Skip to main content

Elements of the NGH Petroleum System

  • Chapter
  • First Online:
Natural Gas Hydrate - Arctic Ocean Deepwater Resource Potential

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 995 Accesses

Abstract

NGH is essentially a modern hydrocarbon mineral deposit in which existing NGH concentrations are in thermodynamic equilibrium with their surroundings. The objective of NGH petroleum system analysis is the same as it is for conventional petroleum system analysis, that is, to provide a methodology for hydrocarbon concentrations and to identify potentially commercially producible sources of natural gas. NGH concentrations reflect the convergence of a number of existing conditions rather than a succession of geological conditions, the timing of which were critical to the formation of conventional gas and petroleum deposits. The elements of the NGH petroleum system consist of: (1) Sufficient gas flux, (2) Migration pathways from subjacent sources toward the seafloor, (3) High-grade host reservoir sediments, (5) Suitably thick GHSZ. A number of parameters of conventional petroleum system analysis are not necessary for analysis of the NGH system. These include the long-term history of the basin, thermal history of sediments, multiple petroleum systems in a basin, and detailed stratigraphic analysis much below the present GHSZ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aung TT, Noguchi S, Oikawa N, Kanno T, Tamaki M, Akishisa K (2011) Integrated facies modeling workflow for methane hydrate reservoir along the eastern Nankai Trough, Japan. In: Proceedings international petroleum technology conference, Bangkok, Thailand, p 8, 15–17 Nov 2011

    Google Scholar 

  • Boswell R, Collett TS, Frye M, Shedd W, McConnell DR, Shelander D (2011) Subsurface gas hydrates in the northern Gulf of Mexico, marine and petroleum geology, p 21. doi:10.1016/j.marpetgeo.2011.10.003

  • Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24. www.solid-earth.net/1/5/2010/

    Google Scholar 

  • Egawa K, Furukawa T, Saeki T, Suzuki K, Narita H (2013) Three-dimensional palemorphologic reconstruction and turbidite distribution prediction revealing a Pleistocene confined basin system in the northeast Nankai Trough area. AAPG Bull 97(5):781–798. doi:10.1306/10161212014

    Article  Google Scholar 

  • Fiduk JC, Weimer P, Trudgill BD, Rowan MG, Gale PE, Phair RL, Korn BE, Roberts GR, Gafford WT, Lowe RS, Queffelec TA (1999) The Perdido Fold Belt, northwestern deep Gulf of Mexico, part 2: seismic stratigraphy and petroleum systems. Am Assoc Pet Geol Bull 83(4):578–612

    Google Scholar 

  • Frye M (2008) Preliminary evaluation of in-place gas hydrate resources: Gulf of Mexico outer continental shelf. US department of the interior minerals management service resource evaluation division OCS report MMS 2008-0004, p 136

    Google Scholar 

  • Inks TL, Lee MW, Agena WF, Taylor DJ, Collett TS, Zyrianova MV, Hunter RB (2009) Seismic prospecting for gas-hydrate and associated free-gas prospects in the Milne Point area of northern Alaska. In: Collett TS, Johnson AH, Knapp C, Boswell R (eds) Natural gas hydrates: energy resource potential and associated geologic hazards: American association of petroleum geologists memoir, vol 89, pp 555–583

    Google Scholar 

  • Jones DW, Underhill JR (2011) Structural and stratigraphic evolution of the Connemara discovery, Northern Porcupine Basin: significance for basin development and petroleum prospectivity along the Irish Atlantic Margin. Pet Geosci 17:265–384

    Article  Google Scholar 

  • Kastner M (2001) Gas hydrates in convergent margins: formation, occurrence, geochemistry, and global significance. In: Paull CA, Dillon WP (eds) Natural gas hydrates occurrence, distributions, and detection, American geophysical union geophysical monograph, vol 124, pp 67–86

    Google Scholar 

  • Kvenvolden KA (1988) Methane hydrate: a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51

    Article  Google Scholar 

  • Kristoffersen Y, Mikkelsen N (eds) (2004) Scientific drilling in the Arctic Ocean and the site survey challenge: tectonic, paleoceanographic and climatic evolution of the polar basin. Jeodi Workshop, Copenhagen, Denmark, 13, 14 Jan 2003, Geological Survey of Greenland, pp 83

    Google Scholar 

  • Lee S-R (2011) 2nd ulleung basin gas hydrate expedition (UBGH2): findings and implications, In: Fire in the Ice 11(1), U.S. Department of energy methane hydrate Newsletter, 6–9

    Google Scholar 

  • Lee MW, Hutchinson DR, Collett TS, Dillon WP (1996) Seismic velocity structure at the gas hydrate reflector, offshore western Colombia, from full waveform inversion. J Geophys Res 99:4715–4734

    Google Scholar 

  • Lee MW, Collett TS, Inks TL (2009) Seismic-attribute analysis for gas-hydrate and free-gas prospects on the North Slope of Alaska. In: Collett TS, Johnson AH, Knapp C, Boswell R (eds) Natural gas hydrates: energy resource potential and associated geologic hazards. American association of petroleum geologists memoir, vol 89, pp 541–554

    Google Scholar 

  • Levitan MA, Lavrushin Yu A (2009) Sedimentation history in the Arctic Ocean and Subarctic Seas for the last 130 kya. Lecture notes in earth sciences series, Springer Dordrecht Heidelberg London New York, p 387. ISBN 978-3-642-00287-8. doi 10.1007/978-3-642-00288-5

  • Max MD (1990) Gas hydrate and acoustically laminated sediments: probable environmental cause of anomalously low acoustic-interaction bottom loss in deep ocean sediments. Naval Research Laboratory Report 9235, p 68

    Google Scholar 

  • Max MD, Johnson AH (2011) Hydrate petroleum approach to natural gas hydrate exploration. In: Proceedings of the 7th international conference on gas hydrates (ICGH 2011), Edinburgh, Scotland, UK, CD, Paper 637, 12 pages, 17–21 July 2011

    Google Scholar 

  • Max MD, Johnson AH (2013) Natural Gas Hydrate (NGH) Arctic Ocean potential prospects and resource base. OTC Paper 23798. (Digital) proceedings arctic technology conference, Houston, Texas, USA, 3–5 December 2012, pp 11

    Google Scholar 

  • Max MD, Lowrie A (1993) Natural gas hydrates: Arctic and Nordic Sea potential. In: Vorren TO, Bergsager E, Dahl-Stamnes OA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential, proceedings of the norwegian petroleum society conference, Tromso, Norway, 15–17 Aug 1990. Norwegian petroleum society (NPF), Special Publication 2. Elsevier, Amsterdam, pp 27–53

    Google Scholar 

  • Max MD, Johnson A, Dillon WP (2006) Economic geology of natural gas hydrate. Springer, Berlin, Dordrecht, pp 341

    Google Scholar 

  • Mulder T, Syvitski JPM, Migeon S, Faugeres J-C, Savoye B (2003) Mar Pet Geol 20:861–882. doi:10.1016/j.marpetgeo.2003.01.003

    Google Scholar 

  • Noguchi S, Furukawa T, Aung TT, Oikawa N (2011) Reservoir architecture of methane hydrate bearing turbidite channels in the eastern Nankai Trough, Japan. In: Proceedings of the 7th international conference on gas hydrates (ICGH 2011), Edinburgh, Scotland, UK, p 9, 17–21 July 2011

    Google Scholar 

  • Paull CK, Ussler W (2001) History and significance of gas sampling during DSDP and ODP drilling associated with gas hydrates. In: Paull CA, Dillon WP (eds) Natural gas hydrates occurrence, distributions, and detection, American geophysical union geophysical monograph vol 124, pp 53–65

    Google Scholar 

  • Paull CK, Borowski WS, Rodriguez NM, ODP Leg 164 Shipboard Scientific Party (1998) Marine gas hydrate inventory: preliminary results of ODP Leg 164 and implications for gas venting and slumping associated with the Blake Ridge gas hydrate field. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change: geological society London special publication, vol 137, pp 153–160

    Google Scholar 

  • Sassen R, Sweet ST, DeFreitas DA, Morelos JA, Milkov AV (2001) Gas hydrate and crude oil from the Mississippi fan foldbelt, downdip Gulf of Mexico salt basin: significance to petroleum system. Organic Geochemistry 32, 999–1008

    Google Scholar 

  • Stein R (2008) Arctic Ocean sediments. Processes, proxies, and paleoenvironment. Developments in marine geology 2. Elsevier, Amsterdam, The Netherlands, p 592. ISBN: 978-0-444-52018-0

    Google Scholar 

  • Tinivella U (1999) A method for estimating gas hydrate and free gas concentrations in marine sediments. Boll Geofisica Teorica Appl 40(1):19–30

    Google Scholar 

  • Trehu AM, Long PE, Torres ME, Bormann G, Rack FR, Collett TS, Goldberg DS, Milkov AV, Riedel M, Schultheiss P, Bangs NL, Barr SR, Borowski WS, Claypool GE, Delwiche ME, Dickens GR, Gracia E, Guerin G, Holland M, Johnson JE, Lee Y-J, Liu C-S, Su X, Teichert B, Tomaru H, Vanneste M, Watanabe M, Weinberger JL (2004) Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth Planet Sci Lett 222:845–862

    Article  Google Scholar 

  • Tsuji Y, Ishida H, Nakamizu M, Matsumoto R, Shimizu S (2004) Overview of the METI Nankai Trough Wells: a milestone in the evaluation of methane hydrate resources. Res Geol 54:3–10

    Article  Google Scholar 

  • Uchida T, Lu H, Tomaru H, The MITI Nankai Trough Shipboard Scientists (2004) Subsurface occurrence of natural gas hydrate in the Nankai Trough area: implication for gas hydrate concentration. Res Geol 54:35–44

    Google Scholar 

  • Urlaub M, Schmidt-Aursch MC, Jokat W, Kaul N (2010) Gravity crustal models and heat flow measurements for the Eurasia Basin, Arctic Ocean. Mar Geophys Res 30:277–292. doi:10.1007/s11001-010-9093-x

    Article  Google Scholar 

  • Wellsbury P, Goodman K, Cragg BA, Parkes RJ (2000) The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995 and 997). Proc ODP Sci Results 164:379–391

    Google Scholar 

  • Wellsbury P, Mather ID, Parkes RJ (2001) 19. subsampling RCB cores from the Western Woodlark basin (ODP Leg 180) for Microbiology. In: Hichon P, Taylor B, Klaus A (eds) Proceedings of the ocean drilling program, Scientific Results vol 180, pp 12

    Google Scholar 

  • Wellsbury P, Parkes J (2003) Deep biosphere: source of methane for oceanic hydrate. In: Max MD (ed), Natural gas hydrate: in oceanic and permafrost environments, 2nd edn. Kluwer Academic Publishers (now Springer), London, Boston, Dordrecht, pp 91–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Max .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Max, M.D., Johnson, A.H., Dillon, W.P. (2013). Elements of the NGH Petroleum System. In: Natural Gas Hydrate - Arctic Ocean Deepwater Resource Potential. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-02508-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02508-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02507-0

  • Online ISBN: 978-3-319-02508-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics