Skip to main content

Abstract

This chapter aims at providing a summary of key properties of low-power links. First, it gives an overview of the radio technology most commonly used in low-power wireless networks. Then, it distils from the vast array of empirical studies on low-power links a set of high-level observations, which are classified into spatial and temporal characteristics, link asymmetry, and interference. Such observations are helpful not only to design efficient Link Quality Estimators (LQEs) that take into account the most important aspects affecting link quality, but also to design efficient network protocols that have to handle link unreliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is interpreted by the fact that the strength of the received signal is much higher than those of the noise level and the received signal from the interfering node.

References

  1. Srinivasan K, Dutta P, Tavakoli A, Levis P (2010) An empirical study of low-power wireless. ACM Trans Sen Netw 6:1–49

    Article  Google Scholar 

  2. Tang L, Wang KC, Huang Y, Gu F (2007) Channel characterization and link quality assessment of ieee 802.15.4-compliant radio for factory environments. IEEE Trans Industr Inf 3(2):99–110

    Google Scholar 

  3. BTNode: http://www.btnode.ethz.ch

  4. Dyer M, Beutel J, Thiele L, Kalt T, Oehen P, Martin K, Blum P (2007) Deployment support network—a toolkit for the development of WSNs. In: Proceedings of the 4th european conference on wireless sensor networks (EWSN ’07). Springer, pp 195–211

    Google Scholar 

  5. Networks R (2012) RN-131 Datasheet. http://www.rovingnetworks.com/resources/download/11/RN_131

  6. GainSpan: GS1011M Low-Power Wireless System-On-Chip WI-FI Module Data Sheet. http://www.gainspan.com/products/GS1011_SoC.php (2011)

  7. Larsen RC, Janbu O (2009) Whitepaper: World’s most Energy Friendly Microcontrollers. http://cdn.energymicro.com/dl/pdf/efm32_introduction_white_paper.pdf

  8. Micro E (2011) Energy Friendly Radios: EFR4D2090 Datasheet. http://www.energymicro.com/draco. Confidential/Preliminary, Provided as Registered Copy

  9. Polastre J, Szewczyk R, Culler D (2005) Telos: Enabling ultra-low power wireless research. In: Proceedings of the 4th international symposium on information processing in sensor networks (IPSN ’05). IEEE Press, pp 364–369

    Google Scholar 

  10. Raman B, Chebrolu K (2008) Censor networks: a critique of “sensor networks” from a systems perspective. SIGCOMM Comput Commun Rev 38:75–78

    Article  Google Scholar 

  11. Werner-Allen G, Lorincz K, Johnson J, Lees J, Welsh M (2006) Fidelity and yield in a volcano monitoring sensor network. In: Proceedings of the 7th symposium on operating systems design and implementation (OSDI ’06). USENIX Association, pp 381–39

    Google Scholar 

  12. Saukh O, Sauter R, Meyer J, Marrón P (2008) Motefinder: a deployment tool for sensor networks. In: Proceedings of the workshop on real-world wireless sensor Networks (REALWSN)

    Google Scholar 

  13. Raman B, Chebrolu K, Madabhushi N, Gokhale DY, Valiveti PK, Jain D (2006) Implications of link range and (in)stability on sensor network architecture. In: Proceedings of the 1st international workshop on wireless network ttestbeds, experimental evaluation & characterization (WiNTECH ’06). ACM, pp 65–72

    Google Scholar 

  14. Nilsson M (2009) Directional antennas for wireless sensor networks. In: Proceedings of the 9th Scandinavian workshop on wireless adhoc networks (Adhoc)

    Google Scholar 

  15. Giorgetti G, Cidronali A, Gupta S, Manes G (2007) Exploiting low-cost directional antennas in 2.4 GHz IEEE 802.15.4 wireless sensor networks. In: Proceedings of the european conference on wireless technologies

    Google Scholar 

  16. Östrom E, Mottola L, Voigt T (2010) Evaluation of an electronically switched directional antenna for real-world low-power wireless networks. In: Proceedings of the 3rd international workshop on real-world wireless sensor networks (REALWSN)

    Google Scholar 

  17. Baccour N, Koubâa A, Jamaa MB, do Rosário D, Youssef H, Alves M, Becker LB (2011) Radiale: a framework for designing and assessing link quality estimators in wireless sensor networks. Ad Hoc Netw 9(7):1165–1185

    Article  Google Scholar 

  18. Cerpa A, Busek N, Estrin D (2003) Scale: a tool for simple connectivity assessment in lossy environments. Tech. rep.

    Google Scholar 

  19. IEEE 802.15.4 Standard: http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf (2003)

  20. Chipcon cc2420: Data sheet. http://enaweb.eng.yale.edu/drupal/system/files/CC2420_Data_Sheet_1_4.pdf (2009)

  21. Kotz D, Newport C, Elliott C (2003) The mistaken axioms of wireless-network research. Tech. rep., Dartmouth College

    Google Scholar 

  22. Zhao J, Govindan R (2003) Understanding packet delivery performance in dense wireless sensor networks. In: Proceedings of the 1st international conference on embedded networked sensor systems (SenSys ’03). ACM, pp 1–13

    Google Scholar 

  23. Reijers N, Halkes G, Langendoen K (2004) Link layer measurements in sensor networks. In: Proceedings of the 1st IEEE international conference on mobile ad-hoc and sensor systems (MASS ’04). IEEE Computer Society, pp. 24–27

    Google Scholar 

  24. Zuniga M, Krishnamachari B (2004) Analyzing the transitional region in low power wireless links. In: Proceedings of the 1st international conference on sensor and ad hoc communications and networks (SECON ’04). IEEE Communications Society, pp 517–526

    Google Scholar 

  25. Zuniga M, Krishnamachari B (2007) An analysis of unreliability and asymmetry in low-power wireless links. ACM Trans Sen Netw 3(2):63–81

    Google Scholar 

  26. Mottola L, Picco GP, Ceriotti M, Gunǎ c, Murphy AL (2010) Not all wireless sensor networks are created equal: a comparative study on tunnels. ACM Trans Sen Netw 7:15:1–15:33

    Google Scholar 

  27. Zhou G, He T, Krishnamurthy S, Stankovic JA (2004) Impact of radio irregularity on wireless sensor networks. In: Proceedings of the 2nd international conference on mobile systems, Applications, and Services (MobiSys ’04). ACM, pp 125–138

    Google Scholar 

  28. Ganesan D, Krishnamachari B, Woo A, Culler D, Estrin D, Wicker S (2002) Complex behavior at scale: an experimental study of low-power wireless sensor networks. Tech. rep.

    Google Scholar 

  29. Zhou G, He T, Stankovic JA, Abdelzaher T (2005) Rid: Radio interference detection in wireless sensor networks. In: Proceedings of the 24th annual joint conference of the IEEE computer and communications societies (INFOCOM ’05). IEEE, pp 891–901

    Google Scholar 

  30. Zhou G, He T, Krishnamurthy S, Stankovic JA (2006) Models and solutions for radio irregularity in wireless sensor networks. ACM Trans Sen Netw 2(2):221–262. http://doi.acm.org/10.1145/1149283.1149287

    Google Scholar 

  31. Srinivasan K, Jain M, Choi JI, Azim T, Kim ES, Levis P, Krishnamachari B (2010) The \(\kappa \) factor: inferring protocol performance using inter-link reception correlation. In: Proceedings of the 16th annual international conference on mobile computing and networking (MobiCom ’10). ACM, pp 317–328

    Google Scholar 

  32. Rappapport TS (2001) Wireless communications: principles and practice. Prentice Hall, Englewood Cliffs

    Google Scholar 

  33. Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Google Scholar 

  34. Cerpa A, Wong JL, Kuang L, Potkonjak M, Estrin D (2005) Statistical model of lossy links in wireless sensor networks. In: Proceedings of the 4th international symposium on information processing in sensor networks (IPSN ’05). IEEE Press, pp 81–88

    Google Scholar 

  35. Liu H, Li J, Xie Z, Lin S, Whitehouse K, Stankovi, JA, Siu D (2010) Automatic and robust breadcrumb system deployment for indoor firefighter applications. In: Proceedings of the 8th international conference on mobile systems, applications, and services (MobiSys ’10). ACM, pp 21–34

    Google Scholar 

  36. Cerpa A, Wong JL, Potkonjak M, Estrin D (2005) Temporal properties of low power wireless links: Modeling and implications on multi-hop routing. In: Proceedings of the 6th international symposium on mobile ad hoc networking and computing (MobiHoc ’05). ACM, pp 414–425

    Google Scholar 

  37. Munir S, Lin S, Hoque E, Nirjon SMS, Stankovic JA, Whitehouse K (2010) Locationing burstiness for reliable communication and latency bound generation in wireless sensor networks. In: Proceedings of the 9th ACM/IEEE international conference on information processing in sensor networks (IPSN ’10). ACM, pp 303–314

    Google Scholar 

  38. Brown J, McCarthy B, Roedig U, Voigt T, Sreenan CJ (2011) Burstprobe: debugging time-critical data delivery in wireless sensor networks. In: Proceedings of the 8th european conference on wireless sensor networks (EWSN ’11). Springer-Verlag, pp 195–210

    Google Scholar 

  39. Srinivasan K, Kazandjieva MA, Agarwal S, Levis P (2008) The \(\beta \)-factor: measuring wireless link burstiness. In: Proceedings of the 6th international conference on embedded network sensor systems (SenSys ’08). ACM, pp 29–42

    Google Scholar 

  40. Lin S, Zhang J, Zhou G, Gu L, Stankovic JA, He T (2006) Atpc: adaptive transmission power control for wireless sensor networks. In: Proceedings of the 4th international conference on embedded networked sensor systems (SenSys ’06). ACM, pp 223–236

    Google Scholar 

  41. Lin S, Zhou G, Whitehouse K, Wu Y, Stankovic JA, He T (2009) Towards stable network performance in wireless sensor networks (rtss ’09). In: Proceedings of the 30th IEEE real-time systems symposium. IEEE Computer Society, pp 227–237

    Google Scholar 

  42. Lal D, Manjeshwar A, Herrmann F (2003) Measurement and characterization of link quality metrics in energy constrained wireless sensor networks. In: Proceedings of the IEEE global telecommunications conference (Globecom ’03). IEEE Communications Society, pp 446–452

    Google Scholar 

  43. Lee H, Cerpa A, Levis P (2007) Improving wireless simulation through noise modeling. In: Proceedings of the 6th international conference on information processing in sensor networks (IPSN ’07). ACM, pp 21–30

    Google Scholar 

  44. Lymberopoulos D, Lindsey Q, Savvides A (2006) An empirical characterization of radio signal strength variability in 3-d ieee 802.15.4 networks using monopole antennas. In: Proceedings of the 7th european conference on wireless sensor networks (EWSN’ 10). Springer, pp 326–341

    Google Scholar 

  45. Sikora A, Groza VF (2005) Coexistence of IEEE 802.15.4 with other systems in the 2.4 ghz-ISM-band. In: Proceedings of the IEEE conference on instrumentation and measurement technology (IMTC), pp 1786–1791

    Google Scholar 

  46. Petrova M, Wu L, Mähönen P, Riihijärvi J (2007) Interference measurements on performance degradation between colocated ieee 802.11g/n and ieee 802.15.4 networks. In: Proceedings of the international conference on networking (ICN), pp 93–98

    Google Scholar 

  47. Yang D, Xu Y, Gidlund M (2010) Coexistence of IEEE 802.15.4 based networks: a survey. In: Proceedings of the 36th annual conference on IEEE industrial electronics society (IECON). pp 2107–2113

    Google Scholar 

  48. Liang CJM, Priyantha NB, Liu J, Terzis A (2010) Surviving wi-fi interference in low power zigbee networks. In: Proceedings of the 8th ACM conference on embedded networked sensor systems (SenSys ’10). ACM, pp 309–322

    Google Scholar 

  49. Boano CA, Voigt T, Noda C, Römer K, Zúñiga MA (2011) Jamlab: Augmenting sensornet testbeds with realistic and controlled interference generation. In: Proceedings of the 10th IEEE international conference on information processing in sensor networks (IPSN). pp 175–186

    Google Scholar 

  50. Zhou G, Stankovic JA, Son SH (2006) Crowded spectrum in wireless sensor networks. In: Proceedings of the 3rd workshop on embedded networked sensors (EmNets)

    Google Scholar 

  51. Son D, Krishnamachari B, Heidemann J (2006) Experimental study of concurrent transmission in wireless sensor networks. In: Proceedings of the 4th international conference on embedded networked sensor systems (SenSys ’06). ACM, pp 237–250

    Google Scholar 

  52. Incel ÖD, Dulman S, Jansen P, Mullender S (2006) Multi-channel interference measurements for wireless sensor networks. In: Proceedings of the 31st IEEE international conference on communications (LCN). pp 694–701

    Google Scholar 

  53. Toscano E, Bello LL (2008) Cross-channel interference in IEEE 802.15.4 networks. In: Proceedings of the 7th international workshop on factory communication systems (WFCS). pp 139–148

    Google Scholar 

  54. Wu Y, Stankovic JA, He T, Lin S (2008) Realistic and efficient multi-channel communications in wireless sensor networks. In: Proceedings of the 27th IEEE international conference on computer communications (INFOCOM). pp 1193–1201

    Google Scholar 

  55. Xing G, Sha M, Huang J, Zhou G, Wang X, Liu S (2009) Multi-channel interference measurement and modeling in low-power wireless networks. In: Proceedings of the 30th IEEE international real-time systems symposium (RTSS). pp 248–257

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouha Baccour .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Baccour, N. et al. (2013). Characteristics of Low-Power Links. In: Radio Link Quality Estimation in Low-Power Wireless Networks. SpringerBriefs in Electrical and Computer Engineering(). Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00774-8_1

Download citation

Publish with us

Policies and ethics