
Group Strategies and Independence

Ming Xu

Abstract We expand Belnap’s general theory of strategies for individual agents to
a theory of strategies for multiple agents and groups of agents, and propose a way
of applying strategies to deal with future outcomes at the border of a strategy field.
Based on this theory, we provide a preliminary analysis on distinguishability and
independence, as a preparation for a general notion of dominance in the decision-
theoretical approach to deontic logic.

Based on branching time and a theory of agents and choices, Belnap has developed
a general theory of strategies in Belnap (1996b) and Belnap et al. (2001).1 A simple
form of this theory identifies a strategy for an agent with a partial function from mo-
ments to the choices available for the agent at those moments, which is found useful
by different authors in conceptual analysis and technical development concerning
“strategic acts”.2 Horty develops a simpler but similar theory of strategies in Horty
(2001), and applies it to his study of “strategic acts” and “strategic oughts”. The
work presented here concerns both “strategic acts” and “strategic oughts”, perhaps
with an emphasis on the latter in the background. This paper is the first step of a
project to connect Belnap’s theory and the decision-theoretical approach to deontic

1 I would like to give thanks to Nuel Belnap for his comments and encouragements, and to
Yan Zhang for several discussions and for catching errors in early drafts of this paper. For the
theory of branching time, see Prior (1967) and Thomason (1970, 1984); and for the theory of
agents and choices, see, e.g., Belnap (1991, 1996a) and Belnap et al. (2001)
2 For example, Belnap shows that whenever a doing takes place, there exists a strategy of
refraining from that doing (see chapter 13 of Belnap et al. 2001), Müller applies this theory of
strategies to deal with continuous actions in Müller (2005), and Broersen and his colleagues
apply this theory in their work to extend alternating-time temporal logic in Broersen et al.
(2006).
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logic developed in Horty (2001), in a setting involving multiple agents and groups
of agents.3

In the decision-theoretical approach to deontic logic, what an agent ought to do
is taken to be determined by the result of an evaluation of what she can do against
background situations or conditions in the form of a partition. If one action is taken
to be better than another under each such background condition, it is then inferred
to be better than the other unconditionally, or to “dominate” the other, as is often de-
scribed.4 The background conditions, however, are required to be independent of the
actions being evaluated. This independence requirement is essential, without which
the inference is evidently flawed.5 In Horty (2001), Horty takes the notion of inde-
pendence here to be causal independence, and presents the background conditions,
when evaluating actions of an agent or a group, as what other agents may do at the
same time. In other words, actions at the same time by different agents are taken to
be independent of each other.

This approach to deontic logic is continued inKooi andTamminga (2008) and later
inTamminga (2013),with a notion of relative dominance and a closer relation to game
theory. It has so far been limited, nevertheless, to either single-step group actions, or
strategies of a single agentwhile other agents are assumed absent. The reason for such
limitation is, I think, that it is not clear how to dealwith the independence requirement
in a setting involving actions at differentmoments by different agents, asHorty seems
to suggest in Horty (2001). This paper examines strategies for different groups and
some relations between them, based on which we develop a notion of independence
of strategies for different groups, by way of an analysis of distinguishability and
inactivity. We provide some results concerning independence (in Sect. 9), including
a characterization of independence in terms of a set-theoretical relation between
groups of agents (Theorems 9.6 and 9.10).

Section1 briefly presents the background theories of branching time, agents and
choices, and Sects. 2 and 3 present our notions of outcomes and fields with outcomes
at their “borders”. In Sects. 4–6, we discuss group strategies with respect to future
outcomes and various related notions. Finally we present a preliminary analysis
of the notions of distinguishability, inactivity and independence in Sects. 7–9, as a
preparation for a future work on dominance.

3 Belnap’s theory of strategiesmay also be applied to other approaches to deontic logic. For example,
Belnap (1996b) shows the connection between his theory of strategies and Thomason’s theory of
ought kinematics (Thomason 1984).
4 The kind of inference applied here is sometime called the “sure-thing principle” (see Savage
1954).
5 See discussions in, e.g., Thomason and Horty (1996) and Horty (2001).
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1 Stit Frames

In this section, we briefly present the basic notions in the semantic theory for stit,6

which constitute a general background for our theory concerning what agents may
do relative to future outcomes. Let us start with the branching time theory developed
by A. Prior and R. Thomason.

A tree-like frame is a pair 〈T,<〉, in which T is a nonempty set, and < is a strict
partial ordering on T (i.e., an irreflexive and transitive relation on T ) satisfying the
following conditions:

NBB : for all x, y, z ∈ T , if y < x and z < x , either y � z or z � y;
HC : for all x, y ∈ T , z � x and z � y for some z ∈ T ;

where x � y iff x < y or x = y. The label NBB is for “no backward branching”,
and HC for “historical connection”.7

We call members of T moments or points, for which we use m, u, x, y, z etc.,
and call each maximal <-chain of moments in T a history (in 〈T,<〉). We use h, h′
etc. for histories and H, H ′ etc. for sets of them. In particular, we use HT for the set
of all histories (in 〈T,<〉). Furthermore, we will apply the following notations and
expressions, where M ⊆ T , c is a chain (of points), and x a point, in T :

• H〈M〉 = {h ∈ HT : h ∩ M �= ∅}, histories passing through M ;
• H[c] = {h ∈ HT : c ⊆ h}, histories passing completely through c;
• Hx = {h ∈ HT : x ∈ h}, histories passing through x .

It is plain that Hx = H[{x}] = H〈{x}〉. Sets of histories are compatible if their inter-
section is nonempty. It is easy to see that for all x and y, if neither x � y nor y � x ,
then no subset of Hx is compatible with any subset of Hy .

A sequence 〈T,<, Agent, Choice〉 is a stit frame if 〈T,<〉 is a tree-like frame,
Agent is a nonempty set of “agents”, and Choice is a function that assigns to each
α ∈ Agent and each m ∈ T a partition Choicem

α of Hm satisfying the following
conditions:

NC : for each K ∈ Choicem
α , each h ∈ K and each x ∈ h, if m < x then Hx ⊆ K ;

6 Stit, the acronym of “sees to it that”, was taken to name a modal operator used in a rigorous
philosophical theory of agency and action developed in a series of articles by Belnap, Perloff and
their colleagues, which provides, among other things, formal semantics for sentences involving
what agents do. The acronym was soon used to refer to the theory itself, and later to other theories
as well that share similar principles, methods and logical tools. Stit theories were developed by
a number of people in the late 1980s, and have now become a field to which many people have
contributed their works. So I will just mention a few pieces of work, among many others, which
basically started this field: Belnap and Perloff (1988), von Kutschera (1986) and Horty (1989). For
detailed discussions in stit theories, see, e.g., Belnap et al. (2001).
7 When 〈T,<〉 satisfies all conditions above for a tree-like frame except the condition HC, we may
call it amulti-tree-like frame. For the purpose of this paper, wewill focus on structures based on tree-
like frames, but our discussions can easily be extended to similar structures based on multi-tree-like
frames.
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IA : for each function f that assigns to eachβ ∈ Agent amember f (β) ofChoicem
β ,⋂

β∈Agent f (β) �= ∅.

The label NC is for “no choice between undivided histories” and IA for “indepen-
dence of agents”. A function f is a selection function at m if f (β) ∈ Choicem

β for
each β ∈ Agent. We will use Selectm for the set of all selection functions at m. Thus
IA above can be restated as that

⋂
β∈Agent f (β) �= ∅ for each f ∈ Selectm .

Let 〈T,<, Agent, Choice〉 be any stit frame. We call subsets of Agent groups
(of agents), and use E,F ,G etc. to range over them. For each m ∈ T and each
group G, we use Choicem

G for {⋂α∈G f (α) : f ∈ Selectm} (Choicem
∅

= {Hm}),8 call
its members possible choices for G at m, and use K , K ′ etc. to range over them.
A possible choice, or simply a choice, is a possible choice for a group at a point.
A group G (or an agent α) has vacuous choice at a point m if Choicem

G = {Hm}
(Choicem

α = {Hm}). Provided that h ∈ Hm , we use Choicem
G (h) for the unique

member of Choicem
G to which h belongs. Finally, we let G = Agent − G for each

group G. It is easy to verify the following by applying NC:

Fact 1.1. For each G and all x, y ∈ h such that y < x , Hx ⊆ Choicey
G(h).

By this fact, we introduce the following notation: provided that y < x , we use
Choicey

G(Hx ) for the unique K ∈ Choicey
G such that Hx ⊆ K .

2 Outcomes

In many cases, it is more convenient to use outcomes rather than histories for con-
ceptual analysis or technical development. In this section we discuss a notion of
outcome, derived from Xu (1997). We first present the notion in its original form
and then convert it into a notion of history-outcome. Throughout this section and the
next, we fix a tree-like frame 〈T,<〉, with respect to which our discussions are to be
understood.

Our notion of outcomes presupposes the following: For each x ∈ T and each
X ⊆ T, x � X (X � x, x < X or X < x) iff x � y (y � x, x < y, y < x) for
every y ∈ X , and in such a case, we say that x is a lower-bound (upper-bound, proper
lower-bound, proper upper-bound) of X . A subset X of T is forward (backward)
closed if for all x, y ∈ T, x < y (y < x) and x ∈ X only if y ∈ X . A past in 〈T,<〉 is
a nonempty and properly upper-bounded set p of moments that is backward closed.
For each past p, H[p] is by definition {h ∈ HT : p ⊆ h}, the set of all histories
passing completely through p. For each properly upper-bounded nonempty chain
c of moments,we use pc for the smallest past including c, i.e., pc = {x ∈ T :

8 I do not mean to take the empty set as a group or an agent in the literal sense. The only reason
why we call it a group is for technical convenience. One could exclude it from groups and add extra
conditions in our technical discussions.
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∃y ∈ c(x � y)}. Thus for each x ∈ T that is not maximal in T, p{x} is the past
{y ∈ T : y � x}.

We want to add the notion of outcomes to the theories of strategies developed
in Belnap (1996b) and Horty (2001) in order to extend their theories to deal with
strategy-weighing relative to the values of future outcomes. An “outcome” can be
reified either as a set of moments or as a set of histories, with a simple relation
between them.

An outcome (in 〈T,<〉) is a nonempty and properly lower-bounded set O of
moments that is forward closed and historically connected in O , i.e., for all x, y ∈
O, z � x and z � y for some z ∈ O . For each past p, an outcome at p is an outcome
O such that p is the set of all its proper lower-bounds, i.e., p = {x ∈ T : x < O}.
For each nonempty chain c of moments in T , an outcome at c is an outcome at pc,
and for each x ∈ T , an outcome at x is an outcome at {x}.

In Xu (1997), an outcome O is paired with a past p to form a “transition” 〈p, O〉,
where p < x for every x ∈ O , which is used to characterize a process or change
from the state p right before the process to the outcome state O of the process. So
an outcome O marks the temporal “location” of the completion of a process in such
a way that all histories overlapping O are taken to be just those in which the process
completes. For technical simplicity, we do not use the notion of transition explicitly
in this paper. We apply its idea extensively, nevertheless. The following fact is easily
verifiable.

Fact 2.1. Let p be any past, and let O be any outcome at p. Then for each history
h, h ∩ O �= ∅ only if h − p ⊆ O .

Let p be any past, and let ∼p be a relation between histories in H[p] such that for
all h, h′ ∈ H[p], h ∼p h′ iff x ∈ h ∩ h′ for some x > p. It is easy to verify that ∼p

is an equivalence relation. A history-outcome at p is an equivalence class modulo
∼p. A history-outcome at a properly upper-bounded nonempty chain c (or at a non-
maximal point m) is a history-outcome at the past pc (p{m}), and a history-outcome
is a history-outcome at a past.

Proposition 2.2. For all history-outcomes H and H ′, either H ⊆ H ′ or H ′ ⊆ H or
H ∩ H ′ = ∅.

Proof. Let H and H ′ be outcomes at p and p′ respectively, and suppose that h0 ∈
H ∩ H ′ and h′ ∈ H ′ − H . It then suffices to let h ∈ H and show that h ∼p′ h0,
which implies that h ∈ H ′. Since h0, h ∈ H and h0, h′ ∈ H ′, there are x and y such
that p < x ∈ h ∩ h0 and p′ < y ∈ h0 ∩ h′. Because h0 ∈ H and h′ /∈ H , h′ �∼p h0,
i.e.,

p ≮ z for each z ∈ h0 ∩ h′. (1)

Because x, y ∈ h0, either x < y or y � x . If x < y, then p < y since p < x , and,
since y ∈ h0 ∩ h′, p ≮ y by (1), a contradiction. It then follows that y � x , and then
p′ < x , and hence h ∼p′ h0. �
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Now we have two kinds of outcomes, whose relation needs to be made clear. To
help our discussion, let us refer to the kind of outcomes defined earlier as moment-
outcomes.

Proposition 2.3. Let p be a past, and let f be a function on the set of all moment-
outcomes at p such that for each such outcome O , f (O) = {h ∈ HT : O ∩ h �= ∅}.
Then f is a one-one correspondence between the set of all moment-outcomes at p
and the set of all history-outcomes at p.

Proof. For all h, h′ ∈ f (O), there are x ∈ O ∩ h and y ∈ O ∩ h′, and then by the
condition of historical connection on O , there is a z ∈ O such that z � x and z � y,
and hence z ∈ h ∩ h′. Since z ∈ O , p < z, and hence h ∼p h′. It follows that f (O)

is included in an equivalence class modulo ∼p. To see that it is itself an equivalence
class modulo ∼p, it suffices to suppose that h ∼p h′ with h ∈ f (O), and show that
h′ ∈ f (O). By definition, m ∈ h ∩ h′ for an m > p. By Fact 2.1, h − p ⊆ O , and
then, since m > p and m ∈ h, m ∈ O , and hence h′ ∈ f (O). �

Belnap andHorty use histories to define various notions in their study of strategies.
It is then more convenient to use history-outcomes rather than moment-outcomes in
our presentation to show a clear picture of the connection between our theory and
theirs. By Proposition 2.3, the two kinds of outcomes are different notions of the same
idea.9 From now on, whenwe speak simply of outcomes, wemean history-outcomes.

For each past p, we use Outcmp for the set of all outcomes at p, and for each
properly upper-bounded nonempty chain c, we useOutcmc forOutcmpc , and, finally,
for each non-maximal point x , we useOutcmx forOutcm{x}. It is easy to see that each
history h in H[p] belongs to a unique outcome at p, and thus we use Outcmp(h) for
that outcome. Similarly, for each history h passing completely through a properly
upper-bounded nonempty chain c or through a non-maximal point x , we will use
Outcmc(h) or Outcmx (h) for the outcome at c or x to which h belongs. It is routine
to verify the following by applying relevant definitions.

Fact 2.4. Let h be any history, let {x}, c ⊆ h, both of which are properly upper-
bounded, and let c be nonempty. Then c < x only if Hx ⊆ Outcmc(h), and c ≮ x
only if Outcmc(h) ⊆ Outcmx (h).

Fact 2.5. Let 〈T,<, Agent, Choice〉 be a stit frame, letG be any group, and let x ∈ h,
where x is not a maximal point. Then Outcmx (h) ⊆ Choicex

G(h).

The converse of Fact 2.5 does not in general hold: a possible choice for any group
(including Agent) at a moment may consist of several outcomes at the moment. How
many outcomes can there be at a past p without a maximum? The answer is that there

9 There is nevertheless a shortcoming in a presentation using history-outcomes. Set-theoretically
speaking, moment-outcomes at different moments are always different, while history-outcomes at
different moments may turn out to be the same. For example, if c is a nonempty segment of a history
in which no histories split at any point, then history-outcomes at points in c remain the same. For
more discussions of the notion of moment-outcomes and its applications, see Xu (1997, 2010, 2012)
and Brown (2008).
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may still be more than a single outcome at p even though for all h, h′ ∈ H[p], h ∈
Choicex

Agent(h
′) for every x ∈ p, i.e., h and h′ are not distinguished by any possible

choices at points in p. A stit frame 〈T,<, Agent, Choice〉 is agency determinate if for
each past p and each history h passing completely through p,

⋂
x∈pChoicex

Agent(h)

is a single outcome at p. In certain applications, agency determination or similar
conditions are proposed to make the semantic structures ideal in some sense. Since
the purpose of the current study is to provide a general theory, we will not include
this condition for our general framework.

3 Fields and Outcomes Bordering Fields

An anti-chain (in 〈T,<〉) is a nonempty subset i of T such that for all x, y ∈ i ,
neither x < y nor y < x . Let i be any anti-chain in 〈T,<〉. i intersects a history h
if i ∩ h �= ∅. If i intersects h, i ∩ h is clearly a singleton, and in such a case, we use
mi,h for the unique member of i ∩ h.

A field is a nonempty subset M of T . An anti-chain i covers a field M (i is a
cover of M) if for each x ∈ M , x � y for a y ∈ i and i intersects every h ∈ Hx and
x � mi,h .10 M is covered if it is covered by an anti-chain, and is properly covered
if it is covered by an anti-chain i such that i ∩ M = ∅. A properly covered field has
two roles in the current study. The first is to provide a background choice situation
for our discussion of strategies, and the second is to constrain the so-called future
outcomes that agents or groups may attain.

Covered fields may take various “shapes”, and it is their “borders” in the future
and the outcomes at the “borders” in which we are interested. A cover of a field
guarantees the field to have a “border”, and a proper cover even guarantees that there
are outcomes everywhere along the “border”. They are not accurate, nevertheless, in
telling where exactly the “border” is, much less about the outcomes there; for they
may contain points in the field as well as points far beyond the “border”. We then
have to find another way to talk about the outcomes at the “border” of a field.

Let M be any field. M is inward closed if for all x, y, z ∈ T such that x <

y < z, if x, z ∈ M then y ∈ M . We use M+ for the inward closure of M , i.e.,
M+ = {x ∈ T : ∃y, z ∈ M(y � x � z)}. A history h passes across M if
∅ �= M ∩ h < x ∈ h for some x . It is obvious that h passes across M only
if h ∈ H〈M〉, but the converse does not hold in general. An outcome H is an M-
bordering outcome (or an outcome bordering M) if there is a history h passing across
M+ such that H = OutcmM+∩h(h).11 For each field M , we will use OutcmBdrM

10 When assuming the Axiom of Choice, the clause “x � y for a y ∈ i” is redundant.
11 Let h pass across M , i.e., M ∩ h < x ∈ h for an x . If M is not inward closed, there may be a
y ∈ M such that x < y /∈ h and Hy ⊂ Hx ⊆ OutcmM∩h(h). The outcome OutcmM∩h(h) should
not be taken to be bordering M , and to rule out such outcomes as M-bordering outcomes, we need
to use M+ instead of M in our definition. The definition of M-bordering outcomes in terms of
moment-outcomes is simpler: O is an M-bordering outcome if O ∩ M = ∅ and O is an outcome
at a nonempty chain c in M+ (c ⊆ M+).
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for the set of all M-bordering outcomes. It is easy to see that if a field M is inward
closed, then for each outcome H, H ∈ OutcmBdrM iff H = OutcmM∩h(h) for an
h passing across M . Furthermore we have the following by definition and NBB:

Fact 3.1. Let h pass across M+ and h′ ∈ OutcmM+∩h(h). Then h′ passes across
M+, M+ ∩ h = M+ ∩ h′ and OutcmM+∩h(h) = OutcmM+∩h′(h′). Consequently,
for each outcome H , H ∈ OutcmBdrM iff for each h ∈ H , h passes across M+ and
H = OutcmM+∩h(h).

The next fact is a direct consequence of Facts 2.4, 2.5 and 3.1.

Fact 3.2. Let 〈T,<, Agent, Choice〉 be any stit frame, let H ∈ OutcmBdrM with M
to be any field, and let G be any group. For each x ∈ M and each K ∈ Choicex

G ,
either H ⊆ K or H ∩ K = ∅.

The following propositions show some facts concerning fields and outcomes bor-
dering them. The first states that no outcome bordering a field is compatible with
another such outcome.

Proposition 3.3. Let M be any field, and let H, H ′ ∈ OutcmBdrM . Then H �= H ′
only if H ∩ H ′ = ∅. Consequently, for all U, U ′ ⊆ OutcmBdrM ,

⋃
U = ⋃

U ′ iff
U = U ′ .

Proof. By definition, there are histories h and h′ passing across M+ such that H =
Outcmc(h) and H ′ = Outcmc′(h′) where c = M+ ∩ h and c′ = M+ ∩ h′. By
Proposition 2.2, either H ⊆ H ′ or H ′ ⊆ H or H ∩ H ′ = ∅. If H ⊆ H ′, h ∈
Outcmc′(h′), and then H = H ′ by Fact 3.1. Similarly, H ′ ⊆ H only if H = H ′.
Hence H �= H ′ only if H ∩ H ′ = ∅. �

Proposition 3.4. Let M be any properly covered field. Then,

(i) for each history h, h ∈ H〈M〉 iff h passes across M+;
(ii) for each h ∈ H〈M〉, there is an H ∈ OutcmBdrM such that h ∈ H ;
(iii) for eachoutcome H , H ∈ OutcmBdrM iff H = OutcmM+∩h(h) for anh ∈ H〈M〉;
(iv) H〈M〉 = ⋃

OutcmBdrM and OutcmBdrM = OutcmBdrM+ .

Proof. (i) Let h ∈ H〈M〉, i.e., h ∈ Hx for an x ∈ M . Assume that i properly covers
M . Then i intersects h and x < mi,h . If mi,h � z for a z ∈ M+, mi,h � z′ for a
z′ ∈ M , and then by definition, z′ < u for a u ∈ i , and hence mi,h < u, contrary
to our assumption that i is an anti-chain. It follows that M+ ∩ h < mi,h , and thus
h passes across M+. (ii) For each h ∈ H〈M〉, h passes across M+ by (i), and then
h ∈ OutcmM+∩h(h) ∈ OutcmBdrM by definition. (iii) follows from (i) by definition,
and (iv) follows from (ii), (iii), and a simple fact that M+ = M++. �

Proposition 3.4 (ii) and the following establish that for each field M, M is properly
covered iff no matter which history we go along through M , we always go into an
outcome at the “border” of M . From now on, we use “AC” to mark a proposition or
a fact to indicate the dependence of our proof (or a routine proof) on the Axiom of
Choice.
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Proposition 3.5. (AC). Let M be any field such that for each h ∈ H〈M〉, there is an
H ∈ OutcmBdrM such that h ∈ H . Then M is properly covered.

Proof. For each H ∈ OutcmBdrM , we know that there is an anti-chain iH such that
iH ∩ M = ∅ and iH intersects all and only h ∈ H . Letting i be the union of all iH

with H ∈ OutcmBdrM , we know by Proposition3.3 that i is an anti-chain. It is then
routine to verify that i properly covers M . �

Let M be any properly covered field. By Propositions3.3–3.4, we know that each
history h ∈ H〈M〉 is contained in a unique M-bordering outcome. Thus we will use,
for each h ∈ H〈M〉, OutcmBdrM (h) for the unique M-bordering outcome to which
h belongs.

For each point m, OutcmBdr{m} is obviously the set of all outcomes at m, i.e.,
OutcmBdr{m} = Outcmm . It is worth noting, however, that for a chain c of points,
OutcmBdrc is not in general the same as Outcmc, and that for a field M , OutcmBdrM

is not in general the same as
⋃{Outcmc : c is a maximal chain in M+}. For example,

suppose that h, h′ ∈ Hx and Outcmx (h) �= Outcmx (h′) (h and h′ share no point after
x). Let M = {x, y} with x < y ∈ h′. Then we can easily verify that Outcmx (h) is
M-bordering, although not an outcome at the chain {x, y}.

4 Strategies and Their Admitted Future Outcomes

The semantic account for ought sentences developed in Horty (2001) emphasizes
a dominance relation between choices at a single moment, for the same agent or
group. Despite its merits, the account has two limitations. On the one hand, what
one ought to achieve is often not what she can do in a single choice or action, but
in a series of choices or actions. On the other hand, we may take a current choice
to dominate another not because the immediate outcomes ensured by the former
have higher value than those ensured by the latter. It may be because, when we look
further into the future possibilities, the former opens a series of actions leading to
future outcomes that have higher values than those to which the latter may lead us.
This is what brought Horty to his theory in Horty (2001) of strategic ought with a
single agent.

There are nevertheless some problems when Horty approaches his notions of
strategic acts and strategic oughts, one of which is related to the notion of indepen-
dence concerning choices for different agents at different moments. The problems
are not really in the theories of strategies developed by Belnap and Horty, but in their
applications or relations to other theories. We may then proceed safely to expand
their theories of strategies, and discuss the problems in some other place.

This section and the following two expand Belnap’s theory of strategies to the
extent that we can talk about what different groups may do in the same strategy field.
In doing so, we restrict ourselves to “primary strategies”, as Belnap calls them, or
“irredundant strategies”, as Horty calls them. Notions and most terms are inherited
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directly from Belnap (1996b) and Belnap et al. (2001). Throughout the rest of this
paper, we fix 〈T,<, Agent, Choice〉 to be a stit frame, relative to which all upcoming
discussions are to be understood.

A strategy for a group G in a field M is a function s such that dom(s) ⊆ M , where
dom(s) is the domain of s, and s(x) ∈ Choicex

G for each x ∈ dom(s). A strategy for
G is a strategy for G in a field, and a strategy (in a field) is a strategy for a group (in
the field). A strategy for an individual agent α (in a field) is a strategy for {α} (in
the field).12 We have assumed that a field is always nonempty, and now we further
assume that so is every strategy in every field (with functions to be identified with
sets of ordered pairs). Here are some basic notions concerning strategies.

Definition 4.1. Let s be any strategy, h any history, m any moment, H any outcome,
and M any field. Then

(i) s admits h iff h ∈ s(x) for each x ∈ dom(s) ∩ h,13

(ii) adh(s) = {h′ : s admits h′},
(iii) s admits m iff m ∈ h for an h ∈ adh(s),
(iv) adm(s) = {x : s admits x},
(v) s admits H iff H ⊆ adh(s),
(vi) adoM (s) = {H ′ ∈ OutcmBdrM : s admits H ′}.

Concerning the new notion of admitted outcomes bordering a field M , it is easy
to verify by definition that

⋃
adoM (s) ⊆ adh(s) for each strategy s in M , and hence

the following fact holds:

Fact 4.2. Let M be any field in which s is a strategy for a group G. Then for each
H ∈ OutcmBdrM , H ⊆ ⋃

adoM (s) iff H ∈ adoM (s) .

Definition 4.3. Let s be any strategy for G in a field M . Then

(i) s is primary iff dom(s) ⊆ adm(s);
(ii) s is secondary iff it is not primary;
(iii) s is backward closed in M iff for all x, y ∈ M , x ∈ dom(s) and y < x only if

y ∈ dom(s);
(iv) s is simple in M iff it is primary and backward closed in M .

For each group G, we use P-StrategyM
G (S-StrategyM

G ) for the set of all primary
(simple) strategies for G in M . The realm of primary strategies is our focus in this
paper.14 Note that for each s ∈ P-StrategyM

G and each x ∈ dom(s), s(x)∩adh(s) �= ∅

by definition, and hence adh(s) ∩ H〈M〉 is never empty. Furthermore, the following
fact can easily be verified.

12 Belnap calls such a function a consistent and strict strategy for α in M in Belnap (1996b) and
Belnap et al. (2001), while Horty calls it a strategy for α in M in Horty (2001), though the field M
in the latter needs to have a starting point up to which M is backward closed.
13 In Horty (2001), for s to admit h, it is further required that h ∩ dom(s) �= ∅.
14 Secondary strategies are important for a study of conditional ought with respect to future out-
comes, though they are not in the scope of our current work. For a brief discussion of secondary
strategies, see Belnap (1996b) or Belnap et al. (2001).
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Fact 4.4. (AC). For each primary strategy s, each nonempty chain in dom(s) can be
extended to a history that s admits.15

The following propositions establish some simple connections between admitted
histories and admitted outcomes, the first of which states that a strategy in M admits
an M-bordering outcome if it admits a member of it.

Proposition 4.5. Let s be a strategy for G in a field M . Then for each H ∈
OutcmBdrM , H ∈ adoM (s) iff H ∩ adh(s) �= ∅.

Proof. Letting H ∈ OutcmBdrM , we show that h ∈ H ∩adh(s) only if H ⊆ adh(s).
Suppose that h ∈ H ∩adh(s). Let c = M+ ∩h. Then c �= ∅ and H = Outcmc(h) by
Fact 3.1. Consider any h′ ∈ H and any x ∈ dom(s)∩h′. We know that x ∈ M ∩h′ ⊆
c ⊆ h ∩ h′, and thus by Facts 2.4–2.5, Outcmc(h) ⊆ Outcmx (h) ⊆ Choicex

G(h).
Then Outcmc(h) ⊆ s(x) = Choicex

G(h) since h ∈ adh(s), and hence h′ ∈ s(x) since
h′ ∈ Outcmc(h). It follows that h′ ∈ s(x) for every x ∈ dom(s) ∩ h′, and hence
h′ ∈ adh(s). �

The following proposition is useful when we extend our results concerning admit-
ted histories passing through a field to similar results concerning admitted outcomes
bordering the field.

Proposition 4.6. Let M be any properly covered field, and let s be any strategy in
M . Then

⋃
adoM (s) = adh(s) ∩ H〈M〉.

Proof. By definition,
⋃

adoM (s) ⊆ adh(s) and
⋃

adoM (s) ⊆ ⋃
OutcmBdrM ,

and hence
⋃

adoM (s) ⊆ adh(s) ∩ H〈M〉 by Proposition 3.4 (iv). Consider any
h ∈ adh(s) ∩ H〈M〉. By Proposition 3.4 (ii), h ∈ H for an H ∈ OutcmBdrM ,
and then, since h ∈ adh(s), Proposition 4.5 implies that H ∈ adoM (s), and hence
h ∈ ⋃

adoM (s). It follows that
⋃

adoM (s) = adh(s) ∩ H〈M〉. �

5 Pre-Simple Strategies and Complete Strategies

Here we present a brief discussion on pre-simple strategies and complete primary
strategies. The proofs of propositions in this section follow closely those in Chap.13
of Belnap et al. (2001), except that we expand various notions there concerning
individual strategies to those concerning group strategies. Readers familiar with the
materials in Chap.13 of Belnap et al. (2001) may skip this section.

Recall that when y < x , we use Choicey
G(Hx ) for the unique K ∈ Choicey

G
such that Hx ⊆ K (see Fact 1.1). A strategy s in a field M is pre-simple in M
iff s is primary, and for all x, y ∈ dom(s) and z ∈ M , z < x and z < y only if
Choicez

G(Hx ) = Choicez
G(Hy).

For all strategies s and s′ for a group G, s′ is an extension of s (or s′ extends s) iff
s ⊆ s′, where we identify functions as sets of ordered pairs. Note that when speaking

15 It is also easy to verify that this does not hold for secondary strategies.
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of an extension s′ of a strategy s, we always presuppose that s and s′ are strategies for
the same group. Note also that if s′ extends s, then by definition, adh(s′) ⊆ adh(s).
A simple (primary) extension of a strategy s in M is an extension of s that is itself
simple (primary) in M . A primary strategy in M may have no simple extension at
all in M , but each pre-simple strategy in M does have such an extension.

Proposition 5.1. (AC). s is pre-simple for G in M iff it can be extended to a simple
strategy for G in M .

Proof. Suppose that s is pre-simple for G in M . Let D = {y ∈ M − dom(s) : ∃x ∈
dom(s)(y < x)}. Consider any y ∈ D. Because s is pre-simple in M , there is a
unique Ky ∈ Choicey

G such that Hx ⊆ Ky for each x ∈ dom(s) with y < x . Let
s′ = s ∪ {〈y, Ky

〉 : y ∈ D}. It is easy to verify that s′ is a backward closed extension
of s in M , and then adh(s′) ⊆ adh(s) by definition. To show that s′ is primary,
consider any x ∈ dom(s′) = dom(s) ∪ D. Then there is a u ∈ dom(s) such that
x � u, and then, letting c be a maximal chain in dom(s) containing u, we know
by Fact 4.4 that c = h ∩ dom(s) for an h ∈ adh(s). For each y ∈ h ∩ dom(s′), if
y ∈ dom(s), h ∈ s(y) = s′(y) since h ∈ adh(s); and if y ∈ D, y < z for a z ∈ c
by the maximality of c in dom(s), and then h ∈ s(z) ⊆ s′(y) by definition of s′.
It follows that h ∈ adh(s′), and then, since x � u ∈ h, x ∈ adm(s′). Hence s′ is
primary.

Suppose that s is not pre-simple in M . If s is secondary, there is an x ∈ dom(s) such
that Hx ∩adh(s) = ∅, and then for each extension s′ of s, adh(s′) ⊆ adh(s), and thus
Hx ∩adh(s′) = ∅, and hence s′ is secondary.Assume that s is primary. Then for some
x, y ∈ dom(s) and z ∈ M , z < x and z < y, and Choicez

G(Hx ) �= Choicez
G(Hy).

Consider any backward closed extension s′ of s in M . If s′(z) �= Choicez
G(Hx ),

Hx ∩ adh(s′) = ∅, and then x /∈ adm(s′); and similarly, if s′(z) �= Choicez
G(Hy),

y /∈ adm(s′). Since either s′(z) �= Choicez
G(Hx ) or s′(z) �= Choicez

G(Hy), either
x /∈ adm(s′) or y /∈ adm(s′), which makes s′ secondary. �

A complete strategy in a field is a strategy that is defined everywhere in the field
along its admitted histories.

Definition 5.2. Let s be any strategy for G in a field M . Then

(i) s is complete along a history h in M iff M ∩ h ⊆ dom(s);
(ii) s completely admits h in M iff s admits h and is complete along h in M ;
(iii) s is complete in M iff s is complete along every h ∈ adh(s) in M .

The fact below is a direct consequence of our definitions.

Fact 5.3. Let s and s′ be any strategies for G in M such that s′ extends s. Then the
following hold:

(i) s is complete along h in M only if s′ is;
(ii) s completely admits h in M only if s′ does.
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We will use CP-StrategyM
G for the set of all complete primary strategies for G

in M . It is obvious that CP-StrategyM
G ⊆ P-StrategyM

G . The following facts prove
useful:

Fact 5.4. Let M be any field, and let F and G be any groups. Then

(i) CP-StrategyM
G ⊆ S-StrategyM

G ;

(ii) for each s ∈ CP-StrategyM
G and each h ∈ H〈M〉, h ∩ dom(s) �= ∅;

(iii) for each s ∈ CP-StrategyM
F and each s′ ∈ CP-StrategyM

G , dom(s)∩dom(s′) �= ∅.

Proof. (i) Let s ∈ CP-StrategyM
G . For each x ∈ dom(s), since s is primary, h ∈ s(x)

for an h ∈ adh(s), and then, since s is complete along h, M ∩ {y : y < x} ⊆
M ∩h ⊆ dom(s). It follows that s is backward closed, and then s ∈ S-StrategyM

G . (ii)

Let s ∈ CP-StrategyM
G and h ∈ H〈M〉. If h ∩ dom(s) = ∅, then trivially h ∈ adh(s),

and then h ∩ M ⊆ dom(s) since s is complete along h in M , and hence h ∩ M ⊆
h ∩ dom(s) = ∅, contrary to that h ∈ H〈M〉. (iii) follows from (i) and (ii). �

For each strategy s for G in M , and for each h ∈ adh(s), let sh be a function
on dom(s) ∪ (h ∩ M) such that sh(x) = s(x) for each x ∈ dom(s), and sh(x) =
Choicex

G(h) for each x ∈ (h ∩ M) − dom(s). Such sh is obviously unique, and is a
strategy for G in M which extends s, and we say that s′ extends s (completely) along
h in M iff s′ = sh .

Proposition 5.5. Let s be a strategy for G in M , let h ∈ adh(s), and let s′ extend s
along h in M . Then the following hold:

(i) s′ completely admits h in M ;
(ii) s is simple in M only if s′ is.

Proof. (i) It is clear by definition that s′ is complete along h in M , and h ∩dom(s′) =
D ∪ (dom(s) ∩ h), where D = (h ∩ M) − dom(s). Also by definition, h ∈
Choicex

G(h) = s′(x) for each x ∈ D, and, since h ∈ adh(s), h ∈ s(y) = s′(y)

for each y ∈ dom(s) ∩ h. It follows that h ∈ adh(s′).
(ii) Let s be simple in M . Then s′ is evidently backward closed in M . To show that

s′ is primary, consider any x ∈ dom(s′). If x ∈ h, x ∈ adm(s′) since h ∈ adh(s′) by
(i). Suppose that x ∈ dom(s′) − h. Then x ∈ dom(s) − h. Since s is primary, x ∈ h′
for an h′ ∈ adh(s). Now for each y ∈ dom(s′) ∩ h′, if y < x , y ∈ dom(s) since s
is backward closed in M , and if x � y, y /∈ h since x /∈ h, and hence y ∈ dom(s).
It follows that for each y ∈ dom(s′) ∩ h′, y ∈ dom(s) and then s′(y) = s(y),
which implies that h′ ∈ s′(y) since h′ ∈ adh(s). Hence h′ ∈ adh(s′), and then
x ∈ adm(s′) �.

A complete primary extension of a strategy s for G in M is an s′ ∈ CP-StrategyM
G

such that s ⊆ s′.We showbelow that each pre-simple strategy has a complete primary
extension.

Proposition 5.6. (AC). Let S be a nonempty ⊆-chain of simple strategies for G in
M . Then

⋃
S is a simple strategy for G in M that extends all s′ ∈ S.
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Proof. Let s = ⋃
S. It is easy to see that s is a strategy for G in M extending all

s′ ∈ S, and is backward closed in M since each s′ ∈ S is. It then suffices to let
x ∈ dom(s) and show that x ∈ h for an h ∈ adh(s). Let c be a maximal chain in
dom(s) containing x . Case 1, c contains a largest member u. Then u ∈ dom(s′) for
an s′ ∈ S, and s′(y) = s(y) for each y ∈ dom(s) with y � u. Since s′ is primary,
u ∈ h for an h ∈ adh(s′), and then, because dom(s)∩h = dom(s′)∩h, it follows that
h ∈ s′(y) = s(y) for each y ∈ dom(s) ∩ h, i.e., h ∈ adh(s). Case 2, c has no largest
member. Let h be any history including c. Consider any y ∈ dom(s) ∩ h. Then there
is a z ∈ dom(s)∩h and an s′′ ∈ S such that y, z ∈ dom(s′′), y < z and s(y) = s′′(y).
Since s′′ is primary, z ∈ h′ for some h′ ∈ adh(s′′), and then, since h, h′ ∈ Hz and
y < z, h ∈ s′′(y) = s(y) by NC (see Sect. 1). It follows that h ∈ adh(s). �

Applying Zorn’s lemma, Fact 5.3 and Propositions 5.5–5.6 and 5.1, one can rou-
tinely establish the following.

Proposition 5.7. (AC). For each s ∈ S-StrategyM
G and each h ∈ adh(s), s ⊆ s′ and

h ∈ adh(s′) for an s′ ∈ CP-StrategyM
G , and hence adh(s) = ⋃

s′′∈Sadh(s′′) where
S = {s′′ ∈ CP-StrategyM

G : s ⊆ s′′}. Consequently, each pre-simple strategy for G
in M has a complete primary extension in M .

6 Group-Joining Meets

Bringing in different agents and their strategies provides new perspectives to a study
of strategies for different agents in the same fields. As a preparation for our discus-
sions on distinguishability and independence, we deal with some technical notions
in this section.

Consider two agents α and β, and their strategies sα and sβ in a field M with
m ∈ D = dom(sα) ∩ dom(sβ). Since α �= β, IA requires sα(m) ∩ sβ(m) �= ∅, and
the same can be said about each point in D. Letting s be a function on D such that
s(x) = sα(x) ∩ sβ(x) for each x ∈ D, we know that each s(x) with x ∈ D is a
member of Choicex{α,β}, and hence s is a strategy for {α, β} in M . This strategy is
what we call the “group-joining meet” of sα and sβ .

Definition 6.1. Let s and s′ be strategies in M for G and F respectively such that
G ∩F = ∅ and dom(s)∩ dom(s′) �= ∅. The group-joining meet of s and s′, written
s
s′, is the function s∗ ondom(s∗) = dom(s)∩dom(s′) such that s∗(x) = s(x)∩s′(x)

for every x ∈ dom(s∗).

It is easy to see that s 
 s′ = s′ 
 s when both are defined. When G and F are
disjoint while dom(s) and dom(s′) are not, we know that for each x ∈ dom(s 
 s′),
(s 
 s′)(x) is not only nonempty, but also identical to a member of Choicex

G∪F . It
then follows that s 
 s′ is a strategy for G ∪ F in M .

Before showing some facts concerning strategies and their group-joining meets,
we need to show that for all primary strategies s and s′ for F and G respectively, if
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F and G are disjoint but dom(s) and dom(s′) are not, then adh(s)∩ adh(s′) �= ∅. To
that end, we use the following auxiliary notion. Let s and s′ be strategies for G in M ,
and let h ∈ H〈M〉 and c ⊆ h∩ M . s′ extends s in M along c w.r.t. h if s′ extends s such
that dom(s′) = dom(s) ∪ c and s′(x) = Choicex

G(h) for each x ∈ h ∩ (c − dom(s)).
Note that if s′ is an extension of s in M along c w.r.t. h, then such s′ is unique, and
h ∈ adh(s) only if h ∈ adh(s′).

Proposition 6.2. (AC). Let sF and sG be primary strategies for F and G in M
respectively, whereF ∩G = ∅, and let m ∈ dom(sF )∩dom(sG).16 Then adh(sF )∩
adh(sG) ∩ Hm �= ∅, and adoM (sF ) ∩ adoM (sG) �= ∅ if M is properly covered.

Proof. Let DF = {x ∈ M : ∃y(x � y ∈ dom(sF ))} and DG = {x ∈ M : ∃y(x �
y ∈ dom(sG))}. By hypothesis,m ∈ DF ∩ DG . Let c be amaximal chain in DF ∩ DG
containing m. It is easy to verify that H[c] ⊆ Hm and

for each h ∈ H[c], h ∩ dom(sF ) ⊆ c or h ∩ dom(sG) ⊆ c. (2)

Let dF and dG be any maximal chains, extending c, in DF and DG respectively.
It is easy to see that dF ∩ dom(sF ) is a maximal chain in dom(sF ) that is co-final
with dF , and therefore can by Fact 4.4 be extended to an hF ∈ adh(sF ) such that
c ⊆ dF ⊆ hF . Similarly, c ⊆ dG ⊆ hG for an hG ∈ adh(sG). Let s′

F be the extension
of sF in M along c w.r.t. hF , and let s′

G be the extension of sG in M along c w.r.t.
hG . By our note above,

hF ∈ adh(s′
F ) ⊆ adh(sF ) and hG ∈ adh(s′

G) ⊆ adh(sG). (3)

By Propositions 3.4 (ii) and 4.5, it suffices to show that

adh(sF ) ∩ adh(sG) ∩ H[c] �= ∅. (4)

Case 1, there is no last point in c. By (3), hF , hG ∈ s′
F (x)∩ s′

G(x) for each x ∈ c.
It is then easy to see by our case assumption and NC that

for each x ∈ c, H[c] ⊆ s′
F (x) ∩ s′

G(x). (5)

Assume that hF /∈ adh(s′
G), or by (3) there is nothing more to show. Then there is a

y ∈ hF ∩ dom(s′
G) such that hF /∈ s′

G(y), and then by (5), c < y ∈ hF ∩ dom(sG),
and hence by (2), h ∩ dom(sF ) ⊆ c for each h ∈ Hy . It follows from (5) that
Hy ⊆ adh(s′

F ). Since sG is primary, there is an h′ ∈ Hy ∩ adh(sG), and hence (4)
holds.

Case 2, there is a last point z in c. Let H = s′
F (z) ∩ s′

G(z) and X = (
⋃

H) ∩ {y :
z < y}. Because F ∩ G = ∅, H �= ∅ by IA. We claim that

16 The condition that m ∈ dom(sG) ∩ dom(sF ) can be weakened to that m ∈ M such that m � x
and m � y for an x ∈ dom(sG) and a y ∈ dom(sF ).
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for each x ∈ c, H ⊆ s′
F (x) ∩ s′

G(x). (6)

For each x < z and h ∈ H , because h, hF , hG ∈ Hz , we know by NC and (3) that
h ∈ Choicex

F (hF ) = s′
F (x), and similarly, h ∈ s′

G(x). Hence (6) holds. Subcase
2A, there is an x ∈ dom(s′

F ) ∩ X . Then c � z < x ∈ dom(sF ), and hence by
(2), h′ ∩ dom(sG) ⊆ c for each h′ ∈ Hx , and then h′ ∩ dom(s′

G) ⊆ c for each
h′ ∈ Hx because dom(s′

G)−dom(sG) ⊆ c. It then follows from Hx ⊆ H and (6) that
Hx ⊆ adh(s′

G) ⊆ adh(sG). Since sF is primary, there is an h ∈ Hx ∩ adh(sF ), and
then (4) holds. Subcase 2B, dom(s′

F ) ∩ X = ∅. If there is a u ∈ dom(s′
G) ∩ X , an

argument similar to that in subcase 2Awill show that (4) holds. If dom(s′
G)∩ X = ∅,

then (6) implies (4). �

The following proposition provides a list of useful facts concerning strategies and
their group-joining meets.

Proposition 6.3. Let s and s′ be strategies for G and F in M respectively, where
G ∩ F = ∅ and dom(s) ∩ dom(s′) �= ∅, and let s∗ = s 
 s′. Then

(i) adh(s) ∩ adh(s′) ⊆ adh(s∗);
(ii) adm(s) ∩ adm(s′) ⊆ adm(s∗) if both s and s′ are primary; (AC)
(iii) adh(s∗) ⊆ adh(s) and adm(s∗) ⊆ adm(s) if s and s′ are backward closed and

s′ is complete in M ;
(iv) adh(s∗) = adh(s) ∩ adh(s′) if s and s′ are both backward closed and complete

in M ;
(v) adoM (s∗) = adoM (s)∩adoM (s′) if M is properly covered in which s and s′ are

both backward closed and complete;
(vi) adm(s∗) = adm(s) ∩ adm(s′) if s and s′ are both primary and complete in M ;

(AC)
(vii) s∗ is backward closed in M if both s and s′ are;
(viii) s∗ is primary (simple) in M if both s and s′ are; (AC)
(ix) s∗ completely admits h in M if both s and s′ do;
(x) s∗ is backward closed and complete in M if both s and s′ are.

Proof. (ii) Assume that s and s′ are primary. Consider any x ∈ adm(s)∩adm(s′). By
definition, h, h′ ∈ Hx for some h ∈ adh(s) and h′ ∈ adh(s′). Suppose for reductio
that x /∈ adm(s∗). Then adh(s∗) ∩ Hx = ∅, and hence by (i) and Proposition
6.2, y /∈ dom(s∗) = dom(s) ∩ dom(s′) for each y � x , and consequently, since
h /∈ adh(s∗), there is a z ∈ h ∩ dom(s∗) such that h /∈ s∗(z) and z < x . By
definition, s∗(z) = s(z) ∩ s′(z). Then h ∈ adh(s) ∩ Hx implies h ∈ s(z) − s′(z),
and h′ ∈ adh(s′) ∩ Hx implies h′ ∈ s′(z), and then by NC, Hx ⊆ s′(z), and hence
h ∈ s′(z), a contradiction.

(iii) Let s and s′ be backward closed, and s′ complete, in M . Suppose for reductio
that h ∈ adh(s∗) − adh(s), i.e., h /∈ s(x) for an x ∈ dom(s) ∩ h, and

h ∈ s∗(y) ⊆ s′(y) for each y ∈ c, (7)
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where c = dom(s∗) ∩ h. We first claim that

x /∈ dom(s′), (8)

for otherwise we have x ∈ c since x ∈ dom(s) ∩ h, and then h ∈ s∗(x) ⊆ s(x), a
contradiction. Next, suppose for reductio that x ′ /∈ dom(s) for an x ′ ∈ dom(s′) ∩ h.
Since x, x ′ ∈ h, either x ′ < x or x � x ′, and then, since s is backward closed
in M , x ′ < x only if x ′ ∈ dom(s), contrary to the supposition of this reductio,
and hence x � x ′. But s′ is also backward closed in M , and hence x ∈ dom(s′),
contrary to (8). We conclude from this reductio that dom(s′)∩ h ⊆ dom(s), and then
c = dom(s) ∩ dom(s′) ∩ h = dom(s′) ∩ h, and hence by (7), h ∈ adh(s′). But s′
is complete in M , and hence h ∩ M ⊆ dom(s′), contrary to (8). The rest of (iii) is
straightforward.

(iv) follows from (i) and (iii). (v) For each H ∈ OutcmBdrM , that H ∈ adoM (s 

s′) is equivalent to each of the following:

• H ⊆ ⋃
adoM (s 
 s′) Fact 4.2

• H ⊆ adh(s 
 s′) ∩ H〈M〉 Proposition 4.6
• H ⊆ adh(s) ∩ adh(s′) ∩ H〈M〉 (iv)
• H ⊆ (

⋃
adoM (s)) ∩ (

⋃
adoM (s′)) Proposition 4.6

• H ∈ adoM (s) ∩ adoM (s) Fact 4.2

(i) and (vi)–(x) are easily verifiable by definition and (ii)–(iii). �
Note that Proposition 6.3 (iii–vi) have little room for a generalization concerning

the completeness requirement for strategies. In other words, adh(s 
 s′) ⊆ adh(s)
may fail if s′ is not complete in M .17

Let E be any group. For each s ∈ CP-StrategyM
E and each group G ⊆ E , let s|G

be the strategy for G in M such that dom(s|G) = dom(s) and for each x ∈ dom(s),
s(x) ⊆ s|G(x), i.e., s|G(x) is the only member of Choicex

G that includes s(x). We

call s|G the subordinate strategy for G in s. Note that because s ∈ CP-StrategyM
E ,

s|G is obviously backward closed in M , and completely admits every h ∈ adh(s),
and hence is primary. Note also that because adh(s) and adh(s|G)may not in general
be the same, s|G may not in general be a complete strategy for G.
Proposition 6.4. (AC). Let F and G be disjoint groups and E = F ∪G, let s ∈ CP-
StrategyM

E , and let sF and sG be any complete primary extensions of s|F and s|G in
M respectively. Then adh(sF ) ∩ adh(sG) = adh(s) and s = s|F 
 s|G = sF 
 sG =
s|F 
 sG = sF 
 s|G .
Proof. It follows by definition that s = s|F 
 s|G . Suppose that h ∈ adh(s). Because
s completely admits h in M , h ∈ s(x) for each x ∈ h ∩ M , and then, because

17 Let x < y, let Choicey
β = {K , K ′} with K �= K ′, and let h ∈ K and h′ ∈ K ′. Suppose that

h, h′ ∈ Kα ∩ Kβ for a Kα ∈ Choicex
α and a Kβ ∈ Choicex

β (the rest of the choice situation is
not essential). Let sα and sβ be strategies for α and β in {x, y} such that dom(sα) = {x} and
dom(sβ) = {x, y}, sα(x) = Kα and sβ(x) = Kβ , and sβ(y) = K ′. It is then easy to verify that
h ∈ adh(sα 
 sβ) but h /∈ adh(sβ).
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s(x) = s|F (x)∩ s|G(x) for each such x , h ∈ sF (x)∩ sG(x) for each x ∈ h ∩ M , and
hence h ∈ adh(sF )∩adh(sG). Suppose for reductio that h ∈ adh(sF )∩adh(sG) and
h /∈ adh(s). Then h /∈ s(x) for an x ∈ h ∩ dom(s), and h ∈ sF (x) ∩ sG(x) because
dom(s) ⊆ dom(sF ) ∩ dom(sG). By definition, x ∈ dom(s) implies sF (x) = s|F (x)

and sG(x) = s|G(x), and hence h ∈ s|F (x) ∩ s|G(x) = s(x), a contradiction. It
follows that adh(sF ) ∩ adh(sG) = adh(s). By Proposition 6.3(iv,viii,ix), adh(sF 

sG) = adh(sF ) ∩ adh(sG), and both sF 
 sG and s are primary and complete along
their admitted histories in M , and hence dom(sF 
 sG) = dom(s), from which it
follows that sF 
 sG = s. The rest of the proposition is guaranteed by definition. �

7 Distinguishability

Let G be any group, and let m be any point. Speaking in an abstract way, what
G can do at m is identified with a set of histories within which G may intuitively
constrain the future course of events to lie, as suggested in Belnap et al. (2001)
and Horty (2001). Such a set of histories is, of course, presented as a member of
Choicem

G . To put the matter in a different way, we may say that what G can do at
best at a moment is identified with a maximal set of histories indistinguishable for
G at the moment, where h and h′ are distinguishable for G at m if h, h′ ∈ Hm and
Choicem

G (h) �= Choicem
G (h′).18 Concerning what G can do at a single point, this

notion of distinguishability may not seem to provide more than what the notion of
choice does, for a maximal set of histories indistinguishable for G at m is nothing but
a member of Choicem

G . Concerning what G can do through a field, nevertheless, the
notion of distinguishability does providemore than that of choice. Bymaking choices
at various points in a field M , G may also constrain the future course of events to lie
within a set of histories passing through M . Applying the notion of distinguishability,
we may differentiate one from another of what G can do through M , which amounts
to identifying each of them with a maximal set of histories indistinguishable for G.
Metaphorically speaking, distinguishability displays what G can do through M at
the highest resolution. In this section, we study what groups can do through a field
in terms of distinguishability.

Let M be any field, let G be any group, and let h, h′ ∈ H〈M〉. h and h′ are
distinguishable for G in M if they are distinguishable for G at a point in M , and are
indistinguishable for G in M otherwise. Intuitively, two histories are distinguishable
for G in M just in case some choices for G at a point in M can tell them apart.
It is easy to see that the relation of distinguishability for G in M is irreflexive and
symmetrical, while the relation of indistinguishability for G in M is reflexive and
symmetrical. Note that for h and h′ to be distinguishable for G at x , they must both
pass through x . In other words, distinguishability requires availability. It should then
be clear that for h and h′ to be distinguishable for G at m, it is not enough to only
have that h′ /∈ Choicex

G(h).

18 The idea here of distinguishability is from Belnap. See, e.g., Belnap (1991).
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For each H ⊆ H〈M〉, H is G-indistinguishable in M if members of H are pairwise
indistinguishable for G in M . When the field M is clear in the context, we often drop
the phrase “in M”. The following proposition shows that histories distinguishable
for a group are distinguishable for all its super-groups, or by contraposition, histories
indistinguishable for a group are indistinguishable for all its sub-groups.

Proposition 7.1. Let M be any field, let F and G be any groups such that F ⊆ G,
and let h, h′ ∈ H〈M〉 and H ⊆ H〈M〉. Then

(i) if h and h′ are distinguishable for F , so are they for G; and
(ii) if H is G-indistinguishable, it is F-indistinguishable.

Proof. (i) Suppose that h and h′ are distinguishable for F . Then there is an
m ∈ M such that h, h′ ∈ Hm and Choicem

F (h) �= Choicem
F (h′). Since F ⊆ G,

Choicem
G (h) ⊆ Choicem

F (h) and Choicem
G (h′) ⊆ Choicem

F (h′), and hence, since
Choicem

F (h) ∩ Choicem
F (h′) = ∅, Choicem

G (h) �= Choicem
G (h′). It then follows that

h and h′ are distinguishable for G. (ii) follows directly from (i). �

Provided that A is a nonempty set, a classification of A is a set-theoretical “cover”
of A, i.e., a subset X of P(A) (the powerset of A) such that

⋃
X = A and for all

X, X ′ ∈ X, X ⊆ X ′ only if X = X ′. A classification of A is like a partition of A,
as they both satisfy the condition of exhaustiveness, i.e.,

⋃
X = A. The difference

between them is obvious, too. A classification allows its members to partly overlap,
whereas a partition needs to satisfy the condition of disjointedness, i.e., its members
need to be pairwise disjoint. A classification X of A is trivial if X = {A}. Note that
if X is a non-trivial classification of A, then

⋂
X cannot be a member of X because

no member of a classification is a proper subset of another. For the same reason, ∅

is never a member of any classification of any nonempty set.
Let M be any field, and let H ⊆ H〈M〉. For each group G, H is a maximal

G-indistinguishable set (of histories) through M (a G-MIS through M) if H is
G-indistinguishable in M but no proper extension of H in H〈M〉 is. We will drop
the phrase “through M” when M is clear in the context. Note that a G-MIS through
M is a maximal set of histories that G cannot distinguish in M , and is therefore a
minimal set of histories within which G can constrain the future course of events to
lie, i.e., one of what G can do at best through M .

For each group G, let AM,G be the set of all G-MISs through M . Applying an
argument similar to that used in Lindenbaum’s lemma, one can easily verify that for
each h ∈ H〈M〉 and each group G, h is contained in a G-MIS through M . Hence we
have the following:

Fact 7.2. (AC). For each field M and each groupG,AM,G is a classification of H〈M〉.
For each group G, let us call the classification AM,G of H〈M〉 the classification

of H〈M〉 determined by G. The following proposition provides a correspondence
between G-MISs and complete primary strategies for G: a G-MIS through M is
nothing but the set of histories in H〈M〉 admitted by a complete primary strategy s
for G in M . Consequently, members of the classification of H〈M〉 determined by G
are sets of histories in H〈M〉 admitted by complete primary strategies for G in M .
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Proposition 7.3. Let G be any group, let M be any field, and let H ⊆ H〈M〉. Then
H is a G-MIS through M iff H = adh(s) ∩ H〈M〉 for an s ∈ CP-StrategyM

G . Hence

AM,G = {adh(s) ∩ H〈M〉 : s ∈ CP-StrategyM
G }.

Proof. Suppose that H is a G-MIS. Let D = M ∩ (
⋃

H). We claim that

for each x ∈ D, K ∩ H �= ∅ for exactly one K ∈ Choicex
G . (9)

Let x ∈ D. Then x ∈ h ∩ M for an h ∈ H . Letting K = Choicex
G(h), we have that

K ∩ H �= ∅. For each K ′ ∈ Choicex
G such that K ′ ∩ H �= ∅, K ′ = Choicex

G(h′)
for an h′ ∈ H , and hence, since H is G-indistinguishable, Choicex

G(h′) = K . It
then follows that (9) holds. Now let s be a function on D such that for each x ∈ D,
s(x) = the only K ∈ Choicex

G such that K ∩ H �= ∅. Then s is a strategy for G
in M that is backward closed in M . We show below that H = adh(s) ∩ H〈M〉 and
s ∈ CP-StrategyM

G .
Consider any h ∈ H〈M〉. If h ∈ H , then for each x ∈ h ∩ dom(s), s(x) is the only

K ∈ Choicex
G such that K ∩ H �= ∅, and hence h ∈ s(x), from which it follows

that h ∈ adh(s). If h ∈ H〈M〉 − H , then, since H is a G-MIS, there is an h′ ∈ H
and a y ∈ M such that h, h′ ∈ Hy and Choicey

G(h) �= Choicey
G(h′), and hence by

definition of s, s(y) = Choicey
G(h′), and consequently h /∈ adh(s). It then follows

that H = adh(s)∩ H〈M〉, which implies that dom(s) = M ∩ (
⋃

H) ⊆ ⋃
adh(s) and

that M ∩ h ⊆ dom(s) for each h ∈ adh(s), and hence s is primary and is complete
in M .

Next suppose that s ∈ CP-StrategyM
G . We show that H is an G-MIS with H =

adh(s) ∩ H〈M〉. To show that H is G-indistinguishable, it suffices to let h ∈ H and
h′ ∈ H〈M〉 such that K = Choicex

G(h) �= Choicex
G(h′) = K ′ for an x ∈ M , and

show that h′ /∈ adh(s). Because h ∈ adh(s) ∩ K , s(x) = K by the completeness of
s, and then, since h′ ∈ K ′ �= K , h′ /∈ adh(s). To show further that H is a G-MIS,
consider any h0 ∈ H〈M〉 − adh(s). By definition, h0 /∈ s(y) for a y ∈ h0 ∩ dom(s),
and hence Choicey

G(h0) �= s(y). Because s is primary and complete in M , there is

an h′ ∈ adh(s) such that s(y) = Choicey
G(h′). Since h′ ∈ Hy ⊆ H〈M〉, it follows

that H ∪ {h0} is not G-indistinguishable. Hence H is an G-MIS. �

Asnoted earlier,what a group cando at best through afield M is to attain amaximal
set of histories indistinguishable for the group in M . Proposition 7.3 provides a
“finest” characterization of what a group can do through M : For each group G, to
attain a G-MIS H means the same as coordinating its members’ efforts in such a way
that their joint choices form a complete primary strategy that admits H .

The following proposition shows a relation between the classification of H〈M〉
determined by a group and the classifications determined by its sub-groups, which
will be useful in our discussion of independence.

Proposition 7.4. (AC). Let M be any field, and letF and G be disjoint groups. Then
AM,F∪G = {H ∩ H ′ : H ∈ AM,F ∧ H ′ ∈ AM,G}.
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Proof. Consider any H ∈ AM,F and H ′ ∈ AM,G . By Proposition 7.3, H = adh(s)∩
H〈M〉 and H ′ = adh(s′)∩ H〈M〉 for some s ∈ CP-StrategyM

F and s′ ∈ CP-StrategyM
G ,

and then by Fact 5.4 (iii), dom(s)∩dom(s′) �= ∅, and hence H ∩ H ′ = adh(s 
 s′)∩
H〈M〉 by Proposition 6.3(iv). We know by Proposition 6.3 (viii,x) that s 
 s′ ∈ CP-
StrategyM

F∪G , and then by Proposition 7.3 again, H ∩ H ′ ∈ AM,F∪G .
Consider any H∗ ∈ AM,F∪G . By Proposition 7.3, H∗ = adh(s∗) ∩ H〈M〉 for an

s∗ ∈ CP-StrategyM
F∪G . Let sF and sG be any complete primary extensions of s∗|F and

s∗|G in M respectively. By Proposition 6.4, s∗ = sF 
 sG , and then by Proposition
6.3(iv), adh(sF ) ∩ adh(sG) ∩ H〈M〉 = H∗, while adh(sF ) ∩ H〈M〉 ∈ AM,F and
adh(sG) ∩ H〈M〉 ∈ AM,G by Proposition 7.3. �

Whenconsideringwhat groups cando in afield,we sometimewant to identify such
doings with sets of outcomes bordering the field rather than sets of histories passing
through the field. In such cases, distinguishability may also be applied to outcomes
bordering the field. Let G be any group. For each point x , outcomes H and H ′ are
distinguishable for G at x if there are distinct K , K ′ ∈ Choicex

G such that H ⊆ K
and H ′ ⊆ K ′. Let M be any properly covered field, and let H, H ′ ∈ OutcmBdrM .
H and H ′ are distinguishable for G in M if they are distinguishable for G at a point
in M , and are indistinguishable for G in M otherwise. Note that for H and H ′ to be
distinguishable for G at x , they must be both available as possible future outcomes
relative to x . Let U ⊆ OutcmBdrM . U is G-indistinguishable in M if all members
of U are pairwise indistinguishable for G in M . U is a maximal G-indistinguishable
set (of outcomes) bordering M (a G-MIS bordering M) if U is G-indistinguishable
in M but no proper extension of U in OutcmBdrM is. We may drop the phrases “in
M” and “bordering M” when M is clear in the context. For each group G, let CM,G
be the set of all G-MISs bordering M .

The follow proposition proves useful in our upcoming discussions.

Proposition 7.5. Let M be a properly covered field, letG be a group, and letU, U ′ ⊆
OutcmBdrM and H, H ′ ∈ OutcmBdrM with h ∈ H and h′ ∈ H ′. Then the following
hold:

(i) H and H ′ are distinguishable for G in M iff h and h′ are distinguishable for G
in M ;

(ii) U ∈ CM,G iff
⋃

U ∈ AM,G ;
(iii) if U ∈ CM,G , then

⋃
U ′ ⊆ ⋃

U iff U ′ ⊆ U .

Proof. (i) holds by definition and Fact 3.2. (ii) Suppose first that U ∈ CM,G . Then⋃
U is G-indistinguishable by (i). To show that no proper extension of

⋃
U in H〈M〉

is G-indistinguishable, consider any h ∈ H〈M〉 − ⋃
U . By Propositions 3.3–3.4, we

let H = OutcmBdrM (h). Since h ∈ H and h /∈ ⋃
U , H /∈ U , and then, since

U ∈ CM,G , there is a H ′ ∈ U such that H and H ′ are distinguishable for G, and
hence, letting h′ ∈ H ′, h and h′ are by (i) distinguishable for G. Hence⋃

U ∈ AM,G .
Next suppose that

⋃
U ∈ AM,G . Then U is G-indistinguishable by (i). To show

that no proper extension of U in OutcmBdrM is G-indistinguishable, consider any
H ∈ OutcmBdrM . If H /∈ U , Proposition 3.3 implies that H ∩ (

⋃
U ) = ∅, and then,
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letting h ∈ H and h′ ∈ ⋃
U , h and h′ are distinguishable for G by our supposition,

and hence by (i), H and some member of U are distinguishable for G.
(iii) Suppose that

⋃
U ′ ⊆ ⋃

U with U ∈ CM,G . Then
⋃

U ∈ AM,G by (ii). Now
suppose for reductio that H ∈ U ′ − U . Then there is an H ′ ∈ U such that H and
H ′ are distinguishable for G in M . Letting h ∈ H ⊆ ⋃

U ′ and h′ ∈ H ′ ⊆ ⋃
U ,

we know by (i) that h and h′ are distinguishable for G in M , and hence h /∈ ⋃
U ,

contrary to that
⋃

U ′ ⊆ ⋃
U . Hence U ′ ⊆ U . �

Similar to Proposition 7.1 and Fact 7.2, we have the following:

Proposition 7.6. Let M be any field, let F and G be any groups such that F ⊆ G,
and let H, H ′ ∈ OutcmBdrM and U ⊆ OutcmBdrM . Then

(i) if H and H ′ are distinguishable for F , so are they for G; and
(ii) if U is G-indistinguishable, it is F-indistinguishable.

Proof. Apply Propositions 7.1 and 7.5(i). �

Fact 7.7. (AC). For each properly covered field M and each group G, CM,G is a
classification of OutcmBdrM .

The following proposition shows that a G-MIS bordering M is nothing but the set
adoM (s) for a complete primary strategy s for G in M .

Proposition 7.8. Let G be any group, let M be any properly covered field, and
let U ⊆ OutcmBdrM . Then U is a G-MIS bordering M iff U = adoM (s) for an
s ∈ CP-StrategyM

G . Hence CM,G = {adoM (s) : s ∈ CP-StrategyM
G }.

Proof. Let U ⊆ OutcmBdrM and H = ⋃
U . Then that U ∈ CM,G is equivalent to

each of the following:

• H ∈ AM,G , Proposition7.5(ii)
• H = adh(s) ∩ H〈M〉 for an s ∈ CP-StrategyM

G , Proposition 7.3

• H = ⋃
adoM (s) for an s ∈ CP-StrategyM

G , Proposition 4.6

• U = adoM (s) for an s ∈ CP-StrategyM
G . Proposition 3.3

Hence the conclusion holds. �

The following is a simple consequence of Propositions 7.3 and 7.8.

Proposition 7.9. Let M be a properly covered field, let G be a group, and let H ⊆
H〈M〉. Then H ∈ AM,G iff H = ⋃

U for a U ∈ CM,G .

Proof. H ∈ AM,G iff (by Proposition 7.3) H = adh(s) ∩ H〈M〉 for an s ∈ CP-
StrategyM

G iff (by Proposition 4.6) H = ⋃
adoM (s) for an s ∈ CP-StrategyM

G iff (by
Proposition 7.8) H = ⋃

U for a U ∈ CM,G . �

The idea in the following proposition is similar to that in Proposition7.4, but with
respect to future outcomes rather than histories.
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Proposition 7.10. (AC). Let M be any properly covered field, and let F and G be
disjoint groups. Then CM,F∪G = {U ′ ∩ U ′′ : U ′ ∈ CM,F ∧ U ′′ ∈ CM,G}.
Proof. Let U ⊆ OutcmBdrM and H = ⋃

U . Then U ∈ CM,F∪G iff (by Proposition
7.5(ii)) H ∈ AM,F∪G iff (by Proposition 7.4) H = H ′ ∩ H ′′ for an H ′ ∈ AM,F and
an H ′′ ∈ AM,G iff (by Propositions 7.9 and 7.5(ii))

H = (
⋃

U ′) ∩ (
⋃

U ′′) for a U ′ ∈ CM,F and a U ′′ ∈ CM,G . (10)

It is easy to verify by Proposition 3.3 that (
⋃

U ′) ∩ (
⋃

U ′′) = ⋃
(U ′ ∩ U ′′), and

then Proposition 3.3 again, (10) holds iff U = U ′ ∩ U ′′ for a U ′ ∈ CM,F and a
U ′′ ∈ CM,G . �

8 Inactivity and Busyness

Before we move on to the notion of independence, we present a short discussion of
inactivity and “busyness” in a field. This is because, as it turns out, the inactivity of a
group plays a special role, often behind the curtain, in our discussion of independence,
while the absence of “backward busyness” allows us to have a characterization of
independence in terms of a set-theoretical relation between groups.

Let G be any group, x any point, X any set of points and h any history. G is active
at x , or x is a (real) choice point for G (α), if Choicex

G �= {Hx }. G is inactive at x if
Choicex

G = {Hx }, is inactive in X if it is inactive at each x ∈ X , and is inactive along
h in X if it is inactive in h ∩ X . We say that an agent α is active/inactive at x , in X ,
or along h in X , if {α} is so. It is easy to see that the empty group is always inactive
in every field, and that if G is inactive at x , in X , or along h in X , then so is every
sub-group of G. Furthermore we have the following list of simple facts concerning
inactivity.

Fact 8.1. Let M be any field, let G be any group, and let s ∈ CP-StrategyM
G . Then

the following hold:

(i) if G is inactive in M , then CP-StrategyM
G = {s}, dom(s) = M and adh(s) is the

set of all histories;
(ii) if M is properly covered and G is inactive in M , then adoM (s) = OutcmBdrM ;
(iii) if G is inactive in M and s′ is a strategy in M , adh(s′) ⊆ adh(s);
(iv) if G is inactive in dom(s), then dom(s) = M (and hence G is inactive in M).

(AC)

Proof. We show only (iv). Suppose thatG is inactive in dom(s). Consider any y ∈ M .
By theAxiomofChoice, y ∈ h for a history h. Since s(x) = Hx for each x ∈ dom(s),
h ∈ s(x) for each x ∈ h ∩ dom(s), i.e., h ∈ adh(s). Because s is complete in M ,
h ∩ M ⊆ dom(s), and hence y ∈ dom(s). �
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By definition,
⋂

AM,G is the set of histories in H〈M〉 each of which is indistin-
guishable for G from all histories in H〈M〉. The inactivity of a group G along a history
h in M , as it turns out, amounts to the indistinguishability for G in M between h and
all other histories in H〈M〉. In other words,

⋂
AM,G = {h ∈ H〈M〉 : G is inactive in

h ∩ M}, as shown below.

Proposition 8.2. Let G be any group, let M be any field, and let h ∈ H〈M〉. Then G is
inactive in h∩M iff h ∈ ⋂

AM,G , and consequentlyG is inactive in (
⋃⋂

AM,G)∩M .

Proof. Suppose that G is inactive in h ∩ M . Consider any h′ ∈ H〈M〉 and any
x ∈ M such that h, h′ ∈ Hx . Since x ∈ h ∩ M , Choicex

G = {Hx }, and hence
Choicex

G(h) = Choicex
G(h′). It then follows that h and h′ are indistinguishable for G

in M for each h′ ∈ H〈M〉, and hence h ∈ ⋂
AM,G .

Suppose next that h ∈ ⋂
AM,G . If Choicex

G �= {Hx } for an x ∈ h ∩ M ,
Choicex

G(h) �= K for some K ∈ Choicex
G , and, since h′ ∈ K for some h′ ∈ H〈M〉, h

and h′ are distinguishable for G in M , contrary to the supposition that h ∈ ⋂
AM,G .

Hence G is inactive in h ∩ M . �

We know by Proposition 7.3 that
⋂

AM,G ⊆ adh(s) ∩ H〈M〉 for every s ∈ CP-
StrategyM

G (since by definition,
⋂

AM,G ⊆ H for every H ∈ AM,G). Now we also
know by Proposition 8.2 that for each h ∈ H〈M〉, G is inactive along h in M iff
h ∈ ⋂{adh(s) ∩ H〈M〉 : s ∈ CP-StrategyM

G }. That is to say, all strategies in CP-

StrategyM
G “overlap” with exactly those histories in H〈M〉 that G is inactive along in

M . We can similarly show the following.

Proposition 8.3. Let G be any group, let M be any properly covered field, and
let h ∈ H〈M〉. Then G is inactive in h ∩ M iff OutcmBdrM (h) ∈ ⋂

CM,G , and
consequently G is inactive in (

⋃⋃⋂
CM,G) ∩ M .

Note that
⋂

AM,G cannot be a member of AM,G if AM,G is a non-trivial classifi-
cation of H〈M〉, as we noted earlier in Sect. 7. Similarly,

⋂
CM,G cannot be a member

of CM,G if CM,G is a non-trivial classification of OutcmBdrM .
For each field M , a group G (or an agent α) is sooner or later active in M (SOL

active in M) if for each h ∈ H〈M〉, there is a choice point x ∈ h ∩ M for G (α),
i.e., G is not inactive in h ∩ M . Note that a group can be SOL active in M when
some or even all proper sub-groups of it are not. The following is a consequence of
Propositions 8.2–8.3.

Corollary 8.4. For each field M and each group G, if G is SOL active in M , then⋂
AM,G = ⋂

CM,G = ∅.

Now consider a complete primary strategy s′ forF in a field M . It is quite possible
that F is inactive in M , and then by Fact 8.1, adh(s) ⊆ adh(s′) for any strategy s
in M for any group G. In our discussion of independence, we need to deal with
situations where adh(s) ⊆ adh(s′) holds somehow for an s′ ∈ CP-StrategyM

F and an
s ∈ CP-StrategyM

G with F ∩ G = ∅. What is a sufficient and necessary condition
for adh(s) ⊆ adh(s′) to hold? It turns out thatthe inactivity of F in M is not, but the
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inactivity of F in dom(s) is, such a sufficient and necessary condition, as we show
below.

Proposition 8.5. Let M be any field, let G andF be disjoint groups, and let s ∈ CP-
StrategyM

G and s′ ∈ CP-StrategyM
F . Then (i) F is inactive in dom(s) iff (ii) adh(s) ⊆

adh(s′) iff (iii) adh(s) ∩ H〈M〉 ⊆ adh(s′).

Proof. Suppose that (i) holds. If h ∈ adh(s) − adh(s′), h /∈ s′(x) for some x ∈
h ∩ dom(s′), and then x ∈ dom(s) because x ∈ h ∩ M and s is complete along h in
M , and hence h ∈ Hx = s′(x) by (i), a contradiction. It then follows that (ii) holds,
which clearly implies (iii).

Suppose that (iii) holds. We prove (i) below. We first show that

dom(s) ⊆ dom(s′). (11)

Consider any x ∈ dom(s). Because s is primary, h ∈ s(x) for an h ∈ adh(s), and
then h ∈ adh(s) ∩ H〈M〉, and hence h ∈ adh(s′) by (iii). Since s′ is complete along
h, x ∈ dom(s′). Hence (11) holds. Now suppose for reductio that F is not inactive
in dom(s). Then by (11), s′(y) �= K for some y ∈ dom(s) and K ∈ Choicey

F , and
hence

K ∩ adh(s′) = ∅. (12)

Because F ∩ G = ∅, there is by IA an h′ ∈ s(y) ∩ K . We show below that

h′′ ∈ s(y) ∩ K for an h′′ ∈ adh(s). (13)

Assume that h′ /∈ adh(s) (or there is nothing more to show). Then h′ /∈ s(z) for a
z ∈ h′ ∩ dom(s). Because y, z ∈ h′, z � y or y < z. We claim that

y < z. (14)

Since h′ ∈ s(y) and h′ /∈ s(z), y �= z. Because s is primary, there is an h∗ ∈
s(y) ∩ adh(s), and then y ∈ h′ ∩ h∗, and hence by NC and h′ /∈ s(z), z < y only
if h∗ /∈ s(z), contrary to that h∗ ∈ adh(s). It follows that (14) holds. Since s is
primary, there is an h′′ ∈ s(z) ∩ adh(s) and z ∈ h′ ∩ h′′. Because h′ ∈ s(y) ∩ K , it
follows fromNC and (14) that h′′ ∈ s(y)∩K , which completes the proof of (13). But
K ⊆ Hy ⊆ H〈M〉, by which (13) implies that∅ �= K ∩adh(s) = K ∩adh(s)∩ H〈M〉,
and then by (iii), K ∩ adh(s′) �= ∅, contrary to (12). We then conclude from this
reductio that (i) holds. �

Note that clause (i) in the conclusion of Proposition 8.5 depends on no partic-
ular strategies for F in M . We then have the following as a direct consequence of
Proposition 8.5.
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Corollary 8.6. Let M be any field, let G and F be disjoint groups, and let s ∈
CP-StrategyM

G and s∗ ∈ CP-StrategyM
F such that adh(s) ∩ H〈M〉 ⊆ adh(s∗). Then

adh(s) ⊆ adh(s′) for every s′ ∈ CP-StrategyM
F .

Proof. By hypothesis and Proposition 8.5,F is inactive in dom(s), and then for each
s′ ∈ CP -StrategyM

F , adh(s) ⊆ adh(s′) by Proposition 8.5 again. �

Recall that for each s ∈ P-StrategyM
G , adh(s)∩ H〈M〉 is by definition never empty.

Corollary 8.7. Let M be any field, let G andF be disjoint groups, and letF be SOL
active in M . Then for each s ∈ CP-StrategyM

G and each H ∈ AM,F , adh(s)∩ H〈M〉 �

H .

Proof. Let s ∈ CP-StrategyM
G and H ∈ AM,F . By Proposition 7.3, H = adh(s′) ∩

H〈M〉 for an s′ ∈ CP-StrategyM
F . Suppose for reductio that adh(s) ∩ H〈M〉 ⊆ H ⊆

adh(s′). Then by Corollary 8.6, adh(s) ⊆ adh(s′′), and then adh(s) ∩ H〈M〉 ⊆
adh(s′′) ∩ H〈M〉, for each s′′ ∈ CP-StrategyM

F , and hence ∅ �= adh(s) ∩ H〈M〉 ⊆⋂
AM,F by Proposition7.3. This is impossible because F is SOL active in M , and

hence
⋂

AM,F = ∅ by Corollary 8.4. �

A group G (or an agent α) is a busy chooser if there is an infinite chain of choice
points for G (α) that is both upper- and lower-bounded.19 The kind of busyness
relevant to our current work is “backward busyness”. G (α) is backward busy in M
if there is a lower-bounded infinite chain c in M satisfying that for each x ∈ c, there
is a y ∈ c such that y < x and Choicey

G �= {Hy} (Choicey
α �= {Hy}). Note that when

a group is infinite, the busyness of the group does not imply the busyness of any of
its members or sub-groups, but if a group is not busy, neither is any of its members
or sub-groups.

We know that different strategies in M for the same group G may “overlap” in
the sense of sharing some admitted histories in H〈M〉, and we do not know whether
each such strategy is “disjoint” with at least one other such strategy. When G is SOL
active but not backward busy in M , nevertheless, the existence of such a “disjoint”
strategy is guaranteed for each complete primary strategy forG in M , as the following
proposition shows.

Proposition 8.8. (AC). Let M be any field, in which G is SOL active but not back-
ward busy, and let s ∈ CP-StrategyM

G . Then there is an s′ ∈ CP-StrategyM
G such that

adh(s) ∩ adh(s′) ∩ H〈M〉 = ∅.20

Proof. Let D be the set of all minimal choice points for G in dom(s), i.e., the set of
all choice points x ∈ dom(s) for G such that y < x for no choice point y ∈ dom(s)

19 Busy choosers and busy choice sequences play a special role in various conceptual analyses of
agency and technical developments, especially when achievement stit and strategies are involved.
See, e.g., Belnap et al. (2001) and Xu (1995).
20 The hypothesis that s ∈ CP-StrategyM

G and G is SOL active but not backward busy in M can be
weakened to that G is any group and s ∈ CP-StrategyM

G such that for each h ∈ adh(s)∩ H〈M〉, there
is a least choice point in h ∩ M for G.
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for G. For each x ∈ D, select a Kx ∈ Choicex
G such that Kx �= s(x). Let s∗ be a

function on dom(s∗) = {y ∈ dom(s) : ∃x ∈ D(y � x)} such that s∗(x) = Kx for
each x ∈ D, and s∗(y) = s(y) for each y ∈ dom(s∗)− D. Then s∗ is a strategy for G
that is backward closed in M . Note that by definition, G is inactive in dom(s∗) − D,
from which it follows that

s∗(x) ⊆ adh(s∗) for each x ∈ D. (15)

For each y ∈ dom(s∗), if y ∈ D, y ∈ adm(s∗) by (15); and if y < x for an x ∈ D,
s∗(x) ⊆ Hy = s∗(y), and hence y ∈ adm(s∗) by (15). It follows that s∗ is simple in
M . Consider any h ∈ adh(s) ∩ H〈M〉. Because s is complete along h in M , there is a
choice point z ∈ h ∩ dom(s∗) such that s∗(z) �= s(z), and then h /∈ s∗(z), and hence
h /∈ adh(s∗) by definition. It then follows that adh(s) ∩ adh(s∗) ∩ H〈M〉 = ∅, and
then by Proposition 5.7, we can extend s∗ to a complete primary strategy s′ for G in
M , and hence adh(s) ∩ adh(s′) ∩ H〈M〉 = ∅. �

9 Independence

Recall the condition IA: for each moment m,
⋂

α∈Agent f (α) �= ∅ for each f ∈
Selectm , where Selectm is the set of all functions each of which assigns each agent
α a member of Choicem

α . This is equivalent to the statement that for each moment
m, and for all disjoint groups G and F , K ∩ K ′ �= ∅ for all K ∈ Choicem

G and
K ′ ∈ Choicem

F . In our current framework, what each group can do at a moment m
are presented as the choices for the group at m, which are taken in a good sense to be
causally independent of what others can do at m. Under the condition IA, nothing G
can do at m may “rule out” anything that F can do at m, where F and G are disjoint,
nor may anything G can do at m “force”F to do one thing at m rather than another. In
other words, there is no K ∈ Choicem

G such that K ∩ K ′ = ∅ for any K ′ ∈ Choicem
F ,

nor is there any K ∈ Choicem
G such that K ⊆ K ′ for any K ′ ∈ Choicem

F if Choicem
F

is not a singleton. In general, we may say that for a given partition A of Hm , A is
independent of what G can do at m iff

for each K ∈ Choicem
G , K ∩ H �= ∅ for each H ∈ A. (16)

This notion of independence is a fundamental notion in the decision-theoretical
approach to deontic logic, based on which Horty builds his theory of dominance
between choices at a point (Horty 2001): A choice K for G at m dominates another,
K ′, if for a partition A of Hm , independent of what G can do at m, K is “better than”
K ′ under each condition presented as a member of A. The partition A of Hm that
Horty uses is Choicem

G , which is, as we said above, independent of what G can do at
m.

As stated earlier, we want to take the decision-theoretical approach to deontic
logic to go beyond single-choice-point situations. To that end, we need a notion of
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independence more general than (16) above, based on which we can build a more
general notion of dominance. In this section we provide a preliminary analysis of
independence on our current setting.

In our previous discussion of what groups can do through a field M , we have
identified them as sets of histories that are indistinguishable for the groups in M . It
would be natural to continue applying such identification in our discussion concern-
ing what one group can do through M being independent of what another group can
do through M . In the context of deontic logic, nevertheless, it is more convenient
to talk about certain background conditions to be independent of certain strategies,
rather than being independent of certain sets of histories. So we will identify what
groups can do through M with strategies for the groups in M , and speak of a set of
strategies of which a classification of H〈M〉 is independent.21

A field M is like a big “point”, and a set S of strategies for G in M is like a set
of choices for G at a point. One might then be attempted to define a classification
A of H〈M〉 to be independent of S the same way as (16) for a partition of Hm to be
independent of Choicem

G : A is independent of S iff

for each s ∈ S, adh(s) ∩ H �= ∅ for each H ∈ A. (17)

This won’t do, nevertheless. Suppose that there is a history h passing through M
and that G is a group inactive along h in M , which is quite possible. Then, as a
consequence of Proposition 8.2, we would have that

⋂
AM,G �= ∅, and hence for

each s ∈ CP-StrategyM
G , adh(s) ∩ H �= ∅ for each H ∈ AM,G . Hence, if we

define independence as (17), AM,G would be independent of CP-StrategyM
G , which

is counter-intuitive.22

Let s be a strategy in M and let H ⊆ H〈M〉. We say that s guarantees H if
adh(s) ∩ H〈M〉 ⊆ H , and that s excludes H if adh(s) ∩ H = ∅. One may also be
tempted to define a classification A of H〈M〉 to be independent of a set S of strategies
just in case

for each s ∈ S and H ∈ A, s neither guarantees nor excludes H . (18)

Even though this suggested account is intuitive and simple, a little reflection shows
that it wouldwork only inmore restricted cases. For example, the trivial classification
{H〈M〉} of H〈M〉 should be taken to be independent of any set of strategies, but it is not
so according to (18) because all strategies guarantee H〈M〉. The situation becomes

21 Although identifyingwhatG can do through M with a strategy s forG in M is different from identi-
fying it with ads(s)∩H〈M〉 orwith adoM (s), the differences are only technical, not conceptual—they
arise from different ways of talking about the same thing.
22 This becomes clearer if we notice that what G can do through M can be identified with CP-
StrategyM

G as well as AM,G . Under the circumstance described in the main text above, if we were
to define independence as (17), what G can do through M would be independent of what G can do
through M .
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more complicated once we take into consideration that some groups may be inactive
in a proper subset of M .

The intuitive idea in our notion of independence is this, which is a slight gen-
eralization of (18): Given a classification A of H〈M〉 and a set S of strategies. A is
independent of S if no strategy in S may exclude any member of A, nor may any
such strategy guarantee a member of A without guaranteeing all members of A.

Definition 9.1. Let M be any field, let A be any classification of H〈M〉, and let S be
any set of strategies in M . A is independent of S if the following hold:

(i) for each s ∈ S and each H ∈ A, adh(s) ∩ H �= ∅, and
(ii) for each s ∈ S and each H ∈ A, adh(s) ∩ H〈M〉 ⊆ H only if adh(s) ∩ H〈M〉 ⊆⋂

A.

It is easy to verify that in the context above, if A is independent of S, so is each
subset ofA (as long as it is still a classification of H〈M〉), which in turn is independent
of each subset of S. Definition 9.1(ii) may appear wrong because it allows a strategy
s in S to guarantee a member H of A, but actually, it allows s to guarantee H only
when s guarantees all members of A. Note that if A is a partition of H〈M〉 (not just
a classification of H〈M〉), then Definition 9.1 (ii) amounts to that for each s ∈ S,
adh(s)∩ H〈M〉 ⊆ H only if H = H〈M〉 (i.e., only if A is the trivial partition {H〈M〉}).
Note also that if A is a non-trivial partition of H〈M〉, it is then independent of S iff for
each H ∈ A and each s ∈ S, neither adh(s)∩H = ∅ nor adh(s)∩H〈M〉 ⊆ H . That is
to say, this account of independence is a generalization of the account (18) suggested
above, and the two accounts work exactly the same if we restrict classifications of
H〈M〉 to non-trivial partitions of H〈M〉. A similar remark can be made about the
following easy consequence of Corollary 8.4 (compare it to (18)):

Corollary 9.2. Let M be a field, and let F be SOL active in M . Then for each set
S of strategies, AM,F is independent of S iff for each s ∈ S and each H ∈ AM,F ,
adh(s) ∩ H �= ∅ and adh(s) ∩ H〈M〉 � H .

Proof. Weonly need to assume thatAM,F is independent of S, and show thatadh(s)∩
H〈M〉 � H for all s ∈ S and H ∈ AM,F . Suppose for reductio that adh(s) ∩
H〈M〉 ⊆ H for an s ∈ S and an H ∈ AM,F . Because AM,F is independent of S,
adh(s) ∩ H〈M〉 ⊆ H ′ for all H ′ ∈ AM,F , and then, since adh(s) ∩ H〈M〉 �= ∅,⋂

AM,F �= ∅, contrary to Corollary 8.4. �

Under the condition of SOL activity, independence is “symmetrical” in the fol-
lowing sense.

Proposition 9.3. Let M be a field, and let F and G be disjoint groups that are SOL
active in M . Then AM,F is independent of CP-StrategyM

G iff AM,G is independent

of CP-StrategyM
F .23

23 Had we defined independence as a relation between classifications of H〈M〉, we would then have
that for all disjoint groups F and G that are SOL active in M , AM,F is independent of AM,G iff
AM,G is independent of AM,F .
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Proof. Assume that AM,F is independent of CP-StrategyM
G . Consider any s ∈ CP-

StrategyM
F and H ∈ AM,G . By Proposition 7.3, there are s′ ∈ CP-StrategyM

G and
H ′ ∈ AM,F such that adh(s′) ∩ H〈M〉 = H and H ′ = adh(s) ∩ H〈M〉. By our
assumption, H ′ ∩ adh(s′) �= ∅, i.e., adh(s) ∩ H �= ∅; and by hypothesis and
Corollary 8.7, adh(s) ∩ H〈M〉 � H . It follows from Definition 9.1 that AM,G is
independent of CP-StrategyM

F . �

Let M be any field, and let m be any point. m is a starting point of M if m ∈ M
and m � x for each x ∈ M . A starting point of a field is obviously unique. It is easy
to see that if a field M has a starting point, dom(s) ∩ dom(s′) �= ∅ for all backward
closed strategies s and s′ in M . We show below that for each G, the classification
AM,G of H〈M〉 is independent of what G can do through M , where we identify what

G can do through M with either CP-StrategyM
G or S-StrategyM

G , and in the latter case,
M needs to have a starting point.

Theorem 9.4. (AC). Let M be any field, and let G and F be disjoint groups. Then
the following hold:

(i) AM,F is independent of CP -StrategyM
G ;

(ii) AM,F is independent of S -StrategyM
G if M has a starting point;

(iii) AM,G is independent of CP-StrategyM
G , and is independent of S-StrategyM

G if M
has a starting point.

Proof. (iii) follows directly from (i) and (ii). Letting A = AM,F , we only need to
show that Definition 9.1(ii) holds with S = S-StrategyM

G , and that Definition 9.1(i)

holds with S = CP-StrategyM
G , and with S = S-StrategyM

G if M has a starting point.

Let H ∈ A. By Proposition 7.3, H = adh(s∗) ∩ H〈M〉 for an s∗ ∈ CP-StrategyM
F .

Consider any s ∈ S-StrategyM
G , and suppose that adh(s) ∩ H〈M〉 ⊆ H . By

Proposition 5.7, adh(s) = ⋃
s′∈S′adh(s′) where S′ = {s′ ∈ CP-StrategyM

G :
s ⊆ s′}. Since (

⋃
s′∈S′adh(s′)) ∩ H〈M〉 ⊆ adh(s∗), Corollary 8.6 implies that

(
⋃

s′∈S′adh(s′)) ∩ H〈M〉 ⊆ adh(s′′) for each s′′ ∈ CP-StrategyM
F , and hence

adh(s) ∩ H〈M〉 ⊆ adh(s′′) ∩ H〈M〉 for each s′′ ∈ CP-StrategyM
F . It then follows

from Proposition 7.3 that adh(s) ∩ H〈M〉 ⊆ H ′ for each H ′ ∈ AM,F . Hence Defini-
tion 9.1(ii) holds.

Consider any s ∈ S-StrategyM
G . If s ∈ CP-StrategyM

G , dom(s) ∩ dom(s∗) �= ∅ by

Fact 5.4(iii), and if s /∈ CP-StrategyM
G and M has a starting point, we also have that

dom(s) ∩ dom(s∗) �= ∅. Then by Proposition 6.2, adh(s) ∩ adh(s∗) ∩ H〈M〉 �= ∅,
i.e., adh(s) ∩ H �= ∅. Hence Definition 9.1(i) holds. �

SOL activity and the absence of backward busyness enable us to establish a
characterization of independence (Theorem 9.6) in terms of a set-theoretical relation
between groups. We begin with a special case.

Proposition 9.5. (AC). Let M be any field, in which F is not backward busy and
all sub-groups ofF are SOL active, except for the empty group. Then for each group
G,
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(i) F ⊆ G iff AM,F is independent of CP-StrategyM
G ;

(ii) F ⊆ G iff AM,F is independent of S-StrategyM
G , provided that M has a starting

point.

Proof. By Theorem 9.4, we only need to assume that F � G, and show that AM,F
is not independent of CP-StrategyM

G (and hence, not independent of S-StrategyM
G ).

By our assumption, F �= ∅. There are two cases.
Case 1, F ⊆ G. Let s ∈ CP-StrategyM

G , let E = G − F , and let sF and sE
be any complete primary extensions of s|F and s|E respectively (see Sect. 6). Then
by Proposition 6.4, s = sF 
 sE and adh(s) = adh(sF ) ∩ adh(sE ), and hence
adh(s) ∩ H〈M〉 ⊆ adh(sF ) ∩ H〈M〉 ∈ AM,F by Proposition 7.3. Because F is SOL
active in M , Corollary 9.2 implies that AM,F is not independent of CP-StrategyM

G .24

Case 2, F � G. Let E = F ∩ G and E∗ = F ∩ G. Then F = E ∪ E∗, and
E �= ∅ �= E∗ because F � G and F � G. Let s ∈ CP-StrategyM

G . It suffices to
show that adh(s)∩ H = ∅ for an H ∈ AM,F . Letting sE and sG−E be any complete
primary extensions of s|E and s|G−E respectively, we know by Proposition 6.4 that
s = sG−E 
 sE and

adh(s) = adh(sG−E ) ∩ adh(sE ). (19)

Let sE∗ ∈ CP-StrategyM
E∗ , andbyFact 5.4 (iii), let s′ = sE
sE∗ . ByProposition 6.3 (iv,

viii, x), s′ ∈ CP-StrategyM
F and adh(s′) = adh(sE ) ∩ adh(sE∗). Since ∅ �= E ⊆ F ,

E is by hypothesis SOL active but not backward busy in M , and then by Proposition
8.8, there is an s′′

E ∈ CP-StrategyM
E such that

adh(sE ) ∩ adh(s′′
E ) ∩ H〈M〉 = ∅. (20)

Applying Fact 5.4 (iii), we let s′′ = s′′
E 
 sE∗ . Then by Proposition 6.3(iv, viii, x)

again, s′′ ∈ CP-StrategyM
F and adh(s′′) = adh(s′′

E ) ∩ adh(sE∗), and hence

adh(s) ∩ adh(s′′) ∩ H〈M〉 = ∅ (21)

by (19) and (20). Finally, Proposition 7.3 implies that there is an H ∈ AM,F such
that adh(s′′) ∩ H〈M〉 = H , and then adh(s) ∩ H = ∅ by (21). �

Nowwe are ready to establish a general characterization of independence in terms
of a set-theoretical relation between groups.

24 When F ⊆ G, a weaker condition, that AM,F is non-trivial, suffices for AM,F not to be in-
dependent of CP-StrategyM

G . In fact, we can show that AM,F is trivial if Definition 9.1 (ii) holds
with A = AM,F and S = CP-StrategyM

F : Suppose that Definition 9.1(ii) so holds. Consider any
h ∈ H〈M〉. By Proposition7.3, h ∈ adh(s)∩ H〈M〉 ∈ AM,G for an s ∈ CP-StrategyM

G . The argument
in the main text shows that h ∈ adh(s)∩ H〈M〉 ⊆ H for an H ∈ AM,F , and then by our supposition,
h ∈ adh(s) ∩ H〈M〉 ⊆ ⋂

AM,F . It then follows that H〈M〉 ⊆ ⋂
AM,F , and hence AM,F is trivial.
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Theorem 9.6. (AC). Let M be any field, in which no group is backward busy, let
E be the group of all agents that are inactive in M , and let all other agents be SOL
active in M . Then for all groups F and G,
(i) F − E ⊆ G iff AM,F is independent of CP-StrategyM

G ;

(ii) F − E ⊆ G iff AM,F is independent of S-StrategyM
G , provided that M has a

starting point.

Proof. Let F and G be any groups, and let F∗ = F − E . Then all sub-groups of
F∗ are by hypothesis SOL active in M , except for ∅, and hence by Proposition 9.5,
the conclusions hold with AM,F to be replaced by AM,F∗ . It is easy to verify that
AM,F∩E = {H〈M〉}, and hence AM,F∗ = AM,F∗∪(F∩E) = AM,F by Proposition
7.4. �

Whendealingwith a classification of outcomes bordering a field,wemay similarly
define its independence of a set of strategies in the following way.

Definition 9.7. Let M be any properly covered field, let C be any classification of
OutcmBdrM , and let S be any set of strategies in M . C is independent of S if the
following hold:

(i) for each s ∈ S and each U ∈ C, adoM (s) ∩ U �= ∅, and
(ii) for each s ∈ S and each U ∈ C, adoM (s) ⊆ U only if adoM (s) ⊆ ⋂

C.

The idea in Definition 9.7 is clearly the same as that in Definition9.1, except that
for this new notion of independence to make sense, the strategy field needs to be
properly covered. Furthermore, we have the following:

Proposition 9.8. Let S be any set of strategies in a properly covered field M , and
let F be any group. Then (i) CM,F is independent of S iff (ii) AM,F is independent
of S.

Proof. Suppose that (i) holds. Consider any s ∈ S and H ∈ AM,F . Then H = ⋃
U

for a U ∈ CM,F by Proposition7.9, and then adoM (s) ∩ U �= ∅ by (i), and hence
(
⋃

adoM (s)) ∩ (
⋃

U ) �= ∅. It follows from Proposition4.6 that adh(s) ∩ H〈M〉 ∩
H = adh(s) ∩ H �= ∅. Hence Definition9.1(i) holds with A = AM,F . Suppose
that adh(s) ∩ H〈M〉 ⊆ H (= ⋃

U ). Then adoM (s) ⊆ U by Propositions 4.6 and
7.5(iii), and hence by (i), adoM (s) ⊆ U ′ for each U ′ ∈ CM,F . This implies that⋃

adoM (s) ⊆ ⋃
U ′ for each U ′ ∈ CM,F , and then by Propositions 4.6 and 7.9,

adh(s) ∩ H〈M〉 ⊆ ⋂
AM,F . Hence Definition 9.1(ii) holds with A = AM,F , and

hence (ii) holds.
Next suppose that (ii) holds. Let s ∈ S and U ∈ CM,F . By Proposition 7.8,

U = adoM (s′′) for an s′′ ∈ CP-StrategyM
F , and then, letting H = ⋃

U , we know
that H = adh(s′′) ∩ H〈M〉 ∈ AM,F by Propositions4.6 and 7.3. By (ii), adh(s) ∩
H �= ∅, and then adh(s) ∩ adh(s′′) ∩ H〈M〉 �= ∅, and hence by Propositions 4.6
and 3.3,

⋃
(adoM (s) ∩ adoM (s′′)) = ⋃

(adoM (s) ∩ U ) �= ∅, and consequently
adoM (s) ∩ U �= ∅. It follows that Definition 9.7(i) holds with C = CM,F . Suppose
that adoM (s) ⊆ U . Then by Proposition 4.6, adh(s)∩ H〈M〉 ⊆ ⋃

U = H , and hence
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by (ii), adh(s) ∩ H〈M〉 ⊆ H∗ for each H∗ ∈ AM,F . This implies by Proposition
7.5(ii) that adh(s)∩H〈M〉 ⊆ ⋃

U∗ for eachU∗ ∈ CM,F , and then by Propositions 4.6
and 7.5(iii), adoM (s) ⊆ ⋂

CM,F . Hence Definition 9.7(ii) holds with C = CM,F ,
and hence (i) holds. �

Applying Proposition 9.8, we can easily establish the following “duals” of The-
orems 9.4 and 9.6.

Theorem 9.9. (AC).Let M be any properly covered field, and letG andF be disjoint
groups. Then the following hold:

(i) CM,F is independent of CP-StrategyM
G ;

(ii) CM,F is independent of S-StrategyM
G if M has a starting point;

(iii) CM,G is independent of CP-StrategyM
G , and is independent of S-StrategyM

G if M
has a starting point.

Theorem 9.10. (AC). Let M be any field, in which no group is backward busy, let
E be the group of all agents that are inactive in M , and let all other agents be SOL
active in M . Then for all groups F and G,
(i) F − E ⊆ G iff CM,F is independent of CP-StrategyM

G ;

(ii) F − E ⊆ G iff CM,F is independent of S-StrategyM
G , provided that M has a

starting point.

The following is an easy consequence of Theorems 9.6 and 9.10 and Definitions
9.1 and 9.7.

Corollary 9.11. (AC). Let M be any field, in which no group is backward busy, let
E be the group of all agents that are inactive in M , and let all other agents be SOL
active in M . Then for all groups F and G,
(i) F − E ⊆ G iff A is independent of CP-StrategyM

G for each classification A

of H〈M〉 such that A ⊆ AM,F iff C is independent of CP-StrategyM
G for each

classification C of OutcmBdrM such that C ⊆ CM,F ;
(ii) if M has a starting point, then F − E ⊆ G iff A is independent of S-StrategyM

G
for each classification A of H〈M〉 such that A ⊆ AM,F iff C is independent of
S-StrategyM

G for each classification C of OutcmBdrM such that C ⊆ CM,F .

This completes our preliminary study on independence. In order to achieve a
general notion of dominance in the current setting, we need to consider some issues
involved in independence and the sure-thing principle. We leave those issues to a
future study.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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