Skip to main content

Sediment Delivery Systems; Ice, Rivers and the Continental Margin

  • Chapter
  • First Online:
Natural Gas Hydrate - Arctic Ocean Deepwater Resource Potential

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 989 Accesses

Abstract

Pleistocene glacial sediments will predominantly host NGH, and possibly only those to depths of no more than 1 km. Older sediments will likely be buried too deeply to host NGH. Each glacial episode would have produced a suite of sediments related to the onset and glacial maximum period and especially during the onset of the following interglacial period when the melting of the ice cap would produce large volumes of water that would strongly affect sediment winnowing and transport. These periods of maximum water flow would be likely to produce the clastic sandy sediments that would be ideal hosts of high-grade NGH deposits in the deeper continental shelves and the continental slopes. In addition, sea level variation would have strongly controlled the position of the shoreline positions during the glacial and interglacial cycles. Sediments within about 1.2 km depth below the seafloor comprise the exploration zone for NGH and related gas deposits. The continental margins of the Arctic Ocean have been divided into 5 regions for analysis of the degree to which they could provide optimal NGH host sediments to suitable depositional environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alekseev MN, Drouchits VA (2004) Quaternary fluvial sediments in the Russian Arctic and Subarctic: late Cenozoic development of the Lena River system, Northeastern Siberia. Proc Geol Assoc 115:339–346

    Article  Google Scholar 

  • Andersen ES, Solheim A, Elverhoi A (1992) Development of a glaciated Arctic continental margin: exemplified by the western margin of Svalbard. Proceedings international conference on Arctic margins OCS study, pp 155–160

    Google Scholar 

  • Cherkis NZ, Max MD, Vogt PR, Crane K, Midthassel A, Sundvor E (1999) Large-scale mass wasting on the North Spitsbergen continental margin, Arctic Ocean. In: Gardiner J, Vogt P, Crane K (eds) Mass wasting in the Arctic, vol 19. Geomarine Letters Special Issue, pp 131–142

    Google Scholar 

  • Dittmers K, Niesen F, Stein R (2004) Fluvial history of an ice sheet proximal continental shelf: The Southern Kara Sea, West Siberia during late quaternary. (Abs) European Geosciences Union First General Assembly, Nice, Apr 2004, p 1, hdl: 10013/epic.2204

    Google Scholar 

  • Egawa K, Furukawa T, Saeki T, Suzuki K, Narita H (2013) Three-dimensional paleomorphologic reconstruction and turbidite distribution prediction revealing a Pleistocene confined basin system in the northeast Nankai Trough area. AAPG Bull 97(5):781–798. doi:10.1306/10161212014

    Article  Google Scholar 

  • Frye M, Shedd W, Boswell R (2011) Gas hydrate resource potential in the Terrebonne Basin, Northern Gulf of Mexico. Mar Pet Geol 34:19. doi:10.1016/j.marpetgeo.2011.08.001

  • Gataullin V, Mangerud J, Svendsen JI (2001) The extend of the late Weichselian ice sheet in the Southeastern Barents Sea. Global Planet Change 31:453–474

    Article  Google Scholar 

  • Grantz A, Hart PE, Childers VA (2011) Development of the Amerasia and Canadian Basins, Arctic Ocean. In: Spenser AM, Embry AF, Gautier DL, Stompkova AV, Sorensen K (eds) Arctic petroleum geology, vol 35. Geological Society of London Memoir, pp 771–799. doi:10.1144/M35.50

  • Hogan KA, Dowdeswell JA, Noormets R, Evans J, O’Cofaigh C, Jakobsson M (2010) Submarine landforms and ice-sheet flow in the Kvitoya Trough, Northwestern Barents Sea. Quat Sci Rev 29(25–26):3545–3562. doi:10.1016/j.quasirev.2010.08.015

    Google Scholar 

  • Ingolfsson O (2011) Fingerprints of quaternary glaciations on Svalbard. Geol Soc London Spec Publ 354:15–31. doi:10.1144/sP354.2

    Article  Google Scholar 

  • Jakobsson M, Mcnab R, Cherkis N, Shenke H-W (2004) The international map of the Arctic ocean (IBCAO). Polar stereographic projection, scale 1:6,000,000. Research publication RP-2. U.S. National Physical Data Center, Boulder, Colorado 90305

    Google Scholar 

  • Jakobsson M, Macnab R, Mayer L, Anderson R, Edwards M, Hatzky J, Schenke H-W, Johnson P (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys Res Lett 35(5):L07602. doi:10.1029/2008GL033520

  • Kleiber HP, Niessen F, Weiel D (2001) The late quaternary evolution of the Western Laptev Sea continental margin, Arctic Siberia—implications from sub-bottom profiling. Global Planet Change 31:105–124

    Article  Google Scholar 

  • Larsen E, Jjaer KH, Demidov N, Funder S, Grosfjeld K, Houmark-Nielsen M, Jensen M, Linge H, Lysa A (2006) Late pleistocene glacial and lake history of Northwestern Russia. Boreas 35:31. ISSN 0300-9483. doi:10.1080/03009480600781958

  • Max MD, Lowrie A (1993) Natural gas hydrates: Arctic and Nordic Sea potential. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Proceedings of the Norwegian petroleum society conference, 15–17 Aug 1990, Tromsø, Norway. Norwegian Petroleum Society (NPF), special publication 2 Elsevier, Amsterdam, pp 27–53

    Google Scholar 

  • Patyk-Kara NG, Postolenko GA (2004) Structure and Cenozoic evolution of the Kolyma river valley: from upper reaches to continental shelf. Proc Geol Assoc 115:325–338

    Article  Google Scholar 

  • Patyk-Kara NG, Morozova LN, Biryukov VY, Novikov VN (1980) New data on the structural-geomorphological setting of coastal plains and shelf of East Arctic Seas. Geomorfologiya 3:9–98

    Google Scholar 

  • Polyak L, Niessen F, Gataullin V, Gainanov V (2008) The eastern extent of the Barents-Kara ice sheet during the last glacial maximum based on seismic-reflection data from the eastern Kara Sea. Polar Res 27:162–174. doi:10.1111/j.1751-8369.2008.00061.x

    Article  Google Scholar 

  • Vogt PR, Crane K, Sundvor E, Max MD, Pfirman SL (1994) Methane-generated (?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa Ridge, Fram Strait. Geology 22:255–258

    Google Scholar 

  • Vorren T, Richardsen G, Knutsen S, Henriksen E (1991) Cenozoic erosion and sedimentation in the Western Barents Sea. Mar Pet Geol 8:317–340. doi:10.1016/0264-8172(91)90086-G

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Max .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Max, M.D., Johnson, A.H., Dillon, W.P. (2013). Sediment Delivery Systems; Ice, Rivers and the Continental Margin. In: Natural Gas Hydrate - Arctic Ocean Deepwater Resource Potential. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-02508-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02508-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02507-0

  • Online ISBN: 978-3-319-02508-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics