Skip to main content

Deprenyl: from chemical synthesis to neuroprotection

  • Chapter
Oxidative Stress and Neuroprotection

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 71))

Summary

During the last decades (-)-deprenyl has become the golden standard of MAO-B inhibitors. It possesses dopamine potentiating and antioxidant properties; however, its effects cannot be explained solely by the enzyme inhibitory action. (-)-Deprenyl prevents the toxicity of certain selective neurotoxins and recently it was demonstrated to increase cell-cell adhesion as well. The complexity of its pharmacological effects reflects the action of both the parent compound and the active metabolites. (-)-Deprenyl and related propargylamines (DRPs) show neuroprotective features in a variety of in vitro and in vivo models that is dependent on the propargyl moiety. The main presumptive targets to date include glyceraldehyde-3-phosphate dehydrogenase, poly(ADP-ribose) polymerase, some kinase cascades, as well as pro- and antiapoptotic proteins, beside the inhibition of MAO-B. The antiapoptotic activity of DRPs converges upon the maintenance of mitochondrial integrity, due to the initiation of a complex transcriptional program, the details of which are yet to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abu-Raya S, Tabakman R, Blaugrund E, Trembovler V, Lazarovici P (2002) Neuroprotective and neurotoxic effects of monoamine oxidase-B inhibitors and derived metabolites under ischemia in PC12 cells. Eur J Pharmacol 434: 109–116

    Article  PubMed  CAS  Google Scholar 

  • Andoh T, Chock PB, Murphy DL, Chiueh CC (2005) Role of the redox protein thioredoxin in cytoprotective mechanism evoked by (-)-deprenyl. Mol Pharmacol 68: 1408–1414

    Article  PubMed  CAS  Google Scholar 

  • Bach MV, Coutts RT, Baker GB (2000) Metabolism of N,N-dialkylated amphetamines, including deprenyl, by CYP2D6 expressed in human cell line. Xenobiotica 30: 297–306

    Article  PubMed  CAS  Google Scholar 

  • Bar-Am O, Amit T, Youdim MBH (2004) Contrasting neuroprotective and neurotoxic actions of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neurosci Lett 355: 169–172

    Article  PubMed  CAS  Google Scholar 

  • Barrett JS, Hochadel TJ, Morales RJ, Rohatagi S, DeWitt KE, Watson SK, DiSanto AR (1996b) Pharmacokinetics and safety of a selegiline transdermal system relative to single-dose oral administration in the elderly. Am J Ther 3: 688–698

    PubMed  Google Scholar 

  • Barrett JS, Rohatagi S, DeWitt KE, Morales RJ, DiSanto AR (1996a) The effect of dosing regimen and food on the bioavailability of the extensively metabolized, highly variable drug Eldepryl® (selegiline hydrochloride). Am J Ther 3: 298–313

    PubMed  Google Scholar 

  • Biagini G, Frasoldati A, Fuxe K, Agnati LF (1994) The concept of astrocyte-kinetic drug in the treatment of neurodegenerative diseases: evidence for L-deprenyl-induced activation of reactive astrocytes. Neurochem Int 25: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, Mattevi A (2002) Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 9: 22–26

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Birkmayer GD (1986) Effect of (-)-deprenyl in long-term treatment of Parkinson’s disease. A 10-years experience. J Neural Transm [Suppl 22]: 219–225

    Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MB, Hars V, Marton J (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson’s disease: a longterm study. J Neural Transm 64: 113–127

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Riederer P, Ambrozi L, Youdim MB (1977) Implications of combined treatment with ‘Madopar’ and L-deprenil in Parkinson’s disease. A long-term study. Lancet 309: 439–443

    Article  Google Scholar 

  • Bouchard VJ, Rouleau M, Poirier GG (2003) PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 31: 446–454

    Article  PubMed  CAS  Google Scholar 

  • Brabeck C, Pfeiffer R, Leake A, Beneke S, Meyer R, Bürkle A (2003) L-Selegiline potentiates the cellular poly(ADP-ribosyl)ation to ionizing radiation. J Pharmacol Exp Ther 306: 973–979

    Article  PubMed  CAS  Google Scholar 

  • Carlile GW, Chalmers-Redman RME, Tatton NA, Pong A, Borden KE, Tatton WG (2000) Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceradehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57: 2–12

    PubMed  CAS  Google Scholar 

  • Chen R-W, Saunders PA, Wei H, Li Z, Seth P, Chuang DM (1999) Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis: Evidence that GAPDH is upregulated by p53. J Neurosci 19: 9654–9662

    PubMed  CAS  Google Scholar 

  • De la Cruz CP, Revilla E, Rodriguez-Gomez JA, Vizuete ML, Cano J, Machado A (1997) (-)-Deprenyl treatment restores serum insulin-like growth factor-I (IGF-I) levels in aged rats to young rat level. Eur J Pharmacol 53: 593–604

    Google Scholar 

  • Ekstedt B, Magyar K, Knoll J (1979) Does the B form selective monoamine oxidase inhibitor lose selectivity by long term treatment? Biochem Pharmacol 28: 919–923

    Article  PubMed  CAS  Google Scholar 

  • Falsaperla A, Monici Preti PA, Oliani C (1990) Selegiline versus oxiracetam in patients with Alzheimer-type dementia. Clin Ther 12: 376–384

    PubMed  CAS  Google Scholar 

  • Fowler JS, Volkow ND, Logan J, Franceschi D, Wang GJ, MacGregor R, Shea C, Garza V, Pappas N, Carter P, Netusil N, Bridge P, Liederman D, Elkashef A, Rotrosen J, Hitzemann R (2001) Evidence that L-deprenyl treatment for one week does not inhibit MAO A or the dopamine transporter in the human brain. Life Sci 68: 2759–2768

    Article  PubMed  CAS  Google Scholar 

  • Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. P Natl Acad Sci USA 101: 10177–10182

    Article  CAS  Google Scholar 

  • Fukuhara Y, Takeshima T, Kashiwaya Y, Shimoda K, Ishitani R, Nakashima K (2001) GAPDH knockdown rescues mesencephalic dopaminergic neurons from MPP+-induced apoptosis. Neuroreport 12: 2049–2052

    Article  PubMed  CAS  Google Scholar 

  • Garner CC, Zhai RG, Gundelfinger D, Ziv NE (2002) Molecular mechanisms of CNS synaptogenesis. Trends Neurosci 25: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Grace JM, Kinter MT, Macdonald TL (1994) Atypical metabolism of deprenyl and its enantiomer, (S)-(+)-N-alpha-dimethyl-N-propynylphenethylamine, by cytochrome P450 2D6. Chem Res Toxicol 7: 286–290

    Article  PubMed  CAS  Google Scholar 

  • Hamada-Kanazawa M, Ishikawa K, Nomoto K, Uozumi T, Kawai Y, Narahara M, Miyake M (2004) Sox6 overexpression causes cellular aggregation and the neuronal differentiation of P19 embryonic carcinoma cells in the absence of retinoic acid. FEBS Lett 560: 192–198

    Article  PubMed  CAS  Google Scholar 

  • Heinonen EH, Myllyla V, Sotaniemi K, Lammintausta R, Salonen JS, Anttila M, Savijarvi M, Kottila M, Rinne UK (1989) Pharmacokinetics and metabolism of selegiline. Acta Neurol Scand 126: 93–99

    CAS  Google Scholar 

  • Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC ((2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7: 726–735

    Article  PubMed  CAS  Google Scholar 

  • Ishitani R, Tanaka M, Sunaga K, Katsube N, Chuang D-M (1998) Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol Pharmacol 53: 701–707

    PubMed  CAS  Google Scholar 

  • Jayanthi S, Deng X, Bordelon M, McCoy MC, Cadet JL (2001) Methamphetamine causes differential regulation of pro-death and antideath Bcl-2 genes in the mouse neocortex. FASEB J 15: 1745–1752

    Article  PubMed  CAS  Google Scholar 

  • Jenei V, Zor K, Magyar K, Jakus J (2005) Increased cell-cell adhesion, a novel effect of R-(-)-deprenyl. J Neural Transm 112: 1433–1445

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47: S161–S170

    PubMed  CAS  Google Scholar 

  • Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. P Natl Acad Sci USA 101: 343–347

    Article  CAS  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Katagi M, Tatsuno M, Miki A, Nishikawa M, Nakajima K, Tsuchihashi H (2001) Simultaneous determination of selegiline-N-oxide, a new indicator for selegiline administration, and other metabolites in urine by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr B 759: 125–133

    CAS  Google Scholar 

  • Katagi M, Tatsuno M, Tsutsumi H, Miki A, Kamata T, Nishioka H, Nakajima K, Nishikawa M, Tsuchihashi H (2002) Urinary excretion of selegiline N-oxide, a new indicator for selegiline administration in man. Xenobiotica 32: 823–831

    Article  PubMed  CAS  Google Scholar 

  • Kitani K, Minami C, Isobe K, Maehara K, Kanai S, Ivy GO, Carillo M-C (2002) Why (-)-deprenyl prolongs survival of experimental animals: Increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech Ageing Dev 123: 1087–1100

    Article  PubMed  CAS  Google Scholar 

  • Knoll J, Ecseri Z, Kelemen K, Nievel J, Knoll B (1965) Phenylisopropylmethylpropinyl-amine (E-250), and new spectrum psychic energizer. Arch Int Pharmacodyn Ther 155: 154–164

    PubMed  CAS  Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5: 393–408

    PubMed  CAS  Google Scholar 

  • Kragten E, Lalande I, Zimmermann K, Roggo S, Schindler P, Müller D, Van Oostrum J, Waldmeier P, Fürst P (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the anti-apoptotic compounds CGP 3466 and R-(-)-deprenyl. J Biol Chem 273: 5821–5828

    Article  PubMed  CAS  Google Scholar 

  • Kraus WL, Lis JT (2003) PARP goes transcription. Cell 113: 677–683

    Article  PubMed  CAS  Google Scholar 

  • Laine K, Anttila M, Huupponen R, Maki-Ikola O, Heinonen E (2000) Multiple-dose pharmacokinetics of selegiline and desmethylselegiline suggest saturable tissue binding. Clin Neuropharmacology 23: 22–27

    Article  CAS  Google Scholar 

  • Lange KW, Riederer P, Youdim MB (1994) Biochemical actions of ldeprenyl (selegiline). Clin Pharmacol Ther 56: 734–741

    Article  PubMed  CAS  Google Scholar 

  • Laplante I, Beliveau R, Paquin J (2004) RhoA=ROCK and Cdc42 regulate cell-cell contact and N-cadherin protein level during neurodetermination of P19 embryonal stem cells. J Neurobiol 60: 289–307

    Article  PubMed  CAS  Google Scholar 

  • Lengyel J, Magyar K, Hollósi I, Bartók T, Báthori M, Kalász H, Fürst S (1997) Urinary excretion of deprenyl metabolites. J Chromatogr A 762: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Levai F, Fejer E, Szeleczky G, Szabo A, Eros Takacsy T, Hajdu F, Szebeni G, Szatmari I, Hermecz I (2005) In vitro formation of selegiline-Noxide as a metabolite of selegiline in human, hamster, mouse, rat, guinea-pig, rabbit and dog. Eur J Drug Metab Ph 29: 169–178

    Article  Google Scholar 

  • Lew MF (2005) Selegiline orally disintegrating tablets for the treatment of Parkinson’s disease. Expert Rev Neurother 5: 705–712

    Article  PubMed  CAS  Google Scholar 

  • Magyar K, Ecseri Z, Bernáth G, Sátory É, Knoll J (1980) Structure-activity relationship of selective inhibitors of MAO-B. In: Magyar K (ed) Monoamines oxidases and their selective inhibition. Third Congress of the Hungarian Pharmacological Society, Pergamon Press, Budapest, pp 11–21

    Google Scholar 

  • Magyar K, Lengyel J, Szatmari I, Gaal J (1995) The distribution of orally administered (-)-deprenyl-propynyl-14C and (-)-deprenyl-phenyl-3H in rat brain. Prog Brain Res 106: 143–153

    Article  PubMed  CAS  Google Scholar 

  • Magyar K, Pálfi M, Tábi T, Kalász H, Szende B, Szökő É (2004) Pharmacological aspects of (-)-deprenyl. Curr Med Chem 111: 2017–2031

    PubMed  CAS  Google Scholar 

  • Magyar K, Szende B (2000) In: Cameron EG, Feuer G (eds) Handbook of experimental pharmacology. Apoptosis and its modulation by drugs. Springer-Verlag, Berlin-Heidelberg, Vol 142, pp 457–472

    Google Scholar 

  • Magyar K, Szende B (2004) (-)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and antiapoptotic properties. Neurotoxicology 25: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Magyar K, Szende B, Lengyel J, Tekes K (1996) The pharmacology of B-type selective monoamine oxidase inhibitors; milestones in (-)-deprenyl research. J Neural Transm [Suppl 48]: 29–43

    Google Scholar 

  • Magyar K, Szende B, Lengyel J, Tarczali J, Szatmary I (1998) The neuroprotective and neuronal rescue effects of (-)-deprenyl. J Neural Transm [Suppl 52]: 109–123

    Google Scholar 

  • Magyar K, Vízi ES, Ecseri Z, Knoll J (1967) Comparative pharmacological analysis of the optical isomers of phenyl-isopropyl-methyl-propinylamine (E-250). Acta Physiol Hung 32: 377–387

    CAS  Google Scholar 

  • Mahmood I (1997) Clinical pharmacokinetics and pharmacodynamics of selegiline. An update. Clin Pharmacokinet 33: 91–102

    CAS  Google Scholar 

  • Mandel S, Weinreb O, Amit T, Youdim MB (2005) Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Rev 48: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Akao Y, Carillo MC, Kitani K, Youdim MBH, Naoi M (2002) Neuroprotection by propargylamines in Parkinson’s disease. Suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24: 675–682

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y, Youdim M, Furukawa S, Nabeshima T, Naoi M (2004) N-propargyl-1(R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-kB transcription factor. Neurochem Int 44: 393–400

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Youdim MBH, Naoi M (2001) Antiapoptotic properties of rasagiline, N-propargylamine-1(R)-aminoindan, and its optical (S)-isomer TV1022. Ann NY Acad Sci 939: 320–329

    Article  PubMed  CAS  Google Scholar 

  • Mazzola JL, Sirover MA (2002) Alteration of intracellular structure and function of glyceraldehydes-3-phosphate dehydrogenase: a common phenotype of neurodegenerative disorders? Neurotoxicology 23: 603–609

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Ficca ML, Meyer RG, Jacobson EL, Jacobson MK (2005) Poly(ADP-ribose) polymerases: managing genome stability. Int J Biochem Cell B 37: 920–926

    Article  CAS  Google Scholar 

  • Minton AP, Wilf J (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20: 4821–4826

    Article  PubMed  CAS  Google Scholar 

  • Mizuta I, Ohta M, Ohta K, Nishimura M, Mizuta E, Hayashi K, Kuno S (2000) Selegiline and desmethylselegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem Bioph Res Co 279: 751–755

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W (2001) Future of neuroprotection in Parkinson’s disease. Parkinsonism Relat D 8: 139–145

    Article  CAS  Google Scholar 

  • Naoi M, Maruyama W, Akao Y, Yi H (2002) Mitochondria determine the survival and death in apoptosis by an endogenous neurotoxin, N-methyl(R)salsolinol, and neuroprotection by propargylamines. J Neural Transm 109: 607–621

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Shite J, Mao W, Liang CS (2003) Selegiline attenuates cardiac oxidative stress and apoptosis in heart failure: association with improvement of cardiac function. Eur J Pharmacol 461: 149–158

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Elsworth JD, Blau K, Sandler M, Lees AJ, Stern GM (1978) Deprenyl is metabolized to methamphetamine and amphetamine in man. Brit J Clin Pharmaco 6: 542–544

    CAS  Google Scholar 

  • Riederer P, Youdim MB, Rausch WD, Birkmayer W, Jellinger K, Seeman D (1978) On the mode of L-Deprenyl in the human central nervous system. J Neural Transm 43: 217–226

    Article  PubMed  CAS  Google Scholar 

  • Riva MA, Molteni R, Racagni G (1997) L-deprenyl potentiates cAMP-induced elevation of FGF-2 mRNA levels in rat cortical astrocytes. Neuroreport 8: 2165–2168

    Article  PubMed  CAS  Google Scholar 

  • Salonen JS, Nyman L, Boobis AR, Edwards RJ, Watts P, Lake BG, Price RJ, Renwick AB, Gómez-Lechón M-J, Castell JV, Ingelman-Sundberg M, Hidestrand M, Guillouzo A, Corcos L, Goldfarb PS, Lewis DFV, Taavitsainen P, Pelkonen O (2003) Comparative studies on the cytochrome P450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems. Drug Metab Dispos 31: 1093–1102

    Article  PubMed  CAS  Google Scholar 

  • Sawa A, Khan AA, Hester LD, Snyder SH (1997) Glyceraldehyde-3-phosphate dehydrogenase: Nuclear translocation participates in neuronal and nonneuronal cell death. P Natl Acad Sci USA 94: 11669–11674

    Article  CAS  Google Scholar 

  • Schlett K, Czirók A, Tárnok K, Vicsek T, Madarász E (2000) Dynamics of cell aggregation during in vitro neurogenesis by immortalized neuroectodermal progenitors. J Neurosci Res 60: 184–194

    Article  PubMed  CAS  Google Scholar 

  • Semkova I, Wolz P, Schilling M, Krieglstein J (1996) Selegiline enhances NGF synthesis and protects central nervous system neurons from excitotoxic and ischemic damage. Eur J Pharmacol 315: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Seymour CB, Mothersill C, Mooney R, Moriarty M, Tipton KF (2003) Monoamine oxidase inhibitors l-deprenyl and clorgyline protect nonmalignant human cells from ionizing radiation and chemotherapy toxicity. Brit J Cancer 89: 1979–1986

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Shi Y (2004) Metabolic enzymes and coenzymes in transcription — a direct link between metabolism and transcription? Trends Genet 20: 445–452

    Article  PubMed  CAS  Google Scholar 

  • Shin H-S (1997) Metabolism of selegiline in humans. Identification, excretion, and stereochemistry of urine metabolites. Drug Metab Dispos 25: 657–662

    PubMed  CAS  Google Scholar 

  • Szebeni G, Lengyel J, Székács G, Magyar K, Gaál J, Szatmári I (1995) Gas chromatographic procedure for simultaneous determination of selegiline metabolites, amphetamine, methamphetamine and desmethyl-deprenyl in pig plasma. Acta Physiol Hung 83: 135–141

    PubMed  CAS  Google Scholar 

  • Szende B, Bökönyi J, Bocsi J, Kéri Gy, Timár F, Magyar K (2001) Antiapoptotic and apoptotic action of (-)-deprenyl and its metabolites. J Neural Transm 108: 25–33

    Article  PubMed  CAS  Google Scholar 

  • Szökő É, Kalász H, Magyar K (1999) Biotransformation of deprenyl enantiomers. Eur J Drug Metab Ph 24: 315–319

    Article  Google Scholar 

  • Szökő É, Magyar K (1996) Enantiomer identification of the major metabolites of (-)-deprenyl in rat urine by capillary electrophoresis. Int J Pharm Adv 1: 320–328

    Google Scholar 

  • SzÖkő É, Tábi T, Halász AS, Pálfi M, Kalász H, Magyar K (2004a) Chiral characterization and quantification of deprenyl-N-oxide and other deprenyl metabolites in rat urine by capillary electrophoresis. Chromatographia 60: S245–S251

    Google Scholar 

  • Szökő É, Tábi T, Borbás T, Dalmadi B, Tihanyi K, Magyar K (2004b) Assessment of the N-oxidation of deprenyl, methamphetamine, and amphetamine enantiomers by chiral capillary electrophoresis: an in vitro metabolism study. Electrophoresis 25: 2866–2875

    Article  PubMed  CAS  Google Scholar 

  • Taavitsainen P, Anttila M, Nyman L, Karnani H, Salonen JS, Pelkonen O (2000) Selegiline metabolism and cytochrome P450 enzymes: in vitro study in human liver microsomes. Pharmacol Toxicol 86: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Tabakman R, Lecht S, Lazarovici P (2003) Neuroprotection by monoamine oxidase inhibitors: a therapeutic strategy for Parkinson’s disease? Bioessays 26: 80–90

    Article  CAS  Google Scholar 

  • Tábi T, Magyar K, Szökő É (2003) Chiral characterization of deprenyl-Noxide and other deprenyl metabolites by capillary electrophoresis using dual cyclodextrin system in rat urine. Electrophoresis 24: 2665–2673

    Article  PubMed  CAS  Google Scholar 

  • Tatton WG, Chalmers-Redman RME (1996) Modulation of gene expression rather than monoamine oxidase inhibition: (-)-Deprenyl-related compounds in controlling neurodegeneration. Neurology 47[Suppl 3]: S171–S183

    PubMed  CAS  Google Scholar 

  • Tatton WG, Chalmers-Redman RME, Ju WJH, Mammen M, Carlile GW, Pong AW, Tatton NA (2002) Propargylamines induce antiapoptotic new protein synthesis in serum-and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301: 753–764

    Article  PubMed  CAS  Google Scholar 

  • Tatton WG, Ju WYL, Holland DP, Tai C, Kwan M (1994) Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63: 1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Tekes K, Magyar K (2000) Effect of MAO inhibitors on the hjgh-affinity reuptake of biogenic amines in rat subcortical regions. Neurobiology (Bp.) 8: 257–264

    PubMed  CAS  Google Scholar 

  • Thomas T, McLendon C, Thomas G (1998) L-deprenyl: nitric oxide production and dilation of cerebral blood vessels. Neuroreport 9: 2595–2600

    Article  PubMed  CAS  Google Scholar 

  • Toronyi E, Hamar J, Magyar K, Szende B (2002) Antiapoptotic effect of (-)-deprenyl in rat kidney after ischemia reperfusion. Med Sci Monitor 8: BR65–68

    CAS  Google Scholar 

  • Tsutsumi H, Katagi M, Nishikawa M, Tsuchihashi H, Kasuya F, Igarashi K (2004) In vitro confirmation of selegiline N-oxidation by flavin-containing monooxygenase in rat microsome using LC-ESI MS. Biol Pharm Bull 27: 1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Valoti M, Fusi F, Frosini M, Pessina F, Tipton KF, Sgaragli GP (2000) Eur J Pharmacol 391: 199–206

    Article  PubMed  CAS  Google Scholar 

  • Wadia JS, Chalmers-Redman RME, Ju WJH, Carlile GW, Phillips JL, Fraser AD, Tatton WG (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (-)-deprenyl. J Neurosci 18: 932–947

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Tatton WG (2004) Interrupting apoptosis in neurodegenerative disease: potential for effective therapy? Drug Discov Today 9: 210–218

    Article  PubMed  CAS  Google Scholar 

  • Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MBH (2004) Neuroprotection via pro-survival PKC isoforms associated with Bcl-2 family members. FASEB J 18: 2033–2043

    Google Scholar 

  • Yi H, Maruyama W, Akao Y, Takahashi T, Iwasa K, Youdim MBH, Naoi M (2006) N-Propargylamine protects SH-SY5Y cells from apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, through stabilization of mitochondrial membrane and induction of anti-apoptotic Bcl-2. J Neural Transm 113: 21–32

    Article  PubMed  CAS  Google Scholar 

  • Yogev-Falach M, Amit T, Bar-Am O, Youdim MBH (2003) The importance of propargylamine moiety in the anti-Parkinson drug rasagiline and its derivatives for MAPK-dependent amyloid preursor protein processing. FASEB J 17: 2325–2327

    PubMed  CAS  Google Scholar 

  • Yoshida T, Yamada Y, Yamamoto T, Kuroiwa Y (1986) Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica 16: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Yoshimi K, Ren YR, Seki T, Yamada M, Ooizumi H, Onodera M, Saito Y, Murayama S, Okano H, Mizuno Y, Mochizuki H (2005) Possibility for neurogenesis in substantia nigra of parkinsonian brain. Ann Neurol 58: 31–40

    Article  PubMed  Google Scholar 

  • Youdim MBH, Finberg JPM (1986) MAO type B inhibitors as adjunct to Ldopa therapy. In: Yahr MD, Bergmann KJ (eds) Advances in Neurology Vol. 45, pp 127–136

    Google Scholar 

  • Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. P Natl Acad Sci USA 100: 7925–7930

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Magyar, K., Pálfi, M., Jenei, V., Szökő, É. (2006). Deprenyl: from chemical synthesis to neuroprotection. In: Parvez, H., Riederer, P. (eds) Oxidative Stress and Neuroprotection. Journal of Neural Transmission. Supplementa, vol 71. Springer, Vienna. https://doi.org/10.1007/978-3-211-33328-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33328-0_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33327-3

  • Online ISBN: 978-3-211-33328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics