1. IfOF 0, ILOFM, I'+e:T,and e [M v, then O v : T.

Lemma 2. Let 0 - M,H and I' F p. If (M,H,p) — (M/,H’,p') then we
have
(1) if p’ # € then I' - p';
(2) 30’ 2 O such that I,60' - M’ H'.

With Lemma 1 and 2 above, we finally prove our main result that well-typed
API commands are secure.

Theorem 1. If ' - A, then A is secure.

5 Type-Based Analysis of TPM 2.0 Specification
Commands

In this section, we show that the TPM 2.0 Specification commands such as
TPM2 Duplicate, TPM2 Import, TPM2 Create and TPM2 Load are secure in the
framework of our model (It is expected to include more commands). We will
prove that these commands guarantee the secrecy of the key object with its
FizedTPM SET, even in case of the worst scenario in which the attacker may
access all loaded key objects via API commands to perform operations corre-
sponding to the protected storage hierarchies rooted in the TPM.

The API is defined in Trusted Platform Module Library (TPML) Family 2.0,
Part 3: Commands [I5], which specifies the input parameters, the response, and
the detailed actions of each command. We may translate the detailed actions to
our language introduced in section 2.2. The commands that need to be formalized
include Object Commands in Chapter 14 and Duplication Commands in Chapter
15 of TPML 2.0, Part 3. As we have discussed in section 2.1, we focus on these
commands since they decide how an object might be connected to the protected
storage hierarchy rooted in the TPM.

148 J. Shao, D. Feng, and Y. Qin

The detailed actions in these commands contain internal functions specified in
section 7.6 of TPML 2.0, Part 4: Supporting Routines. These internal functions
should be called by Protected Capabilities. We have transferred these functions
to our language. Now we give an example of AreAttributesForParent (), which
decides whether the input handle refers to a parent object. It can be implemented
by (ObjTemplate, ObjSeed, ObjSensitive):= checkTemplate (ObjHandle, {W});
In a similar way, we could formalize a set of internal functions in section 7.6 of
Part 4.

After this formalization, we could translate to our language the protected stor-
age API commands such as TPM2 Create (), TPM2 Load (), TPM2 Duplicate(),
and TPM2 Import () in Part 3. We give an example of TPM2 Load (). The detailed
translation is in the full version.

Command TPM2 Load takes as input the handle of the parent object (par-
entH), the public area of the loaded object (inAttributes), an HMAC to check
the integrity (inHMAC), and the encrypted sensitive area of the loaded object
(LoadPrivate). The execution of the command depends on whether the loaded
object has FizedTPM SET in its template (F' € inAttributes) since it decides
whether FizedTPM is needed in the parent object. In the detailed actions of
Part 3, it is expressed by a standard if/else statement. For the former case, F'
is needed to be included in the template of the parent object. The latter is not.
Thus we have different requirements for the first checkTemplate. There are no
differences in the following clauses. Then, the public attributes of the loaded
object should be checked to be consistent with the parent’s by PAV. If passed,
a symmetric key (symKeyP) for secure storage and an HMAC key (HMACk-
eyP) for integrity are derived from the secret seed (parentSeed) in the parent
object. After checking the integrity of the public area (inAttributesC) and the
encrypted sensitive area (LoadPrivate), the command will decrypt the sensitive
area by sdec. At last, new object are loaded and its handle (ObjH) is returned.

In a similar way, we have translated the Object Commands and Duplication
Commands in Trusted Platform Module Library (TPML) Family 2.0, Part 3:
Commands. In the following, we need to type-check these API commands by
our type system in section 3.1 to enforce the security of API commands. We will
give an example of the command TPM2 Load. The detailed specification is in the
full version [16].

Since the command TPM2 Load requires a branch, we need to devise two typing
environment I respectively to type these two cases. For both cases, it is required
that all the input parameters have type LL (line 00 and line 10). For the former
case, when checkTemplate requires a handle for a parent key object with W, F’
SET. Then the type returned is (Unwrap™?, Seed K7 [], UnwrapK " H [T)) ac-
cording to section 3.1. Then by the rule [PAV — H], we get the input attributes
after check should have type Any because F € inAttributes. By kdf, we
get two keys derived from the seed value in the parent sensitive area with
types SymKTH [Seed KTH[|, Any KHH)| and hmacKP?[LH, Any*H]. The pay-
load type is decided by the usage of the parent key object. Then after checking
the HMAC and symmetric decryption, the returned sensitive area types are

Type-Based Analysis of Protected Storage in the TPM 149

(Seed KTH]| AnyKHH [T]) With appropriate types of sensitive area and pub-
lic area, ObjectLoad could load the object into the TPM. Then the type of
the returned handle value is LL, which could be returned as the response. For
the latter case, checkTemplate requires a handle for a parent key with just W
SET and the returned type is in PT'S({W}, p). There are two types in this
set, (LL, LL, LL) and (Unwrap™, Seed K" H [, UnwrapK ™" [T]). We have to
type-check the continuation clauses twice, under these two assumptions. The
two typing derivations are the same for PAV since F' ¢ inAttributes. The input
template (inAttributes: LL) after PAV has type LL. For kdf, since the types
of payloads are decided by the usage of the parent key object, they both have
type LL, LL for the payloads. Thus these two cases are the same for checking
HMAC, decryption and loading the object. We finally type-check return ObjH
by [return).

We have shown that the command TPM2 Load is well-typed. By Theorem 1, we
know that TPM2 Load is secure. In a similar way, we could type-check the other
commands that have been formalized in our model and enforce the security of
protected storage APIs of the TPM 2.0 specification. We have Theorem 2 to
state the security of the TPM 2.0 API commands concentrating on Protected
Storage part.

Theorem 2. For the protected storage API A = {TPM2 Create (), TPM2 Load(),
TPM2 Duplicate(), TPM2 Import()} defined by TPM 2.0 specification, A is
secure.

6 Conclusion

We have prososed a type system to statically enforce the security of storage
part of the TPM 2.0 API commands. Our type system consumes type-checks for
asymmetric cryptographic primitives. A formal proof has been proposed that
the commands can guarantee the secret of key values in security devices under
the worst scenario where the attackers in Delov-Yao style may gain access to all
keys loaded on the device and the API commands can be called by any sequence
with any parameters. This has not been proved before.

As future work, we foresee extending our model with more commands such
as those involved in Credential Management. We also plan to model the TPM’s
platform configuration registers (PCRs) which allow one to condition some com-
mands on the current value of a register. Moreover, more security properties
such as integrity and noninterference will be the subject of future work.

Acknowledgments. The research presented in this paper is supported by the
National Basic Research Program of China (No. 2013CB338003) and National
Natural Science Foundation of China (No. 91118006, No.61202414).

150

J. Shao, D. Feng, and Y. Qin

References

10.

11.

12.

13.

14.

15.

16.

Abadi, M., Blanchet, B.: Secrecy types for asymmetric communication. Theoreti-
cal Computer Science 298(3), 387-415 (2003); In: Honsell, F., Miculan, M. (eds.)
FOSSACS 2001. LNCS, vol. 2030, pp. 25-41. Springer, Heidelberg (2001)

Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: TEEE
Symposium on Security and Privacy 2008, pp. 202-215 (2008)

Bruschi, D., Cavallaro, L., Lanzi, A., Monga, M.: Replay attack in TCG specifi-
cation and solution. In: Proceedings of ACSAC 2005, Tucson, AZ (USA), vol. 10,
pp. 127-137. ACSA, IEEE Computer Society (December 2005)

Centenaro, M., Focardi, R., Luccio, F.L.: Type-based analysis of PKCS#11 key
management. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust.
LNCS, vol. 7215, pp. 349-368. Springer, Heidelberg (2012)

Chen, L., Ryan, M.: Offline dictionary attack on TCG TPM weak authorisation
data, and solution. In: Gawrock, D., Reimer, H., Sadeghi, A.-R., Vishik, C. (eds.)
Future of Trust in Computing, pp. 193-196. Vieweg Teubner (2009)

Chen, L., Ryan, M.: Attack, solution and verification for shared authorisation data
in TCG TPM. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983,
pp. 201-216. Springer, Heidelberg (2010)

Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication
in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 111-125. Springer, Heidelberg (2011)

Focardi, R., Maffei, M.: Types for Security Protocols. In: Formal Models and Tech-
niques for Analyzing Security Protocol, vol. 5, ch. 7, pp. 143-181. IOS Press (2010)
Gilirgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security evalua-
tion of scenarios based on the TCG’s TPM specification. In: Biskup, J., Lépez, J.
(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 438-453. Springer, Heidelberg (2007)
Lin, A.H., Rivest, R.L., Lin, A.H.: Automated analysis of security APIs. Technical
report, MIT (2005)

ISO/IEC PAS DIS 11889: Information technology —Security techniques — Trusted
Platform Module

Trusted Computing Group. TPM Specification version 1.2. Parts 1-3, revision,
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
Keighren, G., Aspinall, D., Steel, G.: Towards a Type System for Security APIs. In:
Degano, P., Vigano, L. (eds.) ARSPA-WITS 2009. LNCS, vol. 5511, pp. 173-192.
Springer, Heidelberg (2009)

Centenaro, M., Focardi, R., Luccio, F.L., Steel, G.: Type-based analysis of PIN
processing APIs. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789,
pp. 53-68. Springer, Heidelberg (2009)

Trusted Computing Group. TPM Specification version 2.0. Parts 1-4, revision,
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
Shao, J., Feng, D., Qin, Y.: Type-Based Analysis of Protected Storage in the TPM
(full version). Cryptology ePrint Archive (2013),
http://eprint.iacr.org/2013/501

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://eprint.iacr.org/2013/501

	Type-Based Analysis of Protected Storage
in the TPM
	1 Introduction
	2 Overview of the TPM Protected Storage
	2.1 Protected Storage Hierarchy
	2.2 Object Structure Elements

	3 Modeling the TPM APIs
	3.1 A Language for Modeling TPM Commands
	3.2 Attacker Model and API Security

	4 Type System
	4.1 A Core Type System
	4.2 Properties of the Type System

	5 Type-Based Analysis of TPM 2.0 Specification Commands
	6 Conclusion
	References

