
Key Exchange with Tight (Full) Forward
Secrecy via Key Confirmation

Jiaxin Pan1(B) , Doreen Riepel2 , and Runzhi Zeng3

1 University of Kassel, Kassel, Germany
jiaxin.pan@uni-kassel.de

2 University of California San Diego, La Jolla, USA
driepel@ucsd.edu

3 Norwegian University of Science and Technology, Trondheim, Norway
runzhi.zeng@ntnu.no

Abstract. Weak forward secrecy (wFS) of authenticated key exchange
(AKE) protocols is a passive variant of (full) forward secrecy (FS). A
natural mechanism to upgrade from wFS to FS is the use of key confir-
mation messages which compute a message authentication code (MAC)
over the transcript. Unfortunately, Gellert, Gjøsteen, Jacobson and Jager
(GGJJ, CRYPTO 2023) show that this mechanism inherently incurs a
loss proportional to the number of users, leading to an overall non-tight
reduction, even if wFS was established using a tight reduction.

Inspired by GGJJ, we propose a new notion, called one-way verifi-
able weak forward secrecy (OW-VwFS), and prove that OW-VwFS can
be transformed tightly to FS using key confirmation in the random ora-
cle model (ROM). To implement our generic transformation, we show
that several tightly wFS AKE protocols additionally satisfy our OW-
VwFS notion tightly. We highlight that using the recent lattice-based
protocol from Pan, Wagner, and Zeng (CRYPTO 2023) can give us the
first lattice-based tightly FS AKE via key confirmation in the classical
random oracle model. Besides this, we also obtain a Decisional-Diffie-
Hellman-based protocol that is considerably more efficient than the pre-
vious ones.

Finally, we lift our study on FS via key confirmation to the quantum
random oracle model (QROM). While our security reduction is overall
non-tight, it matches the best existing bound for wFS in the QROM
(Pan, Wagner, and Zeng, ASIACRYPT 2023), namely, it is square-root-
and session-tight. Our analysis is in the multi-challenge setting, and it is
more realistic than the single-challenge setting as in Pan et al.

Keywords: Authenticated key exchange · forward secrecy · key
confirmation · tight security · (quantum) random oracles

1 Introduction

Forward secrecy (FS) is an essential security requirement for authenticated key
exchange (AKE) protocols. It states that even if an active adversary corrupts a
c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14657, pp. 59–89, 2024.
https://doi.org/10.1007/978-3-031-58754-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58754-2_3&domain=pdf
http://orcid.org/0000-0002-7459-6850
http://orcid.org/0000-0002-4990-0929
http://orcid.org/0000-0002-8606-3007
https://doi.org/10.1007/978-3-031-58754-2_3

60 J. Pan et al.

user’s long-term secret key, all session keys agreed before should remain secret to
the adversary. A weaker form of FS is called weak FS (wFS), where an adversary
is not allowed to perform active attacks, namely, it does not actively interfere
with the protocol transcripts of the session that it attacks.

Key confirmation is simple and arguably the most efficient way in achieving
FS and has been used in many works, e.g., [10,15,24]. Essentially, it generically
transforms an AKE protocol with wFS to FS. More precisely, two parties firstly
run a wFS AKE protocol to agree on a session key k, and then they exchange
key confirmation messages derived from k. These messages are usually message
authentication codes (MAC) on the protocol transcripts using k as the MAC
key. Apart from key confirmation, one can use a digital signature scheme to
sign a passively secure key exchange protocol as in the signed Diffie-Hellman
protocol [19,27] to provide FS. Considering that using a MAC or hash function
is much more efficient than digital signatures, the signature-based approach is
often inefficient and less desirable.

Security Models for AKE. Defining the security for AKE protocols is a com-
plex task, and there are many different security models for AKE (e.g., [3,7,25]).
In this paper, we consider active adversaries that can modify, drop, or inject some
messages. Moreover, they may adaptively corrupt users’ long-term secret keys
via Corr oracle and reveal session keys via Reveal oracle. Some of the models
even allow adversaries to learn ephemeral states (which are usually random-
ness in generating protocol messages) via Rev-State oracle. We formalize key
secrecy via Test, where an adversary A chooses a fresh session, receives either
a real or random key for it, and shall distinguish between the two. We consider
the single-bit guessing, multi-challenge security, namely, A can query Test mul-
tiple times and each time Test responds using the same bit in deciding real or
random. Composability for this notion was initially proven for password-based
key exchange [1], and we refer to [21] for further discussion on why this is the
realistic and meaningful notion. For forward secrecy, keys of these Test-sessions
must be computed before Corr is queried to either parties of a Test-session.
Depending on the type of forward secrecy, freshness is defined differently. If it is
wFS, then A must perform only passive attacks on this fresh session. Otherwise,
A can perform active attacks, for instance, modify or inject some messages.

Security Loss for FS via Key Confirmation. The complexity of AKE
models makes it challenging to prove security of an AKE protocol, in particular,
giving tight security proofs for AKE. The security of modern cryptographic
protocols is often proven by reductions. A reduction R uses an adversary A
against protocol Π to break the security of the underlying primitive P . By doing
so, we can conclude the concrete security bound, εA ≤ � · εR, where εA and εR
are the success probability of A and R, respectively. � is called the security loss.
Assuming A and R have roughly the same running time, if � is a small constant,
we say protocol Π has tight security, and non-tight security, otherwise. A tight
security reduction is highly desirable, since it allows protocols to be instantiated
with optimal parameters without compensation for the security loss.

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 61

A natural question to ask is whether the key confirmation approach preserves
the tightness of the underlying wFS AKE. Due to its high efficiency, it would
be ideal to have an affirmative answer to this question, since it means that we
do not need to increase the security parameter of the wFS AKE to compensate
any security loss.

Intuitively, there should not be a tightness loss when going from wFS to
FS, which was even falsely claimed by the work of Cohn-Gordon et al. [10]
previously. At CRYPTO 2023, Gellert, Gjøsteen, Jacobsen, and Jager (GGJJ)
[18] identified a flaw in [10] and proposed a fix by using a selective variant of
wFS (called selective key secrecy in [18]). The selective wFS is essentially the
same as wFS, except that an adversary A has to select a user of which A will not
corrupt the long-term secret key. Unfortunately, when we construct a reduction
R to prove FS based on this selective wFS, R has to guess the non-corrupted
user, which leads to a security loss of O(μ) where μ is the maximal number of
users. This security loss is proven to be inherent (and thus optimal) in [18] when
starting from a wFS AKE with key indistinguishability.

However, a linear loss in the number of users is undesirable, since in the real
world the number of users can be massive. According to the impossibility result
in [10], it seems inherent to have this security loss. Hence, it motivates us to
propose a different modularization that potentially requires strong security for
the underlying wFS AKE in achieving tight FS.

1.1 Our Contribution I: Tight Forward Secrecy via Key
Confirmation

We revise the security proof for the wFS-to-FS transformation.

Tight FS from Verifiable wFS. We propose a new variant of wFS, called
One-Wayness against key Verification attacks and weak Forward Secrecy (OW-
VwFS). In the OW-VwFS security game, an adversary has the same capability
as in the usual wFS game, but additionally it can verify whether a session key
is the valid one of a particular session. Hence, the adversary capability of OW-
VwFS is stronger than that of wFS and it is the main reason why we bypass
the optimality result from Gellert et al. [18]. In terms of security goals, OW-
VwFS is weaker than wFS, namely, OW-VwFS only requires an adversary cannot
compute the session key of a fresh session, while wFS requires a session key to
be indistinguishable from a random key.

Using key confirmation, we prove that OW-VwFS tightly implies FS in the
random oracle model. Our transformation is the same as the standard wFS-to-
FS transformation, but ours preserves the tightness of the underlying OW-VwFS
protocol, and it enables tight FS in contrast to the selective notion in [18]. An
important consequence of our work is that the future AKE design can aim at
OW-VwFS, since its transformation to FS is the same as the standard wFS-to-FS
one, but tightness-preserving. Moreover, our analysis considers security against
(ephemeral) state reveals. Such a strong form of attacks was not considered in
the work of Gellert et al. [18], which is why we bypass their impossibility.

62 J. Pan et al.

Constructing (Tightly) Verifiable wFS. Furthermore, we show that sev-
eral tightly wFS protocols satisfy our new OW-VwFS notion tightly, in partic-
ular, the lattice-based protocol of Pan, Wagner, and Zeng [30]1. Subsequently,
this yields the first AKE protocol with tight FS from lattices.

Essentially, we show that a One-Way Checkable against Chosen-Ciphertext
Attacks (OW-ChCCA) [30] secure key encapsulation mechanism (KEM) tightly
implies a OW-VwFS AKE protocol. Once again, our analysis allows adversaries
to reveal ephemeral state in the AKE protocol. Roughly speaking, the OW-
ChCCA game is a multi-user, multi-challenge variant of the standard IND-CCA
game: Besides the oracles provided by the standard IND-CCA security, it allows
adversaries to corrupt some of the user’s decryption keys and decrypt some of
the challenge ciphertexts, and, most importantly, it allows an adversary to check
if a key is valid with respect to a ciphertext. The adversary goal is to invert
a fresh challenge ciphertext. As shown in [30], we can construct OW-ChCCA
KEM tightly from the Decisional Diffie-Hellman (DDH) and Learning-With-
Errors (LWE) assumptions, respectively. As a technical note, our proof requires
only a slightly weaker version of OW-ChCCA, where adversaries are not allowed
to ask for a decryption, but to verify whether a ciphertext can be decapsulated.

Efficiency Comparison among DDH-based Protocols. Besides having
the first lattice-based AKE with tight FS, we also obtain the most efficient
DDH-based protocol against state reveal attacks. In Table 1, we compare effi-
ciency among well-known DDH-based AKE with tight or “optimal” tight FS
(namely, with security loss O(μ)) to show the practicality of our work. Our esti-
mation focuses on communication and computation complexity for both parties
to agree on a session key. For computation complexity, we only count the num-
ber of exponentiations, since they are the most costly operations. For concrete
efficiency, we instantiate the protocols at 128-bit security and assume that the
number of users μ ≈ 230. This is about the number of monthly active users in
a social media app2. We instantiate the fully tight protocols with a NIST P256
curve and “optimal” tight ones with a NIST P384 (since they require a 158-bit
hard DLog assumption). Our benchmarks for an exponentiation in a P256 and
P384 are 0.5 ms and 1 ms, using Apple M1 Max, 32GB of RAM and macOS
Ventura 13.3.1 (a).

We observe that the DDH-based non-committing KEM in [21] is tightly OW-
ChCCA secure (cf. [30, Footnote 1]). Our analysis shows that the wFS JKRS in
[21] is tightly OW-VwFS, and after adding key confirmation to the wFS JKRS
in [21] we get JKRSKC that is tightly FS. According to Table 1, our tight secu-
rity proofs allow one to implement JKRSKC with about 30% shorter transcripts
and 50% faster speed than the one with the “optimal”, non-tight proofs in [18]
at 128-bit security. Considering security against State Reveals, JKRSKC is the

1 Their lattice-based protocol is almost tight (similar to [9]), since it needs to lose a
factor of O(λ) to the LWE assumption, where λ is the security parameter. We call
it tight as well, but specify the concrete loss in our theorems and proofs.

2 Cf. https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-
users-worldwide/.

https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 63

Table 1. Comparison of Diffie-Hellman-based AKE protocols with (tight or “optimal”
tight) FS. Concrete efficiency is estimated for 128-bit security. “JKRSKC [18]” is trans-
forming the implicitly authenticated JKRS [21] via key confirmation. We estimate its
efficiency, according to the “optimal”, non-tight security bound by Gellert et al. [18].
The last row is the same construction as the second last one, but with our tight secu-
rity proof (cf. Theorem 4). In the upper arrows, schemes are using signatures, and we
estimate the concrete bytes with the most efficient signature scheme in [13]. Comm.
counts values exchanged during the protocol execution. G counts the number of group
elements, H the number of hashes or MACs, ‘Sign’ the number of signatures, and
‘other’ the additional data in bits. Bytes counts total data in bytes by instantiating G

with NIST P256 or P384 (for the non-tight JKRSKC). Exp. counts the total numbers
of exponentiation (which is the most costly computation in an AKE protocol) from
both parties in agreeing a session key, and Time is the estimated time of computing
those exponentiation in milliseconds.

Protocol Comm.
(G, H, Sign, other)

Bytes Exp. Time (ms) #Msg. State
Reveal

Security
loss

TLS 1.3 [11,14] (2, 2, 2, 512) 384 32 16 3 no O(1)
GJ [19] (2, 1, 2, 0) 288 32 16 3 no O(1)
LLGW [26] (3, 0, 2, 0) 288 35 17.5 2 no O(1)
JKRS [21] (5, 1, 1, 0) 288 29 14.5 2 yes O(1)
PQR [27] (2, 0, 2, 0) 256 32 16 2 no O(1)
CCGJJKC [10] (2,2,0,0) 160 8 8 3 no O(μ)
JKRSKC [18] (5,2,0,0) 304 15 15 3 yes O(μ)
JKRSKC (Ours) (5,2,0,0) 224 15 7.5 3 yes O(1)

most efficient DDH-based protocol, due to our tight security proofs. It is worth
mentioning that the CCGJJKC has shorter protocol transcripts, but it is insecure
under State Reveals.

Interestingly, although the signature-based JKRS uses relatively inefficient
primitives as signatures, its tight security proof allows an instantiation that is
slightly more efficient than the non-tight, signature-less JKRS (namely, JKRSKC
with proofs in [18]).

Relation to the Work of Gellert et al. [18]. We circumvent the impos-
sibility result of Gellert et al. [18] by using a different wFS notion, OW-VwFS,
and random oracles. As discussed earlier, the key checking oracle makes our
notion stronger. The security definition in [18] does not have such an oracle and
thus their impossibility result does not apply to our proof. At the same time,
we opted for the weakest definition which allows a tight reduction (i.e., one-
wayness and also no Reveal oracle), which makes our definition and that of [18]
incomparable (neither implies the other). Moreover, their impossibility is in the
standard model, while ours is in the random oracle model. For these reasons,
our results do not contradict the impossibility result in [18], but rather provides
an alternative way to prove security while enabling full tightness.

64 J. Pan et al.

1.2 Our Contribution II: Forward Secrecy via Key Confirmation
in the QROM

Our second contribution is proposing the first security proof for FS via key con-
firmation in the quantum random oracle model (QROM) [6], where a quantum
adversary can have quantum access to the hash function. Our analysis considers
the KEM-based AKE protocol (via key confirmation) and assumes a Multi-User,
Multi-Challenge Chosen-Ciphertext Attacks (MUC-CCA) KEM and a Multi-
Challenge CCA (MC-CCA) KEM. The main reason of doing so is that we do
not know how to tightly prove OW-VwFS implies FS in the QROM, since it will
trigger the Oneway-to-Hiding Lemma [32] and lead to a square-root-loss such as√

ε, where ε is the advantage of breaking the underlying KEM. We still think
that our tight lattice-based protocol in the classical ROM is interesting, since it
is the first protocol with tight FS from post-quantum assumptions. Of course,
one may alternatively rephrase our analysis in the classical ROM with the suit-
able KEMs, but it may lower the readability. More importantly, our OW-VwFS
notion is more generic and gives more freedom to designers to construct their
OW-VwFS protocols that will lead to FS in a tightness-preserving manner.

Our security bound in the QROM is unfortunately non-tight. More precisely,
ignoring the statistically negligible terms, our security bound for FS in the
QROM is

εourFS ≤ O(μ) · εMC-CCA + O(1) · εMUC-CCA. (1)

where μ is the number of users, εMC-CCA is the advantage of MC-CCA, and
εMUC-CCA is that of MUC-CCA. It matches the best known bound for wFS in
the QROM proposed by Pan, Wagner, and Zeng (PWZ) [31]. In this sense our
FS bound preserves the tightness of the KEM-based AKE protocol with wFS. It
is worth mentioning that, as shown in [31], we can tightly instantiate MC-CCA
and MUC-CCA from the LWE assumption in the QROM.

We also improve PWZ’s analysis in the sense that their analysis considers
only one single Test query, but our security bound (as stated in Eq. (1)) is
established in the context of multiple challenges, where an adversary is allowed
to query Test multiple times. The multi-challenge setting is more realistic and
well-established for public-key primitives [2,10,16,17], since in the real world, an
adversary usually wants to attack multiple instances of a primitives. Although
the security bound of PWZ can be extended to the multi-Test setting with a
multiplicative factor t (which is the number of Test-queries), ours does not need
to lose such a factor. In practice, t can be up to the total number of established
sessions, which can be much larger than the number of users. We stress that the
analysis of PWZ is only for wFS, and transforming it to FS, it may lose another
multiplicative factor μ by applying the analysis of GGJJ [18]. Hence, combining
the analysis of PWZ and GGJJ leads to a bound for FS in the QROM as

εPWZ & GGJJ
FS ≤ O(μ2t) · εMC-CCA + O(μt) · εMUC-CCA. (2)

Strictly speaking, the bound above is only an estimation and not theoretically
sound, since the analysis of GGJJ is in the classical setting. Their bound may

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 65

change, if an adversary can query the hash function or key derivation function
with a quantum state.

More Related Work in the QROM. Another work on the KEM-based AKE
protocol in the QROM is due to Hövelmanns, Kiltz, Schäge, and Unruh [20], and
it has a square-root-loss, namely, its security bound is

O(S2 + S · μ) ·
(

εCPA +
√

Q · εCPA

)
, (3)

where S, μ, and Q are the numbers of total sessions, users, and random oracle
queries, respectively, and εCPA is the advantage of breaking the underlying CPA
secure PKE. Similar to the work of PWZ, Eq. (3) is only for wFS and in the
single-Test setting. Upgrading to FS in the multi-Test setting requires an
additional multiplicative loss in μt. It is usually less desirable to have the square-
root-loss as in Eq. (3), since it reduces the security guarantee of the underlying
PKE in half.

2 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. For a finite set S, we denote the sampling of a
uniform random element x by x $← S. By �B� we denote the bit that is 1 if the
evaluation of the Boolean statement B is true and 0 otherwise.

Algorithms. For an algorithm A which takes x as input, we denote its com-
putation by y := A(x) if A is deterministic, and y ← A(x) if A is probabilistic.
We assume all the algorithms (including adversaries) in this paper to be prob-
abilistic unless stated differently. We denote an algorithm A with access to an
oracle O by AO. In terms of running time, if a reduction’s running time t′ is
dominated by that of an adversary t (more precisely, t′ = t + s where s � t), we
write t′ ≈ t.

Games. We use code-based games [4] to present our definitions and proofs. We
implicitly assume all Boolean flags to be initialized to 0 (false), numerical vari-
ables to 0, sets to ∅ and strings to ⊥. We make the convention that a procedure
terminates once it has returned an output. GA ⇒ b denotes the final (Boolean)
output b of game G running adversary A, and if b = 1 we say A wins G. The
randomness in Pr[GA ⇒ 1] is over all random coins in game G. More generically,
we write Pr[Event : G] to denote the probability that Event happens in the game
G. If the context is clear, we simply write it as Pr[Event]. Within a procedure,
“abort” means that we terminate the run of an adversary A.

3 Three-Message Authenticated Key Exchange

We recall the AKE security model from [21] and adapt it to three-
message protocols. A three-message key exchange protocol AKE :=
(Setup,GenAKE, InitI, InitR,DerI,DerR) consists of five algorithms which are exe-
cuted interactively by two parties as shown in Fig. 1.

66 J. Pan et al.

Party Pi (pki, ski) Party Pr (pkr, skr)

(mi,1, sti) ← InitI(ski, pkr)
(mr, str) ← InitR(skr, pki, mi,1)

(mi,2, Ki) ← DerI(ski, pkr, mr, sti)
Kr := DerR(skr, pki, mi,2, str)

mi,1

mr

mi,2

sti

str

Fig. 1. Running a three-message AKE protocol between two parties.

Setup is the setup algorithm for the system parameters. We denote the party
which initiates the session by Pi and the party which responds to the session
by Pr. The key generation algorithm GenAKE outputs a key pair (pk, sk) for one
party. The initiator’s initialization algorithm InitI inputs the initiator’s long-
term secret key ski and the responder’s long-term public key pkr, and outputs a
message mi,1 and the initiator’s state sti. The responder’s initialization algorithm
InitR inputs the responder’s long-term secret key skr and the initiator’s long-term
public key pki, and outputs a message mr and the responder’s state str. The
initiator’s derivation algorithm DerI takes as input ski, pkr, a message mr and the
state sti. It computes the final message mi,2 and a session key K. The responder’s
derivation algorithm DerR takes as input the skr, pki, a message mi,2 and the
state str. It computes the session key K. Here K can be ⊥ meaning that the
session is rejected during the execution. Correctness of an AKE protocol states
that an honest execution between two parties should yield the same session key.

Definition 1 (Correctness of three-message AKE). Let AKE :=
(Setup,GenAKE, InitI, InitR,DerI,DerR) be a three-message AKE protocol. We say
AKE is ρ-correct if

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

Ki = Kr �= ⊥ :

par ← Setup(1λ),
(pki, ski) ← GenAKE(par), (pkr, skr) ← GenAKE(par),
(mi,1, sti) ← InitI(ski, pkr),
(mr, str) ← InitR(skr, pki, mi,1),
(mi,2, Ki) ← DerI(ski, pkr, mr, sti),
Kr := DerR(skr, pki, mi,2, str)

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ ρ ,

where the probability is taken over the randomness of Setup,GenAKE, InitI, InitR,
and DerI.

We give a security game written in pseudocode focusing on (full) forward
secrecy, rather than implicit or explicit authentication. We refer readers to [12]
for more details on different types of authentication for key exchange protocols,
and their connections to forward secrecy in [18].

Execution Environment. We consider μ parties P1, . . . ,Pμ with long-term
key pairs (pkn, skn), n ∈ [μ]. When two parties A and B want to communicate,
the initiator, say, A first creates a session. To identify this session, we increase the

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 67

GAME IND-FS, IND-FS-St
00 for n ∈ [μ]
01 (pkn, skn) ← GenAKE
02 b $← {0, 1}
03 b′ ← AO(pk1, · · · , pkμ)
04 for sID∗ ∈ Stest
05 if Fresh(sID∗) = false �session not fresh
06 or Valid(sID∗) = false �no valid attack
07 return b
08 return �b = b′�

SessionR((i, r) ∈ [μ]2, mi,1)
09 cntS ++
10 sID := cntS
11 (Init[sID], Resp[sID]) := (i, r)
12 Type[sID] := “Re”
13 (mr, str) ← InitR(skr, pki, mi,1)
14 (MsgI,1[sID], MsgR[sID]) := (mi,1, mr)
15 st[sID] := str

16 return (sID, mr)

DerR(sID ∈ [cntS], mi,2)
17 if SK[sID] �= ⊥ or Type[sID] �= “Re”
18 return ⊥ �no re-use
19 (i, r) := (Init[sID], Resp[sID])
20 str := ST[sID]
21 peerPreCor[sID] := cor[i]
22 K := DerR(skr, pki, mi,2, str)
23 if K �= ⊥
24 SK[sID] := K
25 else
26 SK[sID] := “reject”
27 MsgI,2[sID] := mi,2
28 return ε

Rev-State(sID)
29 revST[sID] := true
30 return ST[sID]

SessionI((i, r) ∈ [μ]2)
31 cntS ++
32 sID := cntS
33 (Init[sID], Resp[sID]) := (i, r)
34 Type[sID] := “In”
35 (mi,1, sti) ← InitI(ski, pkr)
36 (MsgI,1[sID], ST[sID]) := (mi,1, sti)
37 return (sID, mi,1)

DerI(sID ∈ [cntS], mr)
38 if SK[sID] �= ⊥ or Type[sID] �= “In”
39 return ⊥ �no re-use
40 (i, r) := (Init[sID], Resp[sID])
41 sti := ST[sID]
42 peerPreCor[sID] := cor[r]
43 (mi,2, K) ← DerI(ski, pkr, mr, sti)
44 (MsgR[sID], MsgI,2[sID]) := (mr, mi,2)
45 if K �= ⊥
46 SK[sID] := K
47 else
48 SK[sID] := “reject”
49 return mi,2

Reveal(sID)
50 revSK[sID] := true
51 return SK[sID]

Corr(n ∈ [μ])
52 cor[n] := true
53 return skn

Test(sID)
54 if sID ∈ Stest return ⊥ �already tested
55 if SK[sID] ∈ {⊥, “reject”} return ⊥
56 Stest := Stest ∪ {sID}
57 K∗

0 := SK[sID]
58 K∗

1
$← K

59 return K∗
b

Fig. 2. Games IND-FS and IND-FS-St for AKE. Rev-State is only available in
IND-FS-St. In IND-FS, A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Reveal,Corr,Test}. In IND-FS-St, A has access to the oracles in IND-FS and the
Rev-State oracle. Helper procedures Fresh and Valid are defined in Fig. 3. If there
exists any test session which is neither fresh nor valid, the game will return b.

global identification number sID and assign the current state of sID to identify
this session owned by A. The state of sID will increase after every assignment.
Moreover, a message will be sent to the responder. The responder then similarly
creates a corresponding session which is assigned the current state of sID. Hence
each conversation includes two sessions. We then define variables in relation to
the identifier sID:

– Init[sID] ∈ [μ] denotes the initiator of the session.
– Resp[sID] ∈ [μ] denotes the responder of the session.
– Type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e. whether the initiator

or the responder computes the session key.

68 J. Pan et al.

Fresh(sID∗)
00 M(sID∗) := Match(sID∗)
01 if revSK[sID∗] or

(∃sID ∈ M(sID∗) : revSK[sID] = true)
02 return false
03 if ∃sID ∈ M(sID∗) s. t. sID ∈ Stest
04 return false
05 return true

Valid(sID∗)
06 M(sID∗) := Match(sID∗)
07 P(sID∗) := PartialMatch(sID∗)
08 if |M(sID∗)| > 1 or |P(sID∗)| > 1 return true
09 for attack ∈ Table 2 and attack ∈ [28, Table 4]
10 if attack = true return true
11 return false

Match(sID∗) �matching sessions
12 M(sID∗) := {sID | (Init[sID], Resp[sID]) = (Init[sID∗], Resp[sID∗]) ∧ (MsgI,1[sID], MsgR[sID],

MsgI,2[sID]) = (MsgI,1[sID
∗], MsgR[sID∗], MsgI,2[sID

∗]) ∧ Type[sID] �= Type[sID∗]}
13 return M(sID∗)

PartialMatch(sID∗) �partially matching sessions
14 P(sID∗) := {sID | (Init[sID], Resp[sID]) = (Init[sID∗], Resp[sID∗]) ∧ (MsgI,1[sID], MsgR[sID]) =

(MsgI,1[sID
∗], MsgR[sID∗]) ∧ Type[sID] �= Type[sID∗] ∧ Type[sID] = “Re”}

15 return P(sID∗)

Fig. 3. Helper procedures Fresh and Valid for games IND-FS and IND-FS-St defined
in Fig. 2. Procedure Fresh checks if the adversary performed some trivial attack. In
procedure Valid, each attack is evaluated by the set of variables in attack tables and
checks if an allowed attack was performed. The attack table for IND-FS is shown in
Table 2 and the table for game IND-FS-St is given in [28, Table 4], where the latter
includes session-state reveal attacks. If the values of the variables are set as in the
corresponding row, the attack was performed, i. e. attack = true, and thus the session
is valid.

– MsgI,1[sID] denotes the first message that was computed by the initiator.
– MsgR[sID] denotes the message that was computed by the responder.
– MsgI,2[sID] denotes the final message that was computed by the initiator.
– ST[sID] denotes the (secret) state information, i. e. ephemeral secret keys.
– SK[sID] denotes the session key. If the session terminates without a valid

session key, we set this variable to the special string “reject”.

To establish a session between two parties, the adversary is given access to oracles
SessionI and SessionR, where the first one starts a session of type “In” and the
second one of type “Re”. In order to complete a session, oracles DerI and DerR
have to be queried. The adversary has also access to oracles Corr, Reveal and
Rev-State to obtain secret information. (The latter is only available if state
reveal attacks are considered.) We use the following boolean values to keep track
of which queries the adversary made:

– cor[n] denotes whether the long-term secret key of party Pn was given to the
adversary.

– peerPreCor[sID] denotes whether the peer of the session was corrupted and
its long-term key was given to the adversary before the owner’s session key
was computed, which is important for forward security.

– revST[sID] denotes whether the session state was given to the adversary.
– revSK[sID] denotes whether the session key was given to the adversary.

The adversary can forward messages between sessions or modify them. By that,
we can define the relationship between two sessions:

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 69

– Matching Session: Two sessions sID and sID′ match if the same parties are
involved, the messages sent and received are the same they are of different
types (cf. line 12 in Fig. 3).

– Partially Matching Session: A session sID has a partially matching session
sID′ if the same parties are involved, the messages sent and received are the
same without considering the last message and they are of different types,
where sID′ is of type “Re” (cf. line 14 in Fig. 3).

Finally, the adversary is given access to oracle Test which can be queried mul-
tiple times and which will return either the session key of the specified session or
a uniformly random key. We use one bit b for all queries, and store test sessions
in a set Stest. For each test session, we require that the adversary does not issue
queries such that the session key can be trivially computed. In Fig. 3 we define
the properties of freshness and validity which all test sessions have to satisfy:

– Freshness: A (test) session is called fresh if the session key was not revealed.
Furthermore, if there exists a matching session, we require that this session’s
key is not revealed and that this session is not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary per-
formed any attack which is defined in the security model. For game IND-FS-St,
we capture this with attacks listed in our full paper [28, Table 4]. For game
IND-FS, we use Table 2 to capture valid attacks.

If the protocol does not use appropriate randomness, it should not be considered
secure. In this case, there can be multiple matching sessions to a test session,
which an adversary can take advantage of. We capture this as part of the validity
property (cf. line 08). For an honest run of the protocol, the underlying min-
entropy ensures that this attack will only happen with negligible probability.

We define validity of different attack strategies in Table 2, using variables to
indicate which queries the adversary may (not) make. The purpose is to make
our proofs precise by listing all the possible and non-trivial attacks. Attacks
covered in the IND-FS model capture forward secrecy (FS) and key compromise
impersonation (KCI) attacks. We provide a more detailed description of Table 2
and the full table for IND-FS-St in our full paper [28, Appendix B]. For all test
sessions, at least one attack has to evaluate to true. Then, the adversary wins if
he distinguishes the session keys from uniformly random keys which he obtains
through queries to the Test oracle.

Definition 2 (Key Indistinguishability of AKE). We define games IND-FS
and IND-FS-St as in Figs. 2 and 3. We say AKE is (t, ε, μ, S, T, QCor)-IND-FS-
secure resp. (t′, ε′, μ, S, T, QCor, QSt)-IND-FS-St-secure if for all adversaries A
attacking the protocol in time t resp. t′ with μ users, S sessions, T test queries,
QCor corruptions, and QSt state reveals, we have

∣∣∣∣Pr[IND-FSA
AKE ⇒ 1] − 1

2

∣∣∣∣ ≤ ε resp.
∣∣∣∣Pr[IND-FS-StAAKE ⇒ 1] − 1

2

∣∣∣∣ ≤ ε′ .

70 J. Pan et al.

Table 2. Table of attacks for adversaries against three-message protocols with FS. An
attack is regarded as an AND conjunction of variables with specified values as shown
in the each line, where “–” means that this variable can take arbitrary value and F
means “false”. This table is obtained from [28, Table 3] by excluding all trivial attacks.

A gets (Initiator, Responder) co
r[

i∗]
co

r[
r∗]

pe
er

Pr
eC

or
[s

ID
∗]

Ty
pe

[s
ID

∗]

|M
(s

ID
∗)|

|P
(s

ID
∗)|

1 (long-term, long-term) – – – “In” – 1
2 (long-term, long-term) – – – “Re” 1 –
5 (long-term, long-term) – – F “In” – 0
6 (long-term, long-term) – – F “Re” 0 –

Note that if there exists a session which is neither fresh nor valid, the game out-
puts the bit b, which implies that Pr[IND-FSA

AKE ⇒ 1] = 1
2 or Pr[IND-FS-StAAKE ⇒

1] = 1
2 , giving the adversary an advantage equal to 0. This captures that an

adversary will not gain any advantage by performing a trivial attack.

4 Verifiable Authenticated Key Exchange

To build a tightly secure three-message AKE protocol with key confirmation
from a two-message AKE protocol, we define two security notions of the two-
message protocol: The first one is One-Way against key Verification attacks and
weak Forward Secrecy, or OW-VwFS for short, and the second one is OW-VwFS
with state-reveal attacks, or OW-VwFS-St for short.

We define the syntax of a two-message key exchange protocol in a similar
fashion as the three-message AKE. Let AKE′ := (Setup′,Gen′, Init′I, Init′R,Der′I),
where Setup′, Gen′ and Init′I are defined exactly as in the three-message protocol.
instead of a state, the responder’s algorithm Init′R computes a session key K.
The initiator’s algorithm Der′I does not output a second message, but only the
session key. Correctness is defined similarly to the three-message case.

Definition 3 (Correctness of two-message AKE). Let AKE′ :=
(Setup′,Gen′, Init′I, Init′R,Der′I) be an AKE protocol. We say AKE′ is ρ-correct if

Pr

⎡
⎢⎢⎢⎢⎣

Ki = Kr �= ⊥ :

par′ ← Setup′(1λ),
(pki, ski) ← Gen′(par), (pkr, skr) ← Gen′(par),
(mi, sti) ← Init′I(ski, pkr),
(mr, Kr) ← Init′R(skr, pki, mi),
Ki := Der′I(ski, pkr, mr, sti)

⎤
⎥⎥⎥⎥⎦

≥ ρ,

where the probability is taken over the randomness of Setup′,Gen′, Init′I, and Init′R.

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 71

GAME OW-VwFS, OW-VwFS-St
00 for n ∈ [μ]
01 (pkn, skn) ← Gen′

02 (sID∗, k∗) ← AO(pk1, · · · , pkμ)
03 if sID∗ > cntS or Valid(sID∗) = false
04 return 0
05 return KVer(sID∗, k∗)

Der
′
R((i, r) ∈ [μ]2, mi)

06 cntS ++
07 sID := cntS
08 (Init[sID], Resp[sID]) := (i, r)
09 Type[sID] := “Re”
10 (mr, k) ← Init′

R(skr, pki, mi)
11 (MsgI[sID], MsgR[sID]) := (mi, mr)
12 SK[sID] := k
13 return (sID, mr)

Corr
′(n ∈ [μ])

14 cor[n] := true
15 return skn

KVer(sID, k)
16 if k = ⊥ return ⊥
17 return �SK[sID] = k�

Rev-State′(sID)
18 revST[sID] := true
19 return ST[sID]

Session
′
I
((i, r) ∈ [μ]2)

20 cntS ++
21 sID := cntS
22 (Init[sID], Resp[sID]) := (i, r)
23 Type[sID] := “In”
24 (mi, sti) ← Init′

I(ski, pkr)
25 (MsgI[sID], ST[sID]) := (mi, sti)
26 return (sID, mi)

Der
′
I
(sID ∈ [cntS], mr)

27 if SK[sID] �= ⊥ or Type[sID] �= “In”
28 return ⊥ �no re-use
29 (i, r) := (Init[sID], Resp[sID])
30 sti := ST[sID]
31 k := Der′

I(ski, pkr, mr, sti)
32 (MsgR[sID], SK[sID]) := (mr, k)
33 return ε

Valid
′(sID∗) �Helper procedure

34 (i, r) := (Init[sID], Resp[sID])
35 if Type[sID∗] = “In”

and revST[sID∗] = false
36 if cor[r] = false or M(sID∗) �= ∅
37 return true
38 if Type[sID∗] = “Re”
39 if cor[i] = false or P(sID∗) �= ∅
40 return true
41 return false

Fig. 4. Games OW-VwFS (without dashed boxes) and OW-VwFS-St (including dashed
boxes) for AKE′. A has access to oracles O := {Session′

I
,Der

′
R,Der

′
I
,Corr

′,KVer}.
In OW-VwFS-St, A also has access to Rev-State′. In two-message AKE, responder
sessions do not have state. So, Rev-State′(sID) will return ⊥ if sID is a responder
session. Further, partially matching session is defined as P(sID∗) := {sID | Type[sID] =
“In” ∧ (Init[sID], Resp[sID]) = (Init[sID∗], Resp[sID∗]) ∧ MsgI[sID] = MsgI[sID∗]}.

OW-VwFS is similar to the standard weak forward secrecy, but an adversary is
additionally allowed to check if a key corresponds to some generated transcripts.
The security notion OW-VwFS-St, based on OW-VwFS, allows the adversary to
reveal session states. Moreover, these two security notions do not have Reveal

and Test oracles. Our notion is motivated by the one-wayness against honest
and key verification attacks in [27], but it is stronger in the sense that it allows
active attacks. These are formally defined by Definition 4 with security games
OW-VwFS and OW-VwFS-St as in Fig. 4.

Definition 4 (OW-VwFS and OW-VwFS-St security). A two-message authen-
ticated key exchange protocol AKE′ is (t, ε, μ, S, QCor, QV er)-OW-VwFS secure
resp. (t′, ε′, μ, S, QCor, QV er, QSt)-OW-VwFS-St secure, where μ is the number
of users, S is the number of sessions, QV er is the number of calls to KVer and
QSt is the number of calls to Rev-State′, if for all adversaries A attacking the
protocol in time at most t resp. t′, we have

Pr[OW-VwFSA
AKE′ ⇒ 1] ≤ ε resp. Pr[OW-VwFS-StAAKE′ ⇒ 1] ≤ ε′ .

72 J. Pan et al.

Valid attacks are defined via Valid
′. For the session sID∗ for which the adversary

aims to compute the session key, we basically allow two types of attacks: If there
is a (partially) matching session, then both parties may be corrupted. Otherwise,
the adversary must not corrupt the peer of the session. Additionally for the model
with state reveal attacks, the state for sID∗ must not be revealed in any case.

Min-Entropy. We require that public keys have γ bits of min-entropy, i. e., for
all (pk0, sk0) ← Gen′, (pk1, sk1) ← Gen′, we have Pr[pk0 = pk1] ≤ 2−γ . Similarly,
we require that messages have α bits of min-entropy, i. e., for all messages m′ we
have Pr[m = m′] ≤ 2−α, where m is output by either Init′I or Init′R.

5 AKE with Key Confirmation

We now build a three-message AKE protocol AKEKC with key confirmation
from a two-message AKE protocol AKE′ and three hash functions GI,GR,H.
An overview is given in Fig. 5. Hash functions GI, GR and H are defined as fol-
lows: GI,GR : {0, 1}∗ → {0, 1}λ and H : {0, 1}∗ → K, where λ is the length of
key confirmation tags and K is the key space of AKEKC.3

Let AKE′ = (Setup′,Gen′, Init′I, Init′R,Der′I). We define AKEKC as follows:
Setup, GenAKE, InitI will be the same as Setup′, Gen′ and Init′I, respectively. InitR
first runs Init′R to obtain the responder’s message mr and the key k of AKE′,
where the latter is used to derive the final session key and key confirmation
messages. In particular, the responder first computes the key confirmation tag
πr := GR(k, ctxt), where ctxt is defined as the two parties’ public keys and the
initial messages (cf. Fig. 5). It then also computes the expected key confirmation
tag π′

i and session key K ′ using GI and H on the same input. It sends (mr, πr) to
the initiator and keeps (π′

i, K ′) as state. The initiator runs DerI which is defined
as follows: First, it runs Der′I to get k and then performs the same computations
as the responder to compute key confirmation tags πi, π′

r and the final session
key K. It accepts K if π′

r = πr and sends πi as the final message. The responder’s
derivation algorithm DerR checks whether the key confirmation tag is valid, i. e.,
πi = π′

i, and if this is the case it sets the session key to K ′.
Whenever an equality check fails or the underlying algorithms of AKE′ return

⊥, the parties terminate the session, i. e., they reject, and return ⊥.

Correctness. The correctness of AKEKC follows directly from the correctness
of AKE′. In particular, if AKE′ is (1 − δ)-correct, then so is AKEKC.

Security. We prove IND-FS security of AKEKC based on OW-VwFS security of
AKE′ and modeling GI, GR and H as random oracles.

Theorem 1. Let AKE′ be (1 − δ)-correct and have public keys with γ bits
of entropy and messages with α bits of entropy. Let AKEKC be as defined
in Fig. 5, where GI,GR : {0, 1}∗ → {0, 1}λ and H : {0, 1}∗ → K
3 We define three different hash functions here which allows us to model them as

independent random oracles. When instantiating the hash functions with the same
function, one would need to use appropriate domain separation.

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 73

Party Pi (pki, ski) Party Pr (pkr, skr)

(mi, sti) ← Init′
I(ski, pkr)

(mr, k) ← Init′
R(skr, pki, mi)

πr := GR(k, ctxt)

π′
i = GI(k, ctxt)

k ← Der′
I(ski, pkr, mr, sti) K′ := H(k, ctxt)

πi ← GI(k, ctxt)

π′
r = GR(k, ctxt)

if πr = π′
r : K := H(k, ctxt) if πi = π′

i : K := K′

mi

mr, πr

πi

sti

π′
i, K′

Fig. 5. AKE protocol AKEKC from AKE′ and key confirmation. The context is defined
as ctxt := (pki, pkr, mi, mr). GI, GR and H are independent random oracles.

are modelled as random oracles. For every adversary A that breaks the
(t, ε, μ, S, T, QCor)-IND-FS-security of AKEKC, there exists an adversary B that
breaks the (t′, ε′, μ, S, QCor, QV er)-OW-VwFS security of AKE′ with t′ ≈ t and

ε ≤ ε′ + 2S · δ + (S + S2) · 2−λ + μ2 · 2−γ + S(S + QGI + QGR + QH) · 2−α ,

where QGI , QGR and QH are the number of queries to random oracles GI, GR and
H and QV er ≤ S + QGI + QGR + QH.

The idea of the proof is that we can simulate the key confirmation tags and
session keys without knowing the key k of the underlying two-message protocol
as long as it has not been queried to (one of) the random oracles. For this we
have to keep track of whether the adversary trivially knows k because the session
is not fresh anymore. We can handle this case and still simulate correctly using
KVer oracle. The only way to win the game is to compute k for a fresh and valid
session, thus breaking one-wayness of the underlying protocol. We now prove the
theorem formally.

Proof. Let A be an adversary against IND-FS security of AKEKC. We consider
the sequence of games G0-G3 in Figs. 6 and 7.

Game G0. The first game G0 is the original IND-FS security game, however we
exclude that public keys or messages collide (which means that if such events
happen, then the game will abort and return a random bit). This also includes
the key confirmation tags. Thus we get

Pr[GA
0 ⇒ 1] ≤ Pr[IND-FSA

AKEKC ⇒ 1] + μ2 · 2−γ + S2 · 2−α + S2 · 2−λ.

Note that this means there can be at most one (partially) matching session for
each session.

Game G1. In game G1, we want to ensure that πr, πi and K have not been
queried to the respective random oracle before they are determined. Note that

74 J. Pan et al.

GAMES G0-G3
00 for n ∈ [μ]
01 (pkn, skn) ← Gen′

02 b $← {0, 1}
03 b′ ← AO(pk1, · · · , pkμ)
04 for sID∗ ∈ Stest
05 if Fresh(sID∗) = false

or Valid(sID∗) = false
06 return b
07 return �b = b′�

SessionR((i, r) ∈ [μ]2, mi)
08 cntS ++
09 sID := cntS
10 (Init[sID], Resp[sID]) := (i, r)
11 Type[sID] := “Re”
12 (mr, k) ← Init′

R(skr, pki, mi)
13 if k = ⊥
14 SK[sID] := “reject”
15 return ⊥
16 πr := GR(k, pki, pkr, mi, mr) �G0
17 πi := GI(k, pki, pkr, mi, mr) �G0
18 K := H(k, pki, pkr, mi, mr) �G0
19 if ∃k′ s. t. GR[k′, pki, pkr, mi, mr] �= ⊥ �G1-G3

or GI[k′, pki, pkr, mi, mr] �= ⊥ �G1-G3
or H[k′, pki, pkr, mi, mr] �= ⊥ �G1-G3

20 BadEntropy := true; abort �G1-G3
21 πr

$← {0, 1}λ, πi
$← {0, 1}λ, K $← K �G1-G3

22 GR[k, pki, pkr, mi, mr] := πr �G1
23 GI[k, pki, pkr, mi, mr] := πi �G1
24 H[k, pki, pkr, mi, mr] := K �G1
25 ctxt[sID] := (pki, pkr, mi, mr) �G2-G3
26 k[sID] := k �G2-G3
27 if ∃sID′ s. t. ctxt[sID′] = (pki, pkr, mi, ⊥)

or cor[i] = false �G2-G3
28 GR[
, pki, pkr, mi, mr] := πr �G2-G3
29 GI[
, pki, pkr, mi, mr] := πi �G2-G3
30 H[
, pki, pkr, mi, mr] := K �G2-G3
31 else �G2-G3
32 GR[⊕, pki, pkr, mi, mr] := πr �G2-G3
33 GI[⊕, pki, pkr, mi, mr] := πi �G2-G3
34 H[⊕, pki, pkr, mi, mr] := K �G2-G3
35 (MsgI,1[sID], MsgR[sID]) := (mi, (mr, πr))
36 ST[sID] := (πi, K)
37 return (sID, (mr, πr))

SessionI((i, r) ∈ [μ]2)
38 cntS ++
39 sID := cntS
40 (Init[sID], Resp[sID]) := (i, r)
41 Type[sID] := “In”
42 (mi, sti) ← Init′

I(ski, pkr)
43 (MsgI,1[sID], ST[sID]) := (mi, sti)
44 ctxt[sID] := (pki, pkr, mi, ⊥) �G2-G3
45 return (sID, mi)

DerI(sID ∈ [cntS], (mr, πr))
46 if SK[sID] �= ⊥ or Type[sID] �= “In” return ⊥
47 (i, r) := (Init[sID], Resp[sID])
48 sti := ST[sID]
49 peerPreCor[sID] := cor[r]
50 k := Der′

I(ski, pkr, mr, sti)
51 if k = ⊥
52 SK[sID] := “reject”
53 return ⊥
54 if πr �= GR(k, pki, pkr, mi, mr) �G0-G1
55 SK[sID] := “reject” �G0-G1
56 return ⊥ �G0-G1
57 πi := GI(k, pki, pkr, mi, mr) �G0-G1
58 K := H(k, pki, pkr, mi, mr) �G0-G1
59 k[sID] := k �G2-G3
60 Replace ⊥ in ctxt[sID] with mr �G2-G3
61 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID] �G2-G3
62 if πr �= GR[
, pki, pkr, mi, mr] �G2-G3
63 SK[sID] := “reject” �G2-G3
64 return ⊥ �G2-G3
65 πi := GI[
, pki, pkr, mi, mr] �G2-G3
66 K := H[
, pki, pkr, mi, mr] �G2-G3
67 else �G2-G3
68 if GR[k, pki, pkr, mi, mr] = πr �G2-G3
69 if cor[r] = false �G3
70 QueryRO := true; abort �G3
71 πi := GI(k, pki, pkr, mi, mr) �G2-G3
72 K := H(k, pki, pkr, mi, mr) �G2-G3
73 else �G2-G3
74 GR[
, pki, pkr, mi, mr] $← {0, 1}λ �G2-G3
75 if πr = GR[
, pki, pkr, mi, mr] �G2-G3
76 RandKC := true; abort �G2-G3
77 SK[sID] := “reject” �G2-G3
78 return ⊥ �G2-G3
79 (MsgR[sID], MsgI,2[sID]) := (mr, πi)
80 SK[sID] := K
81 return πi

Fig. 6. Games G0-G3 for the proof of Theorem 1. A has access to oracles O :=
{SessionI,SessionR,DerI,DerR,Reveal,Corr,Test,GI,GR,H}. Helper procedures
Fresh and Valid are defined in Fig. 3.

all three values will be determined in SessionR when mr and k are computed.
Thus, whenever SessionR is queried, we check whether there already exists a
query (k′, pki, pkr, mi, mr) to GR, GI or H for some k′ (line 19). If this is the
case, we raise flag BadEntropy and abort. If BadEntropy is not raised, we draw
fresh values for πr, πi and K and explicitly assign them to the corresponding

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 75

DerR(sID ∈ [cntS], πi)
00 if SK[sID] �= ⊥ or Type[sID] �= “Re”
01 return ⊥
02 (i, r) := (Init[sID], Resp[sID])
03 (π′

i, K′) := ST[sID]
04 peerPreCor[sID] := cor[i]
05 if πi �= π′

i �G0-G1
06 SK[sID] := “reject” �G0-G1
07 return ⊥ �G0-G1
08 K := K′ �G0-G1
09 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID] �G2-G3
10 if πi �= GI[
, pki, pkr, mi, mr] �G2-G3
11 SK[sID] := “reject” �G2-G3
12 return ⊥ �G2-G3
13 K := H[
, pki, pkr, mi, mr] �G2-G3
14 else �G2-G3
15 if GI[k, pki, pkr, mi, mr] = πi �G2-G3
16 if cor[i] = false �G3
17 QueryRO := true; abort �G3
18 K := H(k, pki, pkr, mi, mr) �G2-G3
19 else �G2-G3
20 GI[
, pki, pkr, mi, mr] $← {0, 1}λ �G2-G3
21 if πi = GI[
, pki, pkr, mi, mr] �G2-G3
22 RandKC := true; abort �G2-G3
23 SK[sID] := “reject” �G2-G3
24 return ⊥ �G2-G3
25 (MsgI,2[sID], SK[sID]) := (πi, K)
26 return ε

GR(k, pki, pkr, mi, mr)
27 if GR[
, pki, pkr, mi, mr] = π �= ⊥ �G2-G3
28 S := {sID | ctxt[sID] = (pki, pkr, mi, mr)} �G2-G3
29 for sID ∈ S � note |S| ≤ 2 �G2-G3
30 if k[sID] = k �G2-G3
31 QueryRO := true; abort �G3
32 return π �G2-G3
33 elseif GR[⊕, pki, pkr, mi, mr] = π �= ⊥ �G2-G3
34 Find sID s. t. ctxt[sID] = (pki, pkr, mi, mr) �G2-G3
35 if k[sID] = k �G2-G3
36 Replace ⊕ with k �G2-G3
37 return π �G2-G3
38 if GR[k, pki, pkr, mi, mr] = π �= ⊥
39 return π
40 π $← {0, 1}λ

41 GR[k, pki, pkr, mi, mr] := π
42 return π

Corr(n ∈ [μ])
43 cor[n] := true
44 return skn

Test(sID)
45 if sID ∈ Stest return ⊥
46 if SK[sID] ∈ {⊥, “reject”} return ⊥
47 Stest := Stest ∪ {sID}
48 K∗

0 := SK[sID]
49 K∗

1
$← K

50 return K∗
b

Fig. 7. Oracles for games G0-G3 for the proof of Theorem 1. GI and H are defined
analogously to GR.

entry of the respective random oracle (lines 21–24). We make this explicit here
to prepare for the next step where we have to do a case distinction. Note that
G0 and G1 are the same, except if BadEntropy is raised. Thus,

| Pr[GA
0 ⇒ 1] − Pr[GA

1 ⇒ 1]| ≤ Pr[BadEntropy] ≤ S(QGR + QGI + QH) · 2−α,

where we bound the event by the entropy of AKE′. The message mr is computed
by the game directly before we check for this event. We then use the union bound
over the maximum number of sessions S.

Game G2. In game G2, we want to compute πr, πi and K without using k
explicitly and prepare for the reduction to OW-VwFS. For this, we have to make a
distinction between fresh and non-fresh sessions. We add two additional variables
ctxt[sID] and k[sID] for each session which store the context and the session
key of the underlying AKE′. When SessionR is queried, we no longer assign the
random oracle entries [k, pki, pkr, mi, mr]. Instead, we use a special placeholder
symbol for the key k. In particular, if the session is still fresh and valid (i. e.,
there exists a session with a matching context up to this point, or the intended
peer is not (yet) corrupted), we use the symbol � (lines 28–30). Otherwise, in
case the session is not valid, we use the symbol ⊕ (lines 32–34). This distinction
will be necessary to patch the random oracle correctly. Note that an adversary
might be able to compute the correct key k for a non-valid session.

76 J. Pan et al.

We describe how the random oracles are patched below. First, we explain how
to change DerI and DerR accordingly. For each query to DerI, we first update the
context with the message mr that was used to query the oracle. Then we check
whether there exists a potential partnered session with the same context (line
61). In this case we know the corresponding values πr, πi and K which are stored
with the symbol �. We check whether the tag πr is correct (if not, the session
rejects) and assign the session key (lines 62–66). If there is no other session with
the same context, we have to make another case distinction. In the first case, we
use k explicitly to check whether there has been a query to the random oracle
GR such that the tag πr matches (line 68). In this case, we proceed normally.
Looking ahead, this will be a critical point in the next game modification. If
there exists no such query to GR, then the game makes the query and chooses a
tag uniformly at random (line 74). If this tag is the same as the one provided by
the adversary, we raise flag RandKC and abort (line 76). Otherwise, the session
simply rejects. We modify DerR in the exact same way, except that we are now
looking at πi (Fig. 7, lines 09–24).

Before bounding RandKC, we explain the simulation of random oracles as
described in Fig. 7. We explain GR in more detail. (GI and H are modeled in
exactly the same way). For each query (k, pki, pkr, mi, mr), we first check for
entries with the special symbol. More specifically, if there exists an entry with
the given context and the symbol �, we look for the sID with this context.
Note that there can be at most two sessions (one of type “In” and one of type
“Re” which will be matching sessions), which we capture by computing a set S
containing the corresponding sID(s) (line 29). If the key k of the random oracle
query corresponds to the one stored in k[sID]4, then GR simply outputs the stored
value π (line 32). We do the same for special symbol ⊕ (line 34, note that here
sID is always unique), except that we also update the entry accordingly, i. e.,
replace ⊕ with k if k = k[sID] (line 36). This way, the simulation is consistent
with the other oracles.

Overall, the two games only differ when flag RandKC is raised. Note that we
can bound the probability that a tag is valid without the random oracle being
queried by the length of the tag. Union bound over S session gives us

| Pr[GA
1 ⇒ 1] − Pr[GA

2 ⇒ 1]| ≤ Pr[RandKC] ≤ S · 2−λ + S · δ.

Game G3. In the final game G3, we raise flag QueryRO if the adversary ever
queries the random oracle on a key k of a fresh session. Depending on the order
of queries, this event can occur for different oracles: DerI (Fig. 6, line 70), DerR
(Fig. 7, line 17) or one of the random oracles (Fig. 7, line 31). First, we look at
sessions that do not have a matching session with the same context. For queries
to oracle DerI we check the validity of πr in line 68. If the peer r is not corrupted,

4 Since we cannot check correctness efficiently in the reduction which we will build in
the next step, we explicitly perform the test here for all sessions in S. However, if S
indeed contains two sessions, then by correctness, this key (and thus the outcome)
will be the same.

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 77

then the session is still fresh and valid. Thus, we raise QueryRO if there has been
a query to GR on the correct key and context such that the output is indeed πr.
We proceed similarly for responder sessions when DerR is queried, checking for
queries to GI. This means that all sessions where the peer is uncorrupted and no
session with a matching context exist will reject (or abort).

We now look at sessions that have a session with matching context and whose
relevant random oracle entries are marked with �. Whenever one of the random
oracles is queried, we check whether the key matches the one stored in k[sID]
(as described earlier) and if this is the case, we also raise QueryRO and abort.

We claim that

| Pr[GA
2 ⇒ 1] − Pr[GA

3 ⇒ 1]| ≤ Pr[QueryRO] ≤ ε′ + S · δ.

Before proving the claim, note that in G3 we have Pr[GA
3 ⇒ 1] = 1/2 . For

this, observe that all sessions must have a (partially) matching session and that
random oracle H is never queried on k for any of those sessions. Thus, the session
key is indistinguishable from a uniformly random key.

Bounding Event QueryRO. We now describe an adversary B against OW-VwFS
security of the underlying AKE′ to bound event QueryRO. A pseudocode descrip-
tion is given in Fig. 8. The idea is that whenever A queries one of the random
oracles on the underlying key k of a fresh and valid session (either in order to
forge a key confirmation tag or to distinguish the actual session key), we can use
this to break OW-VwFS security of AKE′, where the verification oracle KVer is
used to simulate the random oracles consistently.

We now describe B in more detail. It gets as input μ public keys and forwards
them to A. B simulates queries to oracle SessionI in a straightforward way by
querying its own oracle Session

′
I

which returns (sID, mi). After assigning the
corresponding variables, B forwards the output to A. Queries to SessionR are
simulated as in game G3. B first queries Der

′
R to receive (sID, mr). Instead of

checking whether k = ⊥, B checks whether mr = ⊥. If this is the case, it rejects
and outputs ⊥. Otherwise, it proceeds as described in G3, preparing random
oracle assignments by assigning fresh values to πi, πr and K and returning
(sID, (mr, πr)).

When A queries DerI, B queries Der
′
I
. B will not be able to explicitly check

whether the session key was computed successfully, however, we will argue that
the simulation is consistent by correctness of AKE′ and the validity of the key
confirmation tag. Thus, B directly proceeds as described in G3. Whenever there
exists a session with the same context, then the key confirmation tag must be
the same as the one computed by that session, up to correctness of AKE′. Thus
the simulation is perfect except with probability S · δ. Whenever there exists no
(partially) matching session, B needs to check whether GR was already queried
on the correct k. For this it checks all random oracle queries that have output
πr provided by A. If such a query exists, it will be unique since we excluded
collisions in the first game. B checks whether the respective key of the query is
the correct key using its oracle KVer. If this is the case, we further distinguish
two cases, based on whether the session still qualifies for a valid test session

78 J. Pan et al.

BSession
′
I
,Der

′
R,Der

′
I
,Corr

′,KVer(pk1, · · · , pkμ)
00 b′ ← AO(pk1, · · · , pkμ)
01 return ⊥
SessionR((i, r) ∈ [μ]2, mi)
02 (sID, mr) ← Der

′
R((i, r), mi)

03 (Init[sID], Resp[sID]) := (i, r)
04 Type[sID] := “Re”
05 if mr = ⊥
06 SK[sID] := “reject”
07 return ⊥
08 if ∃k′ s. t. GR[k′, pki, pkr, mi, mr] �= ⊥

or GI[k′, pki, pkr, mi, mr] �= ⊥
or H[k′, pki, pkr, mi, mr] �= ⊥

09 abort
10 πr

$← {0, 1}λ, πi
$← {0, 1}λ, K $← K

11 ctxt[sID] := (pki, pkr, mi, mr)
12 if ∃sID′ s. t. ctxt[sID′] = (pki, pkr, mi, ⊥)

or cor[i] = false
13 GR[
, pki, pkr, mi, mr] := πr

14 GI[
, pki, pkr, mi, mr] := πi

15 H[
, pki, pkr, mi, mr] := K
16 else
17 GR[⊕, pki, pkr, mi, mr] := πr

18 GI[⊕, pki, pkr, mi, mr] := πi

19 H[⊕, pki, pkr, mi, mr] := K
20 (MsgI[sID], MsgR[sID]) := (mi, (mr, πr))
21 return (sID, (mr, πr))

Reveal(sID)
22 revSK[sID] := true
23 return SK[sID]

Corr(n ∈ [μ])
24 cor[n] := true
25 skn ← Corr

′(n)
26 return skn

SessionI((i, r) ∈ [μ]2)
27 (sID, mi) ← Session

′
I
(i, r)

28 (Init[sID], Resp[sID]) := (i, r)
29 Type[sID] := “In”
30 MsgI,1[sID] := mi

31 ctxt[sID] := (pki, pkr, mi, ⊥)
32 return (sID, mi)

DerI(sID, (mr, πr))
33 if SK[sID] �= ⊥ or Type[sID] �= “In”
34 return ⊥
35 (i, r) := (Init[sID], Resp[sID])
36 peerPreCor[sID] := cor[r]
37 Der

′
I
(sID, mr)

38 Replace ⊥ in ctxt[sID] with mr

39 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID]
40 if πr �= GR[
, pki, pkr, mi, mr]
41 SK[sID] := “reject”
42 return ⊥
43 πi := GI[
, pki, pkr, mi, mr]
44 K := H[
, pki, pkr, mi, mr]
45 else
46 if ∃k s. t. GR[k, pki, pkr, mi, mr] = πr

and KVer(k, sID)
47 if cor[r] = false
48 Stop with (sID, k)
49 πi := GI(k, pki, pkr, mi, mr)
50 K := H(k, pki, pkr, mi, mr)
51 else
52 GR[
, pki, pkr, mi, mr] $← {0, 1}λ

53 if πr = GR[
, pki, pkr, mi, mr] abort
54 SK[sID] := “reject”
55 return ⊥
56 (MsgR[sID], MsgI,2[sID]) := (mr, πi)
57 SK[sID] := K
58 return πi

Fig. 8. Adversary B against OW-VwFS. A has access to oracles O := {SessionI,
SessionR,DerI,DerR,Reveal,Corr,Test,GI,GR,H}. Helper procedures Fresh and
Valid are defined in Fig. 3. Oracles DerR, Test and GR are defined in Fig. 9, and GI,
H are defined analogously.

or not. If the peer of the session has not been corrupted yet, then this is a
valid session and B outputs (sID, k) as solution in its own game. Otherwise, it
proceeds. Oracle DerR is simulated similarly, looking at GI instead of GR.

Oracle Reveal and Corr can be simulated in a straightforward way. The
latter requires B to query its own oracle Corr

′. Queries to Test will always
return the real session key. Note that this is a perfect simulation since session
keys are perfectly hidden unless QueryRO happens in which case B stops because
it breaks OW-VwFS security.

It remains to describe the simulation of random oracles. In Fig. 9 we give a
description of GR. GI and H are simulated in the same way. As in G3, B first
checks whether there exists an entry with the special symbol �. If this is the
case, it finds the corresponding sID and uses the KVer oracle to check whether
the key k provided by A belongs to this session. Since � is used to mark sessions

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 79

DerR(sID, πi)
00 if SK[sID] �= ⊥ or Type[sID] �= “Re” return ⊥
01 (i, r) := (Init[sID], Resp[sID])
02 peerPreCor[sID] := cor[i]
03 if ∃sID′ s. t. ctxt[sID′] = ctxt[sID]
04 if πi �= GI[
, pki, pkr, mi, mr]
05 SK[sID] := “reject”
06 return ⊥
07 K := H[
, pki, pkr, mi, mr]
08 else
09 if ∃k s. t. GI[k, pki, pkr, mi, mr] = πi

and KVer(k, sID)
10 if peerPreCor[sID] = false
11 Stop with (sID, k)
12 K := H(k, pki, pkr, mi, mr)
13 else
14 GI[
, pki, pkr, mi, mr] $← {0, 1}λ

15 if πi = GI[
, pki, pkr, mi, mr] abort
16 SK[sID] := “reject”
17 return ⊥
18 (MsgI,2[sID], SK[sID]) := (mi,2, K)
19 return ε

GR(k, pki, pkr, mi, mr)
20 if GR[
, pki, pkr, mi, mr] = π �= ⊥
21 S := {sID | ctxt[sID] = (pki, pkr, mi, mr)}
22 for sID ∈ S
23 if KVer(sID, k)
24 Stop with (sID, k)
25 elseif GR[⊕, pki, pkr, mi, mr] = π �= ⊥
26 Find sID s. t. ctxt[sID] = (pki, pkr, mi, mr)
27 if KVer(sID, k)
28 Replace ⊕ with k
29 return π
30 if GR[k, pki, pkr, mi, mr] = π �= ⊥
31 return π
32 π $← {0, 1}λ

33 GR[k, pki, pkr, mi, mr] := π
34 return π

Test(sID)
35 if sID ∈ Stest return ⊥
36 if SK[sID] ∈ {⊥, “reject”} return ⊥
37 Stest := Stest ∪ {sID}
38 return SK[sID]

Fig. 9. Oracles DerR, Test and GR for adversary B. GI and H are defined analogously
to GR.

that have a (partially) matching session, B can always use this key to win the
OW-VwFS game. If there is no entry with � but one with ⊕, B again queries the
KVer oracle, but this time it updates the corresponding entry with the correct
key (if KVer returns true). This way, B can perfectly simulate non-test sessions.
If none of these cases happen or KVer has returned false, then B proceeds as
usual by lazy sampling.

This concludes the description of B. Note that if QueryRO happens in game
G3, i. e., there exists a random oracle query for a fresh and valid session with
correct key k, then B wins game OW-VwFS. We get Pr[QueryRO] ≤ ε′ + S · δ.

Further, note that B issues at most (S + QGI + QGR + QH) to KVer since we
have excluded collisions of tags in the first game. The number of queries to all
other oracles is preserved. This completes the proof of Theorem 1.

AKE with Key Confirmation against State Reveal. Based on AKEKC,
we build a three-message AKE protocol AKEstKC that is secure against state-
reveal attacks (cf. Definition 2). Since AKEstKC has a similar structure with
AKEKC, we follow the notations used in defining AKEKC (cf. Fig. 5). An overview
of AKEstKC is given in Fig. 10.

AKEstKC uses the state-encryption technique [21,30] to protect session states.
Concretely, let GstI : {0, 1}κ × {0, 1}κ → {0, 1}dI and GstR : {0, 1}κ × {0, 1}κ →
{0, 1}dR be two hash functions. We assume that any initiator session state of the
underlying two-message AKE protocol AKE′ can be encoded as a dI-bit string
and dR = 2λ (the length of key confirmation tag plus the length of session key
derived by AKE′). AKEstKC proceeds the same as AKEKC except that (1) the
long-term secret key of user i in AKEstKC also include a uniformly random key

80 J. Pan et al.

Party Pi (pki, (ski, si)) Party Pr (pkr, (skr, sr))

(mi, sti) ← Init′
I(ski, pkr)

IVi ← {0, 1}κ, ϕi := GstI(si, IVi) ⊕ sti (mr, k) ← Init′
R(skr, pki, mi)

πr := GR(k, ctxt)

π′
i = GI(k, ctxt), K′ := H(k, ctxt)

sti := GstI(si, IVi) ⊕ ϕi IVr ← {0, 1}κ, ϕr := GstR(sr, IVr) ⊕ (π′
i, K′)

k ← Der′
I(ski, pkr, mr, sti)

πi ← GI(k, ctxt)

π′
r = GR(k, ctxt) (π′

i, K′) := ϕr ⊕ GstR(sr, IVr)

if πr = π′
r : K := H(k, ctxt) if πi = π′

i : K := K′

mi

mr, πr

πi

(IVi, ϕi)

(IVr, ϕr)

Fig. 10. AKE protocol AKEstKC from AKE′, key confirmation, and state encryption. The
context is defined as ctxt := (pki, pkr, mi, mr). GI, GR, and H are independent random
oracles. Dashed parts show how we use the state encryption technique to protect the
session states. GstI and GstR are independent random oracles used for state encryption.

si ∈ {0, 1}κ, and (2) each session will sample a one-time key IV uniformly at
random and encrypt the session state of AKEKC via XORing with the one-time
pad GstI(si, IV). Now the session state (that the adversary can reveal in the state-
reveal AKE model) is (IV, ϕ). Dashed parts in Fig. 10 shows how this technique
works.

Correctness. Similar to AKEKC, the correctness of AKEstKC follows directly
from the correctness of AKE′. If AKE′ is (1 − δ)-correct, then so is AKEstKC.

Security. In Theorem 2, we prove IND-FS-St security of AKEKC based on
OW-VwFS-St security of AKE′ and modeling GI, GR, H, GstI, and GstR as random
oracles. Here we sketch the proof idea. By using the state encryption technique,
the adversary cannot learn the unencrypted states of the underlying two-message
AKE, unless it reveals the encrypted session state and corrupts the owner of the
session. But this makes the session invalid and thus, it cannot be tested. There-
fore, for valid sessions, state-reveal queries do not give any advantage to the
adversary, and thus we can use the proof idea of Theorem 1. The full proof of
Theorem 2 is postponed to our full version [28, Appendix C].

Theorem 2. Let AKE′ be (1 − δ)-correct and have public keys with γ bits
of entropy and messages with α bits of entropy. Let AKEstKC be as defined
in Fig. 5, where GI,GR : {0, 1}∗ → {0, 1}λ, H : {0, 1}∗ → K, GstI :
{0, 1}κ × {0, 1}κ → {0, 1}dI ,and GstR : {0, 1}κ × {0, 1}κ → {0, 1}dR

are modeled as random oracles. For every adversary A that breaks the
(t, ε, μ, S, T, QCor, QSt)-IND-FS-St-security of AKEstKC, there exists an adversary
B that breaks the (t′, ε′, μ, S, QCor, QV er, S)-OW-VwFS-St security of AKE′ with

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 81

Party Pi (pki, ski) Party Pr (pkr, skr)

(p̃k, s̃k) ← Gen0(par0)
(cr, kr) ← Encaps1(pkr)

(̃c, k̃) ← Encaps0(p̃k)
(ci, ki) ← Encaps1(pki)
kr := Decaps1(skr, cr)

k̃ := Decaps0(s̃k, c̃) k := (k̃, ki, kr)
ki := Decaps1(ski, ci)

k := (k̃, ki, kr)

p̃k, cr

c̃, ci

(pkr, p̃k, s̃k, cr, kr)

Fig. 11. AKE protocol AKE′
kem from KEM schemes KEM1, KEM0.

t′ ≈ t and

ε ≤ ε′ + 2S · δ + (μ2 + S2 + μQGstI + 2SQGstI) · 2−κ

+ μ2 · 2−γ + (S + S2) · 2−λ + (QGR + QGI + QH + S) · S · 2−α,

where Qh is the number of queries to the respective random oracle h and QV er ≤
S + QGI + QGR + QH.

6 Applying Our Results to Existing Protocols

We first show how to construct verifiable AKE from KEMs which gives us tight
AKE with key confirmation and perfect forward secrecy from lattices and DDH.
The advantage is that we do not have to consider random oracles and the proofs
are comparably simpler than those of full AKE security. We then show how we
can recover the optimal tightness bound for the CCGJJ protocol [10] using our
modular transformation rather than that of [18].

6.1 AKE from KEMs

We provide results for KEM-based AKE secure without and with state reveal,
where the former allows for weaker assumptions. The protocol, denoted by
AKE′

kem, to which we want to apply our compiler from the previous section
is given in Fig. 11. Each party holds long-term keys of a KEM scheme KEM1
and in each session, an ephemeral key using KEM0 is exchanged. The session
key then simply consists of three KEM keys. We also denote its variant with
key confirmation by AKEkem (i. e., combining Fig. 11 with Fig. 5) and the one
resisting state reveals by AKEst,kem (i. e., combining Fig. 11 with Fig. 10).

One-Way Security of KEM. Depending on whether the KEM is used
for long-term keys or ephemeral keys and whether state reveals are allowed,

82 J. Pan et al.

we need a different variant of one-way security: multi-user one-way security
under plaintext checking and ciphertext validity attacks without (OW-PCVA)
or with corruptions (OW-PCVA-C), and with corruptions and reveal queries
(OW-PCVA-CR). These notions are weaker variants of OW-ChCCA security from
Pan, Wagner and Zeng [30] and are tightly implied by OW-ChCCA. The formal
security definitions are given in our full version [28, Appendix A].

Analysis of AKE′
kem and AKEkem. We prove that AKE′

kem protocol is a secure
verifiable AKE protocol. When not considering state reveals, we can use weaker
assumptions, namely OW-PCVA and OW-PCVA-C. We also prove security with
state-reveals which uses the definition of OW-PCVA-CR security. We then apply
Theorem 1 resp. Theorem 2 to obtain AKEkem which has full forward secrecy.

Correctness and Entropy. Let KEM0 be (1 − δ0)-correct and have public
keys with γ0 bits of entropy and messages with α0 bits of entropy. Let KEM1 be
(1 − δ1)-correct and have public keys with γ1 bits of entropy and messages with
α1 bits of entropy. Then AKE′

kem is (1 − δ0 − 2δ1)-correct. Further, AKE′
kem has

public keys with γ1 bits of entropy and messages with at least min(γ0, α0, α1−1)
bits of entropy.

We now establish OW-VwFS and OW-VwFS-St security of AKE′
kem and defer

the proofs to our full paper [28, Appendix D.1].

Lemma 1. For every adversary A that breaks the (t, ε, μ, S,
T, QCor, QV er)-OW-VwFS security of AKE′

kem, there exist adversaries B1 and B2
that break (t1, ε1, S, S, S, QV er)-OW-PCVA security of KEM0 and (t2,
ε2, μ, S, S, 2QV er, QCor)-OW-PCVA-C security of KEM1 with t1 ≈ t2 ≈ t and
ε ≤ ε1 + ε2.

Lemma 2. For every adversary A that breaks the (t, ε, μ, S, T,
QCor, QV er, QSt)-OW-VwFS-St security of AKE′

kem, there exist adversaries B1
and B2 that break (t1, ε1, S, S, S, QV er, QSt)-OW-PCVA-C security of KEM0 and
(t2, ε2, μ, S, S, 2QV er, QCor, QSt)-OW-PCVA-CR security of KEM1 with t1 ≈ t2 ≈
t and ε ≤ ε1 + ε2.

We now add key confirmation to AKE′
kem as described in Fig. 5 resp. Fig. 10.

The following theorem then follows from combining Theorem 1 with Lemma 1
resp. Theorem 2 with Lemma 2.

Theorem 3. Let KEM0 be (1 − δ0)-correct and have public keys with γ0 bits of
entropy and messages with α0 bits of entropy. Let KEM1 be (1 − δ1)-correct and
have public keys with γ1 bits of entropy and messages with α1 bits of entropy.
Let AKEkem resp. AKEst,kem be defined as described above by combining Fig. 11
with Fig. 5 resp. Fig. 10, where GI,GR : {0, 1}∗ → {0, 1}λ, H : {0, 1}∗ → K,
GstI : {0, 1}κ × {0, 1}κ → {0, 1}dI and GstR : {0, 1}κ × {0, 1}κ → {0, 1}dR are
modeled as random oracles. Let Qh be the number of queries to the respective
random oracle h.

For any A against the (t, ε, μ, S, T, QCor)-IND-FS-security of AKEkem, there
exist adversaries B1 and B2 that break (t1, ε1, S, S, S, QV er)-OW-PCVA security

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 83

Party Pi (Xi, (xi,1, xi,2)) Party Pr (Xr, (xr,1, xr,2))

x̃1, x̃2, s $← Zp, X̃ := gx̃1hx̃2

kr := H1(Xr, gs, hs, Xs
r)

t $← Zp; k̃ := H0(X̃, gt, ht, X̃t)

ki := H1(Xi, gt, ht, Xt
i)

kr := H1(Xr, gs, hs, (gs)xr,1(hs)xr,2)

k̃ := H0(X̃, gt, ht, (gt)x̃1(ht)x̃2) k := (k̃, ki, kr)

ki := H1(Xi, gt, ht, (gt)xi,1(ht)xi,2)

k := (k̃, ki, kr)

X̃, (gs, hs)

(gt, ht)

(x̃1, x̃2), kr

Fig. 12. AKE protocol JKRS. H0, H1 are independent random oracles. Protocol JKRSKC
is obtained by adding the transformation from Fig. 10.

of KEM0 and (t2, ε2, μ, S, S, 2QV er, QCor)-OW-PCVA-C security of KEM1, where
QV er ≤ S + QGI + QGR + QH, with t1 ≈ t2 ≈ t and

ε ≤ ε1 + ε2 + 2S · (δ0 + 2δ1) + (S + S2) · 2−λ + μ2 · 2−γ1

+ S(S + QGI + QGR + QH) · (2−γ0 + 2−α0 + 2−α1+1) .

Further, for every adversary A that breaks the (t, ε, μ, S,
T, QCor, QSt)-IND-FS-St-security of AKEst,kem, there exist adversaries B1
and B2 that break (t1, ε1, S, S, S, QV er, QSt)-OW-PCVA-C security of KEM0
and (t2, ε2, μ, S, S, 2QV er, QCor, QSt)-OW-PCVA-CR security of KEM1, where
QV er ≤ S + QGI + QGR + QH, with t1 ≈ t2 ≈ t and

ε ≤ ε1 + ε2 + 2S · (δ0 + 2δ1) + (μ2 + S2 + μQGstI + 2SQGstI) · 2−κ + μ2 · 2−γ1

+ (S + S2) · 2−λ + S(QGR + QGI + QH + S) · (2−γ0 + 2−α0 + 2−α1+1) .

Instantiation with Non-Committing KEM. We can use a non-committing
KEM as defined in [21] to instantiate a verifiable AKE protocol very efficiently,
e. g., from DDH (cf. protocol JKRS in Fig. 12). We can easily show that a non-
committing KEM implies OW-PCVA-CR security of that KEM. In our full version
[28, Appendix A], we recall the formal definition of NC-CCA security for KEMs
from [21] and show the implication. Adding key confirmation as described in
Fig. 10 then yields protocol JKRSKC.

Security of JKRSKC. We now establish security of protocol JKRSKC. Since
the JKRS protocol is perfectly correct, so is JKRSKC. Further, public keys and
messages have log(p) bits entropy. Security is based on the DDH assumption
which asks to distinguish between (gx, gy, gxy) and (gx, gy, gz) for x, y, z $← Zp.

Theorem 4. Let JKRSKC be defined as in Fig. 12, where GI,GR : {0, 1}∗ →
{0, 1}λ, H : {0, 1}∗ → K, H0 : {0, 1}∗ → KEM0.K, H1 : {0, 1}∗ → KEM1.K,

84 J. Pan et al.

GstI : {0, 1}κ × {0, 1}κ → {0, 1}dI ,and GstR : {0, 1}κ × {0, 1}κ → {0, 1}dR are
modeled as random oracles.

For every adversary A that breaks the (t, ε, μ, S, T, QCor, QSt)-IND-FS-St-
security of JKRSKC, there exists an adversary B that breaks (t′, ε′)-DDH with
t′ ≈ t and

ε ≤ ε′ + (μ2 + S2 + μQGstI + 2SQGstI) · 2−κ + μ2 · 2− log(p)

+ (S + S2) · 2−λ + S(QGR + QGI + QH + QH0 + QH1 + S + 1) · 2− log(p) ,

where Qh is the number of queries to the respective random oracle h.

The theorem follows from [28, Theorem 6], Lemma 2 and Theorem 2 in combi-
nation with [21, Theorem 5], where the latter deals with the optimization that
only one ciphertext is sent in the second round.

Instantiation from Lattices. We can also instantiate the KEM-based veri-
fiable AKE protocol using lattices assumptions. The scheme KEMLWE described
in [30, Section 3] satisfies OW-ChCCA security which implies OW-PCVA-CR secu-
rity. This gives us an AKE protocol with key confirmation from LWE secure in
the random oracle model.

6.2 The CCGJJ Protocol and Its Isogeny-Based Variant

It is easy to see that the core protocol from Cohn-Gordon et al. (CCGJJ) [10] is
a verifiable AKE protocol, ignoring the session key hash. For completeness, we
provide a formal treatment in our full paper [28, Appendix F].

Isogeny-based AKE. The isogeny-based AKE protocol which was indepen-
dently analyzed by de Kock, Gjøsteen and Veroni [23] and Kawashima et al. [22]
follows the same blueprint as the CCGJJ protocol, relying on the group action
structure of CSIDH [8] rather than prime-order groups. Thus, we also get an
AKE protocol with key confirmation from isogenies, based on the same assump-
tions as the analysis in [22,23]. This is particularly interesting because the only
group action based and tightly-secure signature scheme supporting adaptive cor-
ruptions [29] is rather inefficient.

7 KEM-Based AKE with Key Confirmation in the QROM

We analyze FS via key confirmation in the quantum random oracle model
(QROM). Following [31], we use IND-CCA-secure KEMs in the multi-user, multi
challenge settings as building blocks. By the key confirmation technique, we lift
the result of Pan, Wagner, and Zeng [31] to FS in the QROM. The work of
Pan, Wagner, and Zeng only achieves weak FS in the QROM. Our result not
only preserves the security loss of their protocol, but also achieves FS and allows
multiple Test queries with single challenge bit, while [31] allows at most one
single Test query.

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 85

The MC-IND-CCA and MUC-IND-CCA security definitions of KEMs are
given in our full paper [28, Appendix A]. We use notations introduced in Sect. 5
to present our protocol AKEkem. Let KEM1 and KEM0 be two KEM schemes and
GI,GR : {0, 1}∗ → {0, 1}λ, and H : {0, 1}∗ → K be hash functions, where λ is the
length of key confirmation tags and K is the key space of AKEkem. An overview
of our AKE construction AKEkem is given in Fig. 13. AKEkem is essentially the
KEM-based AKE protocol in [31] adding key confirmation, namely, it is obtained
from combining Fig. 11 and Fig. 5.

Party Pi (pki, ski) Party Pr (pkr, skr)

(p̃k, s̃k) ← Gen0(par0)
(cr, kr) ← Encaps1(pkr)

(̃c, k̃) ← Encaps0(p̃k)
(ci, ki) ← Encaps1(pki)
kr := Decaps1(skr, cr)

πr := GR((k̃, ki, kr), ctxt)

k̃ := Decaps0(s̃k, c̃) π′
i := GI((k̃, ki, kr), ctxt)

ki := Decaps1(ski, ci) K′ := H((k̃, ki, kr), ctxt)

πi := GI((k̃, ki, kr), ctxt)

π′
r := GR((k̃, ki, kr), ctxt)

if πr = π′
r : K := H((k̃, ki, kr), ctxt) if πi = π′

i : K := K′

p̃k, cr

c̃, ci, πr

πi

(pkr, p̃k, s̃k, cr, kr)

(π′
i, K′)

Fig. 13. AKE protocol AKEkem from KEM schemes KEM1, KEM0, and key confirmation.
The context is defined as ctxt := (pki, pkr, p̃k, c̃, ci, cr). GI, GR, and H are independent
random oracles.

Correctness. The correctness of AKEkem is due to KEM1 and KEM0. Each
session of AKEkem includes two ciphertexts of KEM1 and one ciphertext of KEM0.
If KEM1 is (1−δ1)-correct and KEM0 is (1−δ0)-correct, then by the union bound,
AKEkem is (1 − 2δ1 − δ0)-correct.

Security. We prove IND-FS security of AKEkem based on the MC-IND-CCA
security of KEM1, the MUC-IND-CCA security of KEM0, and modeling GI,GR,
and H as quantum-accessible random oracles, as stated in Theorem 5. The proof
of Theorem 5 is postponed to our full version [28, Appendix E].

Theorem 5. Let KEM0 be (1 − δ0)-correct and have public keys with γ0 bits of
entropy and messages with α0 bits of entropy. Let KEM1 be (1 − δ1)-correct and
have public keys with γ1 bits of entropy and messages with α1 bits of entropy.
K0 and K1 are the KEM key spaces of KEM0 and KEM1, respectively.

Let AKEkem be as defined in Fig. 13, where Let GI,GR : {0, 1}∗ →
{0, 1}λ and H : {0, 1}∗ → K. For every adversary A that breaks the

86 J. Pan et al.

(t, ε, μ, S, T, QCor)-IND-FS-security of AKEKC, there exists an adversary B0 that
breaks the (t′

0, ε′
0, S, S)-MUC-IND-CCA security of KEM0 and an adversary B1

that breaks the (t′
1, ε′

1, S)-MC-IND-CCA security of KEM1 with t′
0 ≈ t′

1 ≈ t and

ε ≤ 2ε′
0 + 2με′

1 + 2S(δ0 + μδ1) + μ22−γ1 + μS2−λ+1

+ S2(2−α1 + 2−γ0 + 2−α0) + 2μ(QGR + QGI)
√

S√|K1|
+ 2QH

√
S√|K0|

,

where QGI , QGR and QH are the number of quantum-superposition queries to GI,
GR and H.
Remark 1 (Implicit Rejection). Following [31], when proving Theorem 5, we
assume KEM1 and KEM0 have implicit rejection [5], namely, if the input cipher-
text is invalid, then the decapsulation algorithm returns a pseudorandom KEM
key. We use implicit-rejection KEM because it simplifies our AKE proof.

To adapt the proof of Theorem 5 to the one that uses explicit-rejection KEMs,
we can add extra codes in the games sequence to deal with explicit rejections
from KEM. Concretely, upon receiving an invalid KEM ciphertext, the session
oracle (e.g., SessionR, DerR, or DerI) simply sets the session key as “reject” and
returns ⊥. This can be tightly simulated by MUC-IND-CCA and MC-IND-CCA
secure KEMs with explicit rejection, and thus the security bound in Theorem 5
also applies to explicit-rejection KEMs.

Remark 2 (Instantiations with LWE). In [31], Pan et al. proposed lattice-based
instantiations of MC-IND-CCA-secure KEM and MUC-IND-CCA-secure KEM
that have (almost-)tight reduction from the well-known Learning With Errors
(LWE) problem in the QROM. Here we only discuss the security loss of these
KEM schemes and give the final security loss of our AKE protocol instantiated
with these KEM schemes.

Let εlwe be the best computational advantage against LWE assumptions and
λ be the security parameter (which decides the security level, the length of
message, etc.). The two KEM schemes proposed in [31] have asymptotic bounds
ε′
1 ≤ Θ(λ) · εlwe and ε′

0 ≤ Θ(λ) · εlwe, where ε′
1 and ε′

0 are the computational
advantages against MC-IND-CCA security and MUC-IND-CCA security of the
KEM schemes in [31], respectively. By combining these bounds with the bounds
given in Theorem 5, we have

ε ≤ Θ(λ) + Θ(μ) · Θ(λ) · εlwe = Θ(μ) · Θ(λ) · εlwe,

where ε is the computational advantage against the resulting AKE protocol.
This gives us a session-tight and square-root-tight (namely, does not suffer from
the square-root security loss) LWE-based instantiation of AKE with full forward
secrecy in the QROM.

Acknowledgements. We thank the anonymous reviewers for their valuable com-
ments on better motivating our works and comparisons with the related work. Doreen
Riepel was supported in part by Bellare’s KACST grant. Jiaxin Pan was supported in
part by the Research Council of Norway (RCN) under Project No. 324235, and Runzhi
Zeng were supported by the same project from RCN.

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 87

References

1. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30580-4_6

2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6_18

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2_21

4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679_25

5. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint
Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0_3

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44987-6_28

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-030-03332-3_15

9. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–
460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

10. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Hei-
delberg (2019). https://doi.org/10.1007/978-3-030-26954-8_25

11. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021, Part II. LNCS, vol.
12727, pp. 448–479. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-
030-78375-4_18

12. Delpech de Saint Guilhem, C., Fischlin, M., Warinschi, B.: Authentication in key-
exchange: definitions, relations and composition. In: Jia, L., Küsters, R. (eds.) CSF
2020 Computer Security Foundations Symposium, pp. 288–303. IEEE Computer
Society Press (2020). https://doi.org/10.1109/CSF49147.2020.00028

13. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711,
pp. 1–31. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-75248-
4_1

https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://eprint.iacr.org/2018/526
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1

88 J. Pan et al.

14. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically sound cryp-
tographic parameters for real-world deployments. J. Cryptol. 34(3), 30 (2021).
https://doi.org/10.1007/s00145-021-09388-x

15. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key
exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Sym-
posium on Security and Privacy, pp. 452–469. IEEE Computer Society Press, May
2016. https://doi.org/10.1109/SP.2016.34

16. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7_17

17. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3_1

18. Gellert, K., Gjøsteen, K., Jacobsen, H., Jager, T.: On optimal tightness for
key exchange with full forward secrecy via key confirmation. In: Handschuh,
H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-38551-3_10

19. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-319-96881-0_4

20. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389–422.
Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45388-6_14

21. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key
exchange, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (2021). https://doi.
org/10.1007/978-3-030-77870-5_5

22. Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authenticated
key exchange from random self-reducibility on CSIDH. In: Hong, D. (ed.) ICISC
2020. LNCS, vol. 12593, pp. 58–84. Springer, Heidelberg (2020). https://doi.org/
10.1007/978-3-030-68890-5_4

23. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with
optimal tightness. In: Dunkelman, O., Jacobson Jr., M.J., O’Flynn, C. (eds.) SAC
2020. LNCS, vol. 12804, pp. 451–479. Springer, Heidelberg (2020). https://doi.org/
10.1007/978-3-030-81652-0_18

24. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218_33

25. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (Nov (2007)

26. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-64834-3_27

https://doi.org/10.1007/s00145-021-09388-x
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-031-38551-3_10
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-68890-5_4
https://doi.org/10.1007/978-3-030-68890-5_4
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-030-64834-3_27

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation 89

27. Pan, J., Qian, C., Ringerud, M.: Signed (group) Diffie-Hellman key exchange with
tight security. J. Cryptol. 35(4), 26 (2022). https://doi.org/10.1007/s00145-022-
09438-y

28. Pan, J., Riepel, D., Zeng, R.: Key exchange with tight (full) forward secrecy via
key confirmation. In: Cryptology ePrint Archive (2024)

29. Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and
more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS,
vol. 13178, pp. 347–378. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-030-97131-1_12

30. Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with
tight security. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS,
Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38554-4_20

31. Pan, J., Wagner, B., Zeng, R.: Tighter security for generic authenticated
key exchange in the QROM. In: ASIACRYPT 2023. LNCS, Springer, Heidel-
berg (2023). https://doi.org/10.1007/978-981-99-8730-6_13, https://eprint.iacr.
org/2023/1380

32. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_8

https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-030-97131-1_12
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-981-99-8730-6_13
https://eprint.iacr.org/2023/1380
https://eprint.iacr.org/2023/1380
https://doi.org/10.1007/978-3-642-55220-5_8

	Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation
	1 Introduction
	1.1 Our Contribution I: Tight Forward Secrecy via Key Confirmation
	1.2 Our Contribution II: Forward Secrecy via Key Confirmation in the QROM

	2 Preliminaries
	3 Three-Message Authenticated Key Exchange
	4 Verifiable Authenticated Key Exchange
	5 AKE with Key Confirmation
	6 Applying Our Results to Existing Protocols
	6.1 AKE from KEMs
	6.2 The CCGJJ Protocol and Its Isogeny-Based Variant

	7 KEM-Based AKE with Key Confirmation in the QROM
	References

