
Updatable Public-Key Encryption,
Revisited

Joël Alwen1(B), Georg Fuchsbauer2, and Marta Mularczyk1

1 AWS Wickr, New York, USA
{alwenjo,mulmarta}@amazon.com

2 TU Wien, Vienna, Austria
Georg.Fuchsbauer@tuwien.ac.at

Abstract. We revisit Updatable Public-Key Encryption (UPKE),
which was introduced as a practical mechanism for building forward-
secure cryptographic protocols. We begin by observing that all UPKE
notions to date are neither syntactically flexible nor secure enough for the
most important multi-party protocols motivating UPKE. We provide an
intuitive taxonomy of UPKE properties – some partially or completely
overlooked in the past – along with an overview of known (explicit and
implicit) UPKE constructions. We then introduce a formal UPKE defini-
tion capturing all intuitive properties needed for multi-party protocols.

Next, we provide a practical pairing-based construction for which we
provide concrete bounds under a standard assumption in the random ora-
cle and the algebraic group model. The efficiency profile of the scheme
compares very favorably with existing UPKE constructions (despite the
added flexibility and stronger security). For example, when used to
improve the forward security of the Messaging Layer Security protocol
[RFC9420], our new UPKE construction requires less than 1.5% of the
bandwidth of the next-most efficient UPKE construction satisfying the
strongest UPKE notion considered so far.

1 Introduction

Spurred on by the seemingly never-ending procession of data breaches, 0-day
exploits and system compromises, it is becoming ever more important in to
design protocols with the ability to automatically limit the blast radii of key
and state compromises. Among other techniques, this has lead to interest in
primitives designed to provide cheap but effective forward security, namely the
property that security holds despite possible future compromises.

A näıve (though not ineffective) approach to providing forward security for,
say, public-key encryption (PKE) is for the owner of a key pair (pk, sk) to peri-
odically sample a fresh and independent key pair (pk′, sk′) that replaces its old
keys. While this does provide forward security – old ciphertexts encrypted to pk
remain secure even if the adversary learns sk′ – it comes with a serious drawback
from the protocol perspective. After each key rotation the receiver must first
inform prospective senders of the new public key before new messages can be

c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14657, pp. 346–376, 2024.
https://doi.org/10.1007/978-3-031-58754-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58754-2_13&domain=pdf
https://doi.org/10.1007/978-3-031-58754-2_13

Updatable Public-Key Encryption, Revisited 347

sent privately to the receiver again.1 Besides increasing communication complex-
ity, the biggest issue with this is that it forces potentially onerous coordination
requirements on protocol participants.

Avoiding this cost motivated the study of Puncturable Public-Key Encryption
[GM15] (PPKE) as a stand-alone primitive. PPKE provides essentially the same
security as the näıve approach but without further coordination between parties
beyond the initial public key distribution. After that, any number of senders may
independently send any number of ciphertexts to the receiver which can be deliv-
ered in any order (or not at all). Despite the lack of coordination between par-
ties, PPKE guarantees that at any point, leaking the receiver’s secret key reveals
nothing about messages in ciphertexts it had already received and decrypted.

Clearly a powerful tool for building forward-secure protocols, PPKE lies
at the heart of recent forward-secure 0-round trip key agreement protocols
[GHJL17]. But minimizing round and communication complexity for forward-
secure key agreement underpins other classes of cryptographic protocols.
Notably, these include 2-party ratcheting [JS18,PR18,JMM19,DV19,CCD+20],
the multi-party analogue: continuous group key agreement (CGKA) [ACDT20,
AAN+22,ACJM20] and secure group and 2-party messaging [ACDT21]. In this
work, we are especially interested in CGKA and secure group messaging (SGM)
applications of forward-secure encryption primitives as these demand new, and
hitherto seemingly overlooked, properties of the underlying primitive.

Updatable Public Key Encryption. Unfortunately, despite its wide-ranging
practical applications, to date, PPKE constructions are not practically efficient
for many real-world use cases, in particular in the ratcheting and messaging
settings. This has given rise to a new class of “off-brand” forward-secure encryp-
tion schemes in the messaging literature called Updatable Public-Key Encryption
(UPKE). They aim for a happy middle ground between forward secrecy with
minimal interaction and truly practical efficiency.

Intuitively, UPKE is public-key encryption where senders can also generate
update tokens. Applying a token up to a public key pk produces an updated
public key pk →up pk′. Similarly, applying up to the secret key sk of pk yields
the secret key sk →up sk′ corresponding to pk′. The essential promise of UPKE
is that ciphertexts encrypted to pk remain secure even when an adversary learns
pk, the token up and the updated secret key sk′. Thus, a protocol in which parties
update receivers’ key pairs whenever encrypting to them can achieve relatively
strong forward secrecy properties. Indeed, no secret key is ever used more than
once by a party and is immediately deleted (and replaced) upon first use.

However, there is a caveat to this. While using UPKE this way doesn’t require
as much coordination between parties as the näıve approach, it does require
more than PPKE. To ensure a receiver has the correct secret key available,
a sender must encrypt to the most recent version of the receiver’s public key.
In other words, senders must see each others’ up tokens (or at least the most
recently updated public key) before they can send. Otherwise, two senders may
1 Note that new keys cannot prepared and distributed too far in advance since this

only extends the window of time during which forward secrecy is not provided.

348 J. Alwen et al.

concurrently produce update tokens up0 and up1 for one public key pk giving
rise to two sibling key pairs (pk0, sk0) and (pk1, sk1). We refer to this as a “fork”.
When a fork occurs, a receiver will typically only derive one of the forked secret
keys skb since it must then immediately delete sk to ensure forward security.
Thus, when it later receives up1−b, it can no longer produce sk1−b meaning it
can’t decrypt anything sent to pk1−b (or any of its descendent keys). A similar
restriction is that the receiver must decrypt ciphertexts in the same order they
were sent (even when sent by different senders).

Still, compared to the näıve technique this represents a qualitative reduction
in coordination since the receiver can essentially stay silent after initial public key
distribution. Crucially, this makes asynchronous communication (as understood
in asynchronous (group) messaging) possible, because senders need not wait for
a receiver to announce new public keys before they can encrypt new messages to
them. Thus, UPKE provides to secure messaging protocol designers the benefits
of strong forward secrecy without forcing them to compromise on the ability of
parties to privately message each other despite receivers potentially being off-line
for extended periods of time.

Unfortunately, no UPKE scheme to date is sufficiently flexible, nor has all
of the requisite security properties for natural use in CGKA and SGM applica-
tions which UPKE was partly designed for. Indeed, the initial academic work
[ACDT20] in this area introduced rTreeKEM, a CGKA protocol which provides
strong forward security by using UPKE in place of the PKE. The goal was
to provide a more secure CGKA upon which to re-base the IETF’s Messaging
Layer Security (MLS) protocol, an open SGM standard specified in RFC9420
[BBR+23]. However, rTreeKEM (and the resulting SGM based on rTreeKEM
[ACDT21]) were only analyzed in a restricted model, which lead to relatively
lightweight demands being placed on the underlying UPKE (both in terms of
functionality and security).

Since then, however, the much more realistic “insider security” paradigm
[AJM22] has established itself as a standard in the CGKA and SGM liter-
ature [HKP+21,AHKM22,AMT23]. Unlike the security models of [ACDT20,
ACDT21], which assume authenticated channels, insider security only uses an
insecure network. More challengingly maybe, insider security also provides mean-
ingful security guarantees to parties joining “fake” groups; that is, sessions cre-
ated arbitrarily by the adversary. These additions mean that insider security bet-
ter captures the practical security concerns for SGM and CGKA. However, they
also mean that to date, all UPKE schemes lack either the flexibility or security
necessary for a CGKA (or SGM) application like rTreeKEM to be insider-secure.

Fake-Group Security. One such missing security property of existing UPKE
notions is the (intuitive) property we call “joiner” security. When UPKE is used
in higher-level CGKA/SGM protocols as a forward-secure replacement for PKE
(as in rTreeKEM, for example), the joiner security of the UPKE scheme plays
a central role in ensuring that the resulting CGKA/SGM protocol provides the
“fake group” security aspect of insider security.

In more detail, CGKA and SGM protocols allow for dynamic groups (i.e.
groups with evolving membership). Thus, a party P might receive an invitation

Updatable Public-Key Encryption, Revisited 349

to join an existing group mid-session. To join the group, P also receives the group
state including the signature verification keys for each group member (authenti-
cated by some trusted PKI). Fake-group security (for SGM) considers the case
when the invitation (and accompanying group state) were produced maliciously
by the adversary (who may also corrupt parties). It mandates that if P vali-
dates the invitation and state (as specified by the protocol) and subsequently
proceeds with the execution to a point where no corrupt signing keys are left in
the group’s state, then the session should return to a secure state. For example,
P’s messages to the group should remain hidden from the adversary. Notably,
this should be the case even though the group state could still includes (U)PKE
keys obtained by P from the adversary.

Fake-Group Security in MLS. To date, the only protocol we are aware of that
achieves fake-group security is MLS. It does so by including signatures in the
public group state, which give P a way to identify which PKE keys in the state
were (supposedly) generated by which party and to whom the party sent the
decryption keys as part of the protocol execution. Whenever a party is removed
from the group, so too are any keys they either (supposedly) generated or were
sent. In the insider corruption model, leaking a party’s signing key also leaks all
other secret keys it knows. Thus, if at some point only secure verification keys
remain in the group state, we can conclude that all remaining public keys were
generated by and sent to uncorrupted parties. As a result, under those conditions,
MLS can provide P with meaningful security guarantees for the session.

UPKE Breaks MLS’s Fake-Group Security Mechanism. When [ACDT20] pro-
posed replacing PKE with UPKE to improve MLS’s forward security, the authors
left as an open problem how to adapt MLS’s mechanism for fake-group security
accordingly (at least without growing the group state in the number of updates to
UPKE keys). This was one of the primary barriers to adopting UPKE in MLS.

Indeed, in general, the state of a group mid-session would include UPKE
keys pk that are (nominally) the result of updates to some prior original key pk0.
So, to guarantee that pk is still secure, a new member must validate that (i) pk0
was generated by an honest party, and (ii) that pk is the result of honestly using
the update algorithm starting from pk0.

One approach to providing (ii) could be to include in the group state all
update tokens up leading from pk0 to pk along with proofs that they were gener-
ated by the update algorithm. But this results in a state size and computational
cost of joining that grow linearly in the number of updates between pk0 and pk,
which is prohibitive in practice. (MLS sessions can be expected to last for years
and have, say, n = 50, 000 group members; so some of the 2n public keys in
an MLS state could have been updated n/2 times by the time a new member
joins.) It is also not an adequate solution to have receivers (i.e., members who
can compute the updated sk, which could be as few as a single party) sign the

350 J. Alwen et al.

updated pk to attest to its correctness, as it conflicts with the asynchronous
nature of MLS.2

This motivates the joiner security property of UPKE identified in this work.
It provides a joiner P with a concise tag for validating that some UPKE public
key pk is the result of an (unknown) sequence of honest updates to a given
“origin” UPKE public key pk0. Thus, if an uncorrupted honest party attests to
having generated pk0 via a signature (just as with the PKE keys in MLS) then
we can again conclude, in the insider security model, that pk must be secure.

Our Proposal: UPKE Allowing for Fake-Group Security. These issues
show that there seems to be no easy way to efficiently adapt MLS’s fake-group
security mechanism to UPKE. So instead, we ask the UPKE scheme to directly
provide a comparable public key validation mechanism for new members (and
a matching security guarantee). A joiner-secure UPKE scheme thus includes an
algorithm Verifyjt with 3 inputs: (i) a UPKE public key pk to be validated, (ii) an
original public key pk0 and (iii) a “joiner tag” jt. The tag must be constant-size,
in particular, independent of how many updates might have lead to from pk0 to
pk.

The UPKE security game chooses the initial pk0 honestly at the start of the
game (reflecting that in the application we only expect security from pk if an
honest party attested to having generated pk0, e.g. via a signature). Then, the
UPKE adversary may update pk0 with honest (i.e., generated by the challenger)
or potentially malicious tokens up. The adversary wins if it can come up with
pk∗ and jt∗ which pass Verifyjt and for which it can break privacy (IND-CCA)
of a ciphertext c∗ encrypted to pk∗. However, the adversary loses if it corrupts
a secret key created before requesting c∗.

This restriction excludes trivial attacks in which pk∗ is an updated version of
a corrupted key. On the other hand, the restriction is not tight in the sense that
it also excludes corruptions that do not lead to trivial attacks. We believe that
our joiner security is a good compromise for the following reasons. First, defining
UPKE security that only excludes trivial attacks would require UPKE schemes
with additional functionality, which seems to require inefficient constructions.3
Second, our joiner security is sufficient to prove that MLS with UPKE achieves
the same fake-group security as today’s MLS with PKE. In fact, the above can be
proven even using UPKE joiner security with no corruptions at all. This means
that our joiner security notion with corruption could enable an even stronger
flavor of fake-group security for MLS with UPKE. Indeed, in the full version
we give an example of an MLS execution where MLS with UPKE satisfying our
stronger joiner security is secure, but would not be so if its UPKE only satisfied

2 Indeed, after an update by one group member, new members could only join the
group after a different (receiving) group member comes online to validate and sign
the updated key. This would mean that at least 2 existing group members are needed
to invite a new member to the group.

3 Essentially, the challenger needs some way to identify which pk’s are old versions
of pk∗ provided by the adversary. This seems to require storing the whole update
history in pk∗ or jt∗.

Updatable Public-Key Encryption, Revisited 351

a notion disallowing corruptions. Such a stronger notion for MLS has not been
defined yet, and we leave this as an interesting open problem.

UPKE Taxonomy. Hiding beneath the term “UPKE” and the high-level intu-
ition above, we actually find a series of concrete schemes in the literature
(e.g. [JMM19,ACJM20,EJKM22,HLP22,DKW21,AMT23,AW23,HPS23]) that
differ in their syntax, security properties and even the purposes they serve in
the applications they were conceived for. To better interpret the results in our
work, it is instructive to categorize these differences.

Long vs. Short Syntax: The most obvious differences between UPKE schemes
are their various syntaxes. UPKE was first introduced in [JMM19] using an
(asymmetric) long syntax also used in [AAN+22,EJKM22]. Here, “long syntax”
means that key updates are generated and applied using stand-alone algorithms.
In contrast, in this work (as in [ACDT20,ACJM20,ACDT21]) we use a short
syntax, where keys are updated as a side-effect of encryption and decryption,
thereby obviating the need for explicit update algorithms. We opted for the
simpler syntax as it suffices for the dynamic group protocol applications we
focus on and converting to long syntax is trivial.

Further, [EJKM22] defines two variants of a long syntax. “Asymmetric” long
syntax means an update up = (pu, su) includes a public component pu for updat-
ing public keys and a private component su for updating corresponding secret
keys. “Symmetric” long syntax uses a single value to update both public and
private keys. The notions in [DKW21,HLP22,AW23,HPS23] can be viewed as
having a symmetric long syntax where the random coins used by the public key
update algorithm are also the update token used for the private key.

CPA vs. CCA: The first UPKE applications needed only CPA-style UPKE as they
either included additional mechanisms reducing the role of UPKE in their protocol
[JMM19,AAN+22] or their application was analyzed in a model that disables all
attacks that might leverage honest parties as decryption oracles. (For example, the
use of ideal authenticated channels in [ACDT20] trivially prevents the adversary
from injecting ciphertexts to honest parties.) However, subsequently, the stronger
and more realistic “insider security” model [AJM22] has become the standard in
the field [HKP+21,AHKM22,AMT23]. This motivated the need for CCA-style
UPKE. Indeed, all subsequent UPKE constructions (including in this work) are
now regularly proven secure with CCA-style security games.

Forking Security: Almost all UPKE applications in the group setting involve
multiple parties using the same UPKE secret key. An adversary that, say, con-
trols the network can easily cause such parties to have diverging views of a
protocol session’s transcript. This can result in forked UPKE keys (i.e., the ini-
tial key is updated using different sequences of updates). Thus, for such settings
UPKE schemes must provide security in the face of forks. To date, we know
of no (explicitly defined) UPKE scheme with this property, including those in

352 J. Alwen et al.

Table 1. Comparison of security properties of different UPKE schemes. The last two
columns indicates whether they are practically efficient and in which model they are
proven secure. AGM stands for the algebraic group model [FKL18].

Scheme Syntax Privacy Forking Agnos-tic Update validation Joinersec. PQ Practical Model
[JS18] long CCA � � ROM
[PR18] long CCA � � ROM
[JMM19] long CPA � � ROM
[ACDT20] short CPA � � ROM
[EJKM22] long CPA � � standard
[DKW21] long CCA � � standard
[HLP22] long CCA � � ROM
[AW23] long CCA � ROM
[HPS23] long CCA � � � ROM
[ACJM20] long CCA � � � � standard
[AMT23] long CCA � � � � standard

This work short CCA � � � � ROM+AGM

[JMM19,EJKM22,HLP22,AW23,DKW21,HPS23] making them, a priori, insuf-
ficient for such applications.4

Notable exceptions are the schemes of [ACJM20,AMT23] that are (implicitly)
based on hierarchical identity-based encryption (HIBE). Unfortunately, owing
to their use of unbounded-depth HIBE, these are decidedly impractical for real-
world applications leaving the state of UPKE for the group setting unsatisfactory.

Decryption Oracles for Old Keys: Even assuming there are no forks, in a setting
with multiple parties using the same UPKE secret key, one has to account for
parties not seeing some of the updates (yet) and hence holding old versions of the
secret key. Accordingly, UPKE security notions should account for the attacker
trying to inject ciphertexts to such parties. More precisely, assume we want to
prove that an SGM scheme using UPKE is secure against adversaries who can
inject ciphertexts but can not create forks. Even this weaker notion requires a
UPKE security notion where, even after receiving the challenge ciphertext, the
adversary can use the decryption oracle for any old secret key. However, this is
not covered by any CCA-style UPKE definition we know of, in particular, not
for [AW23,DKW21,HLP22,HPS23] (Table 1).

Agnostic Updates: The applications of UPKE considered in [JS18,PR18,JMM19,
AAN+22] require update tokens to be generated without knowing the public key
to which they will ultimately be applied which we refer to as “agnostic” updates.
4 This seems to have happened because initial applications of UPKE are either in

the 2-party setting, where forking is inherently not possible [JMM19] or they used
very restricted models that artificially avoided forking by definition. Later UPKE
constructions relied on UPKE security notions inspired by these early works but
were not analyzed in their motivating applications using newer models. We provide
a concrete scheme in the full version satisfying the definition [DKW21] but which
leads to simple attacks when plugged into rTreeKEM.

Updatable Public-Key Encryption, Revisited 353

Consequently, the UPKE schemes in those works are agnostic (as is the one
in [EJKM22] and the implicit ones in [ACJM20,AMT23], although this is not
necessary for the applications in those works). Conversely, the constructions of
[AW23,DKW21,HLP22,HPS23] create updates for a target key.

Protocol Usage: While UPKE is usually used as a tool for achieving forward
security in an application, the work of [AAN+22] applies updates to a possi-
bly leaked secret key to refresh it to a new secure secret key. In other words,
their protocol also relies on UPKE updates to ensure post-compromise secu-
rity (PCS).5 Thus, unlike any other use for UPKE we are aware of, [AAN+22]
needs the additional intuitive property that secret keys of updated public keys
have high (computational) entropy given the old secret key and updated public
key. Fortunately, to the best of our knowledge, most UPKE schemes already
have this property with the exception of the HIBE-based implicit schemes
in [JS18,PR18,ACJM20,AMT23]. For the purpose of this work we focus on
using UPKE for forward secrecy, so we leave such an entropy requirement for
future work.

Publicly Verifiable Updates: In multi-party protocols like MLS and rTreeKEM,
a common feature is that more than one user might encrypt messages to a
particular public key. Suppose we use UPKE in this setting and a party P1
updates a public key pk to pk′. It is important that everyone in the group is
convinced that pk′ was generated via an honest update. Otherwise, a corrupt
group member P1 (called an insider) might generate a key pair (pk∗, sk∗) using
KeyGen and then convince someone that pk∗ is the updated key. Clearly this
would make all future ciphertext sent to the “updated key” pk∗ insecure.

For group members that know sk, avoiding this is usually not too difficult.
For example, P1 could encrypt to pk the coins used to produce the update
[ACDT20]. However, revealing those coins to members who do not know sk
would be problematic since UPKE security notions only ensure forward secrecy
for updated keys if the coins used to update sk to sk′ are kept secret.

So, to prevent an insider from tricking parties that don’t know sk into accept-
ing arbitrary new public keys, the UPKE scheme should provide a method to
publicly verify that pk′ was produced from pk via the update algorithm. To
achieve this, the verification procedure can also take as input a validation tag pro-
vided by P1 as part of the message it sends to the group to announce the update.
Intuitively, UPKE security should guarantee that if pk is secure and the pair
(pk, pk′) passes validation (with some tag), then pk′ is also secure. Accordingly,
the UPKE constructions [HLP22,DKW21,HPS23] include a special VerifyUpdate
algorithm. For the implicit HIBE-based schemes of [ACJM20,AMT23], update
verification is quite trivial and the step is left implicit.

To summarize, no UPKE scheme to date is known to satisfy the (CCA
and) forking security properties needed to use UPKE in a CGKA protocol

5 PCS is the mirror image of forward security where future keys should be secure
despite past compromises.

354 J. Alwen et al.

like rTreeKEM [ACDT20] and meet the standard insider security for CGKA.
(See the full version for a toy scheme that satisfies the UPKE security notion
of [DKW21,HLP22,HPS23], yet leads to a trivial insider security attack when
used in place of PKE in MLS as proposed in [ACDT20]. The attack leverages
the lack of forking security in those UPKE notions.)

Our Contributions

New Model. In this work, we study CCA-secure Updatable Key Encapsulation
Mechanisms (UKEM); the KEM analogue of UPKE. Note that building UPKE
from a UKEM is straightforward (for both the long and short syntax) e.g. using
a standard KEM/DEM construction of CCA-secure PKE from a CCA-secure
KEM and a CCA-secure authenticated encryption scheme, as done for example
in Hybrid Public Key Encryption (HPKE) [BBLW22].

We present a new UKEM syntax and security definition designed to meet the
needs of dynamic group protocols such as MLS and rTreeKEM of [ACDT20]. In
particular, it captures CCA-type confidentiality with forks and joiner security.
Our notion for UKEM can be easily extended to model UPKE security.

The new syntax does not require agnostic updates as this is not needed for
these applications. It is based on the short UPKE syntax augmented with two
public key validation algorithms. The first, Verifyjt, lets new members joining a
group validate the public keys they download as part of the group’s state. It
takes as input a public key pk0, a public key pki being validated and a joiner
tag jti. The joiner tag is generated along with pki. In particular, the tag jt0 is
generated alongside pk0 by KeyGen and for i > 0, the tag jti is generated by
Encaps when encrypting to and updating pki−1, given only pki−1 and jti−1.

Joiner tags can be used to provide new-member security in protocols like
MLS and rTreeKEM as follows. In addition to each UPKE public key pki, the
group state contains the associated tag jti, as well as the original key pk0 signed
by the group member who generated it.6 Whenever a group member encrypts
to pki−1, they replace pki−1 and jti−1 by pki and jti. Note that this can be done
by all members, including new ones who did not see pk1, . . . , pki−2. Further, new
members can verify the signature on pk0 and verify jti, which convinces them,
respectively, that pk0 was honestly generated and then updated to get pki.

The second algorithm, Verifymt plays the same role as VerifyUpdate in the
syntax of [HLP22,DKW21,HPS23]. It allows existing group members that do
not know the secret keys to validate an updated public key. It takes as input the
previous public key pki−1, the updated public key pki and a member tag mti,
also produced as part of the output when encapsulating to pki−1.

One may wonder why Verifymt is needed and why members cannot verify
Verifyjt instead. Indeed, there may exist schemes for which this is the case. How-
ever, constructing Verifymt is much easier. Intuitively, this is because the creator
of mti can use the actual “witness” (i.e., secret randomness) for updating pki−1

6 The number of signatures can be reduced by half using the same “hashing down the
path” optimization as in the parent hash mechanism of MLS.

Updatable Public-Key Encryption, Revisited 355

to pki. On the other hand, jti must be generated without knowledge of the
witnesses of the updates from pk0 up to pki−1. As a result, our efficient con-
struction achieves better security for Verifymt. On the other hand, joiners cannot
profit from this additional security.

Our Construction. We provide a practically efficient construction of UKEM
satisfying our model based on pairing-friendly elliptic curves. We prove it secure
in the combination of the random oracle model (ROM) and the algebraic group
model (AGM) [FKL18] (see below) under the co-discrete-log assumption, which
in the AGM directly implies the co-CDH assumption [BLS01].7

Our starting point is the ElGamal-based KEM of DHIES [ABR98]. Public
keys are of the form u = gx ∈ G in a group G of prime order p with secret
key x ∈ Zp. To encapsulate a symmetric key K, one chooses r ←$ Zp, com-
putes the ciphertext v := gr and sets K := H(u, ur), where H is treated as a
random oracle.

To update a public key u in our scheme, we choose a random d ←$ Zp, which
defines a new key u′ := u · gd. The associated member tag mt is a proof of
knowledge of d. Intuitively, this proof guarantees that if u was “secure” then
so is u′. Indeed, suppose an adversary could update a random key u = gx to
u′ = gy for which it knows the secret key y while also proving knowledge of
d such that u′ = u · gd. Then by extracting d from the PoK we can use the
adversary to compute the discrete log x = y − d for a random u. For our scheme,
this intuition about the one-wayness of u and u′ also extends to CCA-security.
To allow receivers to update their secret keys accordingly, d is encrypted under u.
Decrypters can thus recover d and update secret key x to x′ := x + d for u′.

In fact, in our construction, d is actually derived via a random oracle (like the
encapsulated key K). This achieves three goals. First, it allows us to deal with
adaptive corruptions, a problem resulting from forks (see below). Second, unlike
in [JMM19,ACDT20] we can use the KEM ciphertext directly to transmit d,
which saves on encrypting d explicitly. Third, using encryption would require
key-dependent message security.

Our UKEM member security notion requires CCA-security for any public key
whose member tag is valid. The notion is strong in that it allows the adversary to
adaptively corrupt any secret key sk as long as sk does not let the adversary learn
the challenge secret key in a trivial way. We achieve this leveraging the random
oracle and by devising a careful guessing strategy: the security reduction guesses
the first key u∗ on the path of key updates leading from an initial honestly
generated public key u0 to the challenge public key for which (i) the adversary
breaks an encryption (which, as in DHIES, corresponds to solving CDH) or (ii)
it breaks an encryption of any key the adversary derived from pk∗. Note that
the reduction does not know this path and so it simply guesses a key.

7 The co-DL assumption in groups G and Ĝ, both of prime order p and generated by
g and h, respectively, states that given gx ∈ G and hx ∈ Ĝ for x ←$ Zp, it is hard to
compute x. The co-CDH assumption states that given (gx, gr, hx) for x, r ←$ Zp, it
is hard to compute gxr.

356 J. Alwen et al.

Despite allowing adaptive corruption, our reduction achieves a security loss
of only the number of ciphertexts (and thus new keys) the adversaries asks for.
For this to work, we need to assume that the proofs of knowledge of d (i.e., mt)
are simulation-sound, that is, even after the adversary has seen simulated proofs
(which the reduction creates when embedding its CDH challenge as a key), we
can extract from an adversarial proof mt. This lets us “translate” a CDH solution
for a key the adversary derived from the embedded key u∗ to a solution for u∗.

Aiming for efficiency, we instantiate these proofs of knowledge of logarithms
with Schnorr proofs, which consist of one element from G and one from Zp. These
proofs were shown simulation-sound in the ROM and the algebraic group model
[FPS20,FO22], which provides “straight-line extractability”. That is, extraction
of the witness does not require rewinding the adversary (as in the security proof
in the ROM), which means we can extract from several proofs without risking
an explosion of the running time due to interleaved rewinds for several proofs.

Joiner Security. A trivial construction of a joiner tag jt would be to include all mt
proofs and intermediary public keys on the path from u0 to u′, which guarantee
knowledge of d1, . . . , dk s.t. u′ = u0 · gd for d = d1 + · · · + dk. However, this is
inefficient and our goal is constant-size joiner tags. Since the updater does not
know the value d, we need a way to “aggregate” the proofs mti guaranteeing
honest hops from ui−1 to ui into a single short proof jt guaranteeing honest hops
from u0 all the way to u′. An inherent problem with aggregatable proofs is that
aggregation introduces malleability, which conflicts with our requirement that
mt should be simulation-sound. Thus, we cannot hope that an instantiation of
jt can also play the role of mt.

A very simple proof of knowledge of a logarithm is to assume that there
exists a second generator h of G of which no one knows the discrete log. To
prove knowledge of the logarithm of v = gd, one sets π := hd. The knowledge-of-
exponent assumption [Dam92] states that π can only be computed if one knows d;
formally, for any algorithm outputting (gd, hd), there exists an extractor that
outputs d. These proofs can be aggregated: given a proof π = hd for u = gx

w.r.t. u0 = gx0 , that is d = x − x0, a proof for u′ := u · gd is computed as
π′ := π · hd.

The problem is how to verify whether π was correctly computed. This is why
we embed our scheme in a bilinear group. That is, we assume a second group
Ĝ and a bilinear map e: G × Ĝ → GT for some target group GT .8 We can now
set the basis h for the proofs as a generator of Ĝ and use the pairing to verify a
proof π ∈ Ĝ for v ∈ G by checking whether e(v, h) = e(g, π).

We prove joiner security directly in the algebraic group model. This model
implies states that after having received elements h, π1, . . . , πk ∈ Ĝ, when-
ever the adversary returns some π ∈ Ĝ, it must have computed π as a linear
8 In particular, we use an asymmetric pairing. That is, there are no efficiently com-

putable homomorphisms between G and Ĝ. In practice, this type of pairing yields
the most efficient constructions. Note also that assuming a pairing lets one prove
the security of DHIES from co-CDH instead of the interactive assumption gap-CDH
[OP01,ABR01] which is also the case for our UKEM (see below).

Updatable Public-Key Encryption, Revisited 357

Table 2. Comparison of object sizes in {kilo, mega}-bytes of recent UPKE schemes.
By φ we denote the bit-length of a NIZK that the update was generated correctly. A
similar NIZK is needed to make the CPA scheme [DKW21] CCA-secure, while the CRS
for the NIZK is included in public keys. In all UPKE applications considered in this
work (e.g. rTreeKEM and MLS) ciphertexts are always sent together with a public key,
an update up, joiner tag jt and member tag mt.

Scheme Security PQ ROM |sk | |pk | |ctxt | |up | |jt | |mt |
[DKW21] CPA � 166 B 41 KB 41 KB 52.375 MB
[HPS23] CCA � 1.8 KB 10.8 KB + φ

[HLP22] CCA � 589 B 1.15 KB 11.375 KB 13.125 KB
[AW23] CCA � 32 B 80 B 96 B 128 B

This work CCA � 48 B 48 B 96 B 96 B 96 B

combination (“algebraically”) of all the Ĝ elements it has received. In partic-
ular, the AGM assumes that the adversary outputs α0, . . . , αk ∈ Zp such that
π = hα0 ·πα1

1 · · · παk

k . In our security proof, h and the proofs π1, . . . , πk computed
by the reduction will be all Ĝ elements given to the adversary. As the reduction
knows the discrete logarithms of the πi’s, it can compute the logarithm of π from
α0, . . . , αk.

Weaker Assumption for Member Security. It turns out that the proofs π for joiner
security also allow us to prove member security of our construction under weaker
assumptions. In particular, we only require a notion of simulation-soundness for
mt where extraction is done after all simulations. Recall that a co-CDH instance
consists of u = gx, v = gr ∈ G and û = hx ∈ Ĝ and the goal is to compute
w = gxr. In the security proof of DHIES, the reduction embeds u as the public
key and v as the ciphertext and searches for w among the random oracle queries
made by the adversary. Using co-CDH (rather than CDH) the reduction can
efficiently find w = gxr the pairing e, by checking if e(v, û) ?= e(w, h).

Our reduction for UKEM embeds u as some (honestly updated) public key
and v as some ciphertext it hopes the adversary breaks. However, v may not
be created for u but for some u′ = u · gd′ derived from u by the adversary,
who needs to provide proofs mt and jt for u′. The reduction thus searches the
random oracle queries for a value w′ = g(x+d′)r. It could do so by extracting d′

from the proof of knowledge mt. However, using π = hd′ , it can directly check
e(v, û · π) ?= e(w′, h) without extracting anything at all. Extraction of the value
d′ is then only needed when a CDH solution is found (and the reduction stops):
computing w := w′/vd′ = g(x+d′)r/grd′ yields the co-CDH solution gxr.

Efficiency of Our Scheme. We describe the efficiency profile of our scheme
when instantiated with the BLS12-381 curve [SKSW22,Bow], which is a concrete
128-bit-secure instance of a BLS curve [BLS04]. It is equipped with an asymmet-
ric pairing from source groups G×Ĝ to target group GT . Elements of G and Ĝ are
of size 48 B and 96 B respectively. As a NIZK we use a Schnorr proof of knowl-

358 J. Alwen et al.

edge of the discrete log of elements in G, which results in proofs of length 96 B.
Based on this, in our scheme, public keys are 48 B, ciphertexts are 48 B and both
joiner and member tags are 96 B. As seen in Table 2 this represents a very sig-
nificant improvement over all CCA-secure UPKE (and UKEM) schemes to date
(despite the new scheme satisfying a considerably stronger security notion).

For example, using UPKE in rTreeKEM to achieve insider security involves
sending multiple tuples of the form (pk, ctxt, t) where t is either an update token
up or a joiner and member tag pair (jt, mt), depending on which UPKE syntax
is used and ctxt is a ciphertext under the previous key. The tuples of the new
UPKE construction in this work are < 1.5% the size of those of [HLP22]. For
other CCA-secure schemes with publicly verifiable updates, the tuples are orders
of magnitude larger still (despite none of these schemes providing forking or
joiner security like the new construction).

We note that in our scheme, neither key generation, encapsulation nor decap-
sulation use pairing operations. One pairing is computed during each of the
public key validation algorithms (which is run by parties holding the secret key
before decapsulation as well).

Further Results. In the full version, we discuss extensions of our security
model and efficiency improvements of the construction. We also dive into details
of the impact of using variants of UPKE, including ours and less secure ones
from the literature, on the security of MLS.

2 Preliminaries

Bilinear Groups. Our scheme will be defined over a bilinear group with an
asymmetric pairing, that is, a tuple (p,G, Ĝ,GT , g, h, e), where G and Ĝ are groups
of prime order p generated by g and h, respectively, and e: G × Ĝ → GT is a
non-degenerate (i.e., e(g, h) generates GT) bilinear map (i.e., for all a, b ∈ Zp:
e(ga, hb) = e(g, h)ab).

The security of our scheme relies on the hardness of the co-discrete-logarithm
problem in bilinear groups, defined as follows. We also state co-CDH [BLS01].

Definition 1 (co-DL). Let G = (p,G, Ĝ,GT , g, h, e) be a bilinear group. The
advantage of an adversary A in solving the co-DL problem over G is defined as

Advco−DL
G (A) := Pr

[
y = x

∣
∣x ←$ Zp, u ← gx, û ← hx, y ← A(u, û)

]
.

Definition 2 (co-CDH). Let G = (p,G, Ĝ,GT , g, h, e) be a bilinear group. The
advantage of an adversary A in solving the co-CDH problem over G is defined
as

Advco−CDH
G (A) := Pr

[
w = gxr

∣
∣
∣
∣
x, r ←$ Zp, u ← gx, û ← hx, v ← gr

w ← A(u, û, v)

]
.

Updatable Public-Key Encryption, Revisited 359

For any u = gx, v = gr, we denote a CDH solution w = gxr by w = DH(u, v).
The Algebraic Group Model. We analyze our scheme in the algebraic group
model (AGM) [FKL18], which assumes that an adversary is algebraic, meaning
that it computes any group element it outputs as a linear combination of the
group elements it was given. More precisely, if the adversary, given input g :=
u0, u1, . . . , uk ∈ G, outputs a group element v ∈ G, then it must have computed
v as v = uα0

0 · · · uαk

k for some α0, . . . , αk. Formally, the AGM assumes that such
coefficients αi, i.e., the “representation” of v are output by the adversary. The
following is implicit in [FKL18]; we include a proof in the full version.

Lemma 1. In the algebraic group model, co-DL tightly implies co-CDH. In
particular, for any algebraic adversary A against co-CDH in G, there exists
B against co-DL in G with approximately the same running time as A s.t.
Advco−DL

G (B) ≥ Advco−CDH
G (A).

Simulation-Extractable Zero-Knowledge Proofs. Our UKEM scheme uses
a proof system PoL (“proof of logarithm”) for statements of the form θ := (u, u′)
proving knowledge of a witness d s.t. u′/u = gd. Formally, PoL may use a random
oracle H and comprises the following algorithms: τ ← PoL.ProveH((u, u′), d)
outputs a proof τ and 0/1 ← PoL.VerifyH((u, u′), τ) verifies τ .

We require two security notions: Zero-knowledge (in the random oracle
model) means that the reduction, which can program the random oracle H,
can create proofs τi for statements θi without knowing a witness, using an algo-
rithm PoL.SimulateH . The programmed random oracle and simulated proofs are,
together, indistinguishable from a fresh random oracle and proofs computed hon-
estly via PoL.ProveH using a witness. We denote by εsimPoL,n the simulation error
of PoL when simulating at most n proofs.
Strong Simulation Extractability (sSE) is an adaptation of strong simulation
soundness [Sah99] to proofs of knowledge [DP92]. It is defined via the following
game: an adversary A has access to random oracle H and an oracle that, on input
a statement θi of A’s choice, returns a simulated proof τi (and programs H as
needed). Eventually, A returns a statement/proof pair (θ∗, τ∗) /∈ {(θi, τi)}i. If τ∗

is a valid proof for θ∗ (using the final programmed version of H) then a witness
for θ∗ can be extracted from A. (The notion is strong since after querying a
simulated proof for a statement, a different proof for the same statement must be
extractable.) We require a multi-extraction version of sSE, in which, after having
queried simulated proofs, the adversary returns several valid pairs (θ∗

i , τ∗
i) with

{(θ∗
i , τ∗

i)}i ∩ {(θi, τi)}i = ∅ and one can extract witnesses for all statements θ∗
i .

We denote by εextPoL,n(A) the advantage of the adversary A in breaking simulation
extractability of PoL when returning at most n proofs.
Schnorr Signatures. (Key-prefixed) Schnorr signatures are defined over a
group G of order p and a hash function H : {0, 1}∗ → Zp, modeled as a ran-
dom oracle. Using signing key x ∈ Zp, a signature on a message m ∈ {0, 1}∗ is
computed by sampling r ←$ Zp and returning

(v := gr, s := (r + cx) mod p) with c := H(v, gx, m).

360 J. Alwen et al.

A signature (v, s) is valid for message m under public key u = gx iff gs = v · uc

with c = H(v, u, m).
In the combination of the random oracle model and the algebraic group

model, [FO22] show that Schnorr signatures are sSE zero-knowledge proofs of
knowledge of the logarithm of the public key. That is, they are proofs of knowl-
edge (of the witness) for the NP-relation {((u, m), x) | u = gx, m ∈ {0, 1}∗}.

Proofs for statements (ui, mi) can be simulated by programming the random
oracle (as done in the original security proof for Schnorr [PS00]). Suppose an
algebraic adversary A receives simulated proofs (vi, si) for statements (ui, mi) of
its choosing and then outputs a valid statement/proof pair ((u∗, m∗), (v∗, s∗)) /∈
{((ui, mi), (vi, si))}. Then, [FO22] showed that from the representations for the
group elements u1, u2, . . . , u∗ and v∗, which A outputted during the game, one
can efficiently compute a witness for the statement (u∗, m∗) with overwhelming
probability.9 In particular, extraction is straight-line and we can extract wit-
nesses for multiple proofs produced during a single execution of an adversary.
Thus, Schnorr signatures are multi-extraction sSE proofs in the ROM and AGM,
which we formally prove in the full version.

The proof system PoL for member tags is defined as taking input a statement
(u, u′) and a witness d = log(u′/u) and returning a Schnorr signature under key
u′/u on the message (u, u′). Then, sSE guarantees that after receiving simulated
proofs for pairs (ui, u′

i), if the adversary returns a new valid statement/proof
pair ((u∗, u′

∗), (v∗, s∗)), we can extract d such that u′
∗/u∗ = gd.

3 Updatable Key Encapsulation (UKEM)

3.1 Functionality

Intuitively, a UKEM scheme is a key encapsulation mechanism with the following
modifications. First, on input a public key pki, the Encaps algorithm outputs –
in addition to the key K and the ciphertext c – the updated public key pki+1.
Accordingly, on input ski, the Decaps algorithm outputs – in addition to K – the

9 One might wonder why extraction is not trivial in the AGM anyway: an algebraic
adversary that has only seen the generator g and returns u∗ must know a represen-
tation α s.t. u∗ = gα. In the context of security proofs, this is not the case: Consider
e.g., an algebraic reduction R to the DL problem. This means that R receives a
DL instance g∗ and simulates the game to an adversary A, providing it with group
elements it computes as linear combinations of g and g∗. When A outputs a group
element z, it accompanies it by a representation in basis all group elements received
from R. From this, R can compute a representation (α0, α1) in basis (g, g∗), that
is, z = gα0 · (g∗)α1 . To argue that R can extract from proofs of knowledge made
by A, we need to turn R together with A into an adversary against simulation-
extractability. This adversary is algebraic, but only in the sense that it can give
representations in basis (g, g∗) where g∗ is a group element of which the extractor
will not know the discrete logarithm. Therefore, [FO22] (and our proof in the full
version) actually show that even in the presence of an “auxiliary-input” g∗, one can
extract the witness from a Schnorr proof.

Updatable Public-Key Encryption, Revisited 361

updated secret key ski+1. This is analogous to any UKEM/UPKE with short
syntax from the literature.

Second, Encaps also outputs a “member tag” mti+1 which can be
used by entities holding pki to validate pki+1. In particular, running
Verifymt(pki, pki+1, mti+1), such entities can verify that if pki is “honest” then
pki+1 is so, too. In MLS (more precisely, rTreeKEM [ACDT20]), Verifymt is run
by members (not joiners) who do not know ski but know and have validated pki.

Third, Encaps also generates a “joiner tag” jti+1 which can be used by entities
holding pk0 to validate pki+1: running Verifyjt(pk0, pki+1, jti+1), such entities can
verify that if pk0 is “honest” then pki+1 is so, too. In MLS, Verifyjt is run by
joiners after checking that pk0 was signed by the member who generated it using
KeyGen. Moreover, Encaps takes the last joiner tag jti as input.

Decaps takes additional input pki+1 and should output ⊥ if it does not
“match” ski+1. In MLS, members who do know ski can thus reject “incorrect”
(e.g. adversarially chosen) pki+1.

Formally, a UKEM scheme consists of the following algorithms:

Key Generation. KeyGen(κ) → (pk0, sk0, jt0), on input the security parameter,
outputs a key pair (pk0, sk0) and the first joiner tag jt0.

Encapsulation. Encaps(pki, jti) → (K, c, pki+1, mti+1, jti+1) takes as input the
current public key and joiner tag and returns an encapsulated key K, a cipher-
text c, an updated public key pki+1, a new member tag mti+1 and an updated
joiner tag jti+1.

Verification of member tags. Verifymt(pki, pki+1, mti+1) → 0/1 verifies the
update from pki to pki+1 using the tag mti+1.

Verification of joiner tags. Verifyjt(pk0, pki+1, jti+1) → 0/1 verifies the update
from pk0 to pki+1 using the tag jti+1.

Decapsulation. Decaps(ski, c, pki+1) → (K, ski+1)/⊥ outputs the decapsulated
key K and the updated secret key ski+1, but only if pki+1 matches ski+1.

Using UKEM Schemes. Importantly, Decaps does not validate any tags. There-
fore, applications using a UKEM scheme should always run Verifymt and Verifyjt
before Decaps. This is reflected in our security notion.

3.2 Security

The IND-CCA security of UKEM schemes is formalized by the experiment in
Fig. 1.

Intuitively, during the experiment, a tree is created where each node is iden-
tified by an integer i and has a public key pki and a joiner tag jti. The root is
identified by i = 0. Each non-root node has a parent pari and a member tag mti.
Further, some nodes have a secret key ski. If a node has a secret key, we call it
full, and otherwise we call it a half node.

The root node i = 0 is created by the challenger at the beginning of the
experiment. Its public key pk0, secret key sk0 and joiner tag jt0 are generated
using KeyGen (the root is thus a full node). All other nodes j are created by
updating existing nodes in one of three ways:

362 J. Alwen et al.

Fig. 1. The experiment formalizing UKEM IND-CCA security. By default, all variables
are initialized to ⊥. We use req condition to denote that if condition is false, then the
current function, and any function calling it, stops and returns ⊥.

Updatable Public-Key Encryption, Revisited 363

1. When the adversary A calls the oracle Enc(i), the challenger creates a child
j of i by running Encaps. If i is a full node, j is also a full node with secret
key generated by running Decaps.

2. A child of i with a possibly “adversarial” public key may be created when A
calls the oracle Dec(i, c, pk′, mt′, jt′). In such case, the challenger verifies mt′

and jt′ and, if the check passes, creates the node j using these values. If i is a
full node and Decaps(ski, c, pk′) outputs (K, skj) (and not ⊥), then j is also
a full node with secret key skj ; in that case, A also receives K, which reflects
CCA-security. Otherwise, j is a half node. Observe that j is a half node if A
provides correct (publicly verifiable) tags but c inconsistent with pk′ (which
is not publicly verifiable).

3. A node can be created during a challenge call. We address such calls next.
There are two challenge oracles: member challenge MChal and joiner challenge
JChal. Without loss of generality, A can only call one of them, and only once.

Member Security. Consider the case that A calls MChal, which means that
the notion implies security for group members when used in a secure messaging
application. On query MChal(i∗), the challenger creates a child j∗ of i∗ just like
during an Enc query creating a “real” key K(1). A gets either K(1) or a random
and independent key K(0) and has to decide which is the case. It also receives
the resulting tags, public key and the ciphertext c∗. To disable trivial wins, on
inputs i and c the Dec oracle returns ⊥ if pki = pki∗ and c = c∗.

Furthermore, our notion implies forward secrecy by giving A access to an
oracle Rev, which reveals secret keys (of full nodes). In particular, A can ask for
the secret key of any node outside the challenge set of i∗, which consists of three
parts. First, the base of the challenge set, which is the path from the root 0 to i∗.
Clearly, revealing the secret key for any such node would allow A to trivially win
by computing the secret key of i∗ by running Decaps sequentially on the cipher-
texts between the corrupted and the challenged node, and then decapsulating
c∗. This base is extended to extd-base, which also includes duplicates, i.e., any
nodes that have the same public key and tags as a node in base.10

Finally, the challenge set contains branches, which are nodes reachable from
extd-base via nodes created by Dec queries. This is where our notion does not
formalize optimal security: there exist UKEM schemes, notably the ones based on
HIBE that achieve security even when A can corrupt keys on branches. However,
we are not aware of any efficient schemes that achieve this. Observe that the
secret keys of nodes on branches are generated by updating a secret key on the
challenge path (or a duplicate node) with updates generated by A. Therefore,
for optimal security we would need a mechanism that does not allow A to undo
its updates, which resembles PPKE.
10 This restriction prevents trivial attacks, as in the following example: A queries

Enc(0), which creates node 1 with (pk1,mt1, jt1) and ciphertext c1. It next queries
Rev(1), to obtain the corresponding sk1. It then queries Dec(0, c1, pk1,mt1, jt1),
which creates node 2 with sk2 = sk1, and finally MChal(2), to receive
(c∗, K∗, pk3,mt3, jt3) and checks whether for (K′, sk3) ← Decaps(sk1, c∗, pk3) it holds
that K′ = K∗.

364 J. Alwen et al.

We note that A is allowed to ask for the secret key for j∗ created by
MChal, which corresponds to the fact that in typical UPKE security notions
[DKW21,HPS23,HLP22,AW23] the challenge oracle returns the updated secret
key. However, A can also obtain many other keys, e.g., any node created by Enc
and not on the challenge path (and all their children).

Joiner Security. Next, consider the case that A calls JChal, formalizing a
notion that implies security for joiners when used in a secure messaging applica-
tion. On query JChal(pk′, jt′), the challenger verifies jt′ for pk′ w.r.t. the (honest)
pk0 and, if the check passes, runs Encaps on pk′ to generate the “real” key K(1).
As for member security, A is also given the resulting ciphertext, public key and
tags. A’s goal is to distinguish K(1) from a random and independent K(0). To
disable trivial wins, on inputs i and c the Dec oracle returns ⊥ if pki = pk′ and
c = c∗.

Reveal queries are more restricted for joiner security than for member security.
In particular, the challenge set base now contains all nodes generated before the
call to JChal was made (which is thus a superset of the set base in the MChal
setting). Analogously to member security, A is not allowed to corrupt keys for
nodes in the set base, any duplicates of such nodes and branches (i.e., nodes
derived from these via Dec queries).

The above restriction cannot be relaxed without enabling “trivial” attacks
against any correct scheme (with our syntax). To illustrate this, consider the
following adversary A. By calling Enc(0) twice, A generates two children of
node 0 with keys pk1, pk2 and tags jt1, jt2. Then by running Encaps(pk1, jt1)
(possibly repeating this to create a longer path), A computes a new pair (pk′, jt′)
on its own and submits it to its JChal oracle. If A was allowed to query Rev(1),
it could then, by running Decaps (possibly consecutively), compute the secret
key for pk′.

In general, pk′ may have been derived via Encaps from any pki that A saw
before generating pk′. Our restriction thus disallows Rev(i) for all such pki,
including pk0, pk1 and pk2 in the above example, even though corrupting pk2
would not lead to an attack. However, the challenger cannot identify keys that
can be revealed, as the UKEM syntax does not allow to decide, given the chal-
lenger’s information, whether pk′ could not have been derived from them.

Remark 1. One could consider relaxing the above restriction on reveal queries
for a UPKE with modified syntax, e.g. with an additional algorithm that decides,
given pk′, jt′, pki and ski (and any other information the challenger has), whether
pki is an ancestor of pk′. However, implementing such an algorithm seems to
require inefficient techniques, such as storing all ancestor public keys in jt′.

Remark 2. One could imagine achieving stronger joiner security by having
JChal(pk′, jt′) create an (incomplete) node i′ with pki′ = pk′ and jti′ = jt′ and
allowing the adversary A to create a (detached) tree rooted at i′. (Note that,
by the arguments in Remark 1, we cannot define a parent of i′.) However, the
resulting notion would be equivalent to our notion. Since i′ has no parent, its
sub-tree contains only half-nodes without secret keys. So no oracle call related

Updatable Public-Key Encryption, Revisited 365

to such nodes uses any secrets unknown to A (which are the secret keys of full
nodes and the bit b.) Thus, A could emulate such oracle calls itself.

Definition 3 (UKEM Security). Let ExpIND-CCA(A) be as defined in Fig. 1.
The advantage of an adversary A against the IND-CCA security of a UKEM
scheme is defined as

AdvIND−CCA(A) := 2 Pr
[
ExpIND-CCA(A) = 1

] − 1.

4 Construction

The basis of our construction is the KEM part of DHIES [ABR98], which is
basically “hashed ElGamal” for a hash function (modeled as a random oracle)
H : {0, 1}∗ → K, the symmetric key space. We use groups G and Ĝ of order p
with a pairing e from G × Ĝ and define the KEM in G: Public keys are of the
form u = gx ∈ G and symmetric keys K are encapsulated by choosing r ←$ Zp,
defining the ciphertext as v := gr and deriving K := H(u, ur). Using the secret
key x, keys are decapsulated from v as K := H(gx, vx).

We extend this to derive updated public keys as follows: using a second
random oracle H1, we define d := H1(u, ur) and set the new public key as
u′ := u · gd. Decapsulation now takes as additional argument the updated key
u′, derives d := H1(gx, vx), updates the secret key to x′ := x + d and checks if
u′ = gx′ . To guarantee that u′ was derived correctly (and not chosen freshly with
a known secret key), we add a proof of knowledge (PoK) τ of d, that is, a PoK
of the discrete log of u′/u. (For our security notion allowing adaptive corruption,
τ needs to be simulation-sound.) This τ corresponds to mt in the UKEM model.

The tag jt given to joiners will be a PoK of D′ := x′ − x0, with x0 the secret
key of the root key u0 and x′ the secret key of the updated key u′. This guarantees
that u′ is linked to the root key u0. A straightforward solution would be to define
jtj := (u1, mt1, . . . , uj−1, mtj−1, mtj)To avoid a growth in size depending on the
number of updates, we would require a direct proof of knowledge of D′ = x′ −x0,
but the updater will not know D′. Our solution is to use “aggregatable” proofs,
that is, given a PoK of D = x − x0 corresponding to key u, and deriving u′ from
u using d, one should be able to derive a PoK of D′ := D + d.

We use the second pairing source group Ĝ, generated by h, to instantiate
these aggregatable proofs. A proof π proving knowledge of the logarithm of an
element u = gx ∈ G is defined as π := hx ∈ Ĝ. Using the pairing, a proof can
be verified by checking e(u, h) = e(g, π). Making “knowledge-of-exponent”-type
assumptions (in our security proof we will directly rely on the algebraic group
model), we get that from any algorithm that returns u and π satisfying the
above equation, one can extract x = logg u = logh π, meaning π is a proof of
knowledge.

Using these proofs for jt allows the updater to transform a proof π for u into
a proof π′ := π · hd for u′ = u · gd. A proof π′ for u′ w.r.t. u0 is verified by
checking e(u′/u0, h) = e(g, π′). Our UKEM scheme is formally defined in Fig. 2.

366 J. Alwen et al.

5 Security of the Construction

Security of our construction is expressed by the following theorem.

Theorem 1. If PoL is a strongly simulation-extractable proof system and co-
CDH holds for G, and assuming adversary A is algebraic, then the UKEM con-
struction from Fig. 2 is IND-CCA secure in the ROM. More precisely, for any
adversary A, there exist reductions B and B′ such that

AdvIND−CCA(A) ≤ (ne + 2)
(
εsimPoL,ne+1 + εextPoL,nd

(B′) + Advco−CDH
G (B)

)
,

where ne (nd, resp.) are upper bounds on the number of Enc (Dec, resp.) queries
made by A, and εsimPoL,n (εextPoL,nd

(·), resp.) are the probabilities that simulation of
n proofs (extraction from nd proofs, resp.) fails for PoL.

Fig. 2. The UKEM construction. Here H1, H2 and H3 are hash functions modeled
as random oracles, G = (p,G, Ĝ,GT , g, h, e) is a bilinear group, and PoL is a proof of
knowledge system for discrete logarithm statements in G, which might use H3.

Together with Lemma 1, Theorem 1 implies that the security of our construc-
tion can be reduced to co-DL. Moreover, using the fact that Schnorr proofs,
against algebraic adversaries, are strongly simulation-(multi-)extractable (as we
show in the full version) with simulation error εsimn := n/(p −nh −n) and (multi-
)extraction error εextn = n/p, yields the following:

Corollary 1. Let G be an asymmetric bilinear group. If PoL is instantiated using
Schnorr (cf. Sect. 2) and co-DL holds for G, then the UKEM construction from
Fig. 2 is IND-CCA secure in the ROM and the AGM. More precisely, for any
algebraic adversary A, there exist a reduction B such that

AdvIND−CCA(A) ≤ (ne + 2)
(ne + 1

p − nh − ne − 1 + nd

p
+ Advco−DL

G (B)
)

,

Updatable Public-Key Encryption, Revisited 367

where ne, nd and nh are upper bounds on the number of, respectively, Enc, Dec
and RO queries made by A.

Proof of Theorem 1. We split the security notion IND-CCA into two: CCA-M,
in which the JChal oracle is disabled, and CCA-J, in which the MChal oracle
is disabled. The advantages AdvCCA−M and AdvCCA−J are defined accordingly.
In Lemmas 2 and 3 we then bound these advantages. Theorem 1 then follows
by summing them and letting B and B′ be those adversaries from Lemma 2 or
Lemma 3 that have the greater advantage.

5.1 Member Security

We start with the following lemma, which formalizing member security, CCA-M,
of our UKEM scheme. For space reasons, we defer the full proof to the full ver-
sion.

Lemma 2. If PoL is a strongly simulation-extractable proof system and co-CDH
holds for G, then the UKEM construction from Fig. 2 is CCA-M-secure in the
ROM. More precisely, for any adversary A, there exist reductions B and B′ such
that

AdvCCA−M(A) ≤ (ne + 1)
(
εsimPoL,ne+1 + εextPoL,nd

(B′) + Advco−CDH
G (B)

)
,

where ne and nd are upper bounds on the number of A’s Enc and Dec
queries, resp.

Proof Intuition. Let A be any adversary against the CCA-M security of our
UKEM scheme. We will construct a reduction B against the co-CDH problem,
i.e., given u∗, û∗ and v∗, B must compute w∗ = DH(u∗, v∗).

We start by adapting the proof idea for the security of the KEM of DHIES
in the ROM. B embeds u∗ as some uj generated by the challenger, that is, either
as u0 or some uj returned by an Enc(i) query, hoping that A calls MChal(j). If
this happens, B embeds v∗ as the ciphertext returned by the oracle. Now as long
as A never queries (u∗, w∗) to the RO H2 with w∗ = DH(u∗, v∗), the challenge
key K(b) is independently random in both the real and the ideal game, and so
no information on b is revealed. On the other hand, querying (u∗, w∗) means A
solved CDH; moreover, B can test this by checking if e(w∗, h) = e(v∗, û∗).

Embedding u∗. Consider embedding u∗ = gx as ui∗ during a query Enc(p∗) (with
p∗ the parent of i∗), which returns ciphertext vi∗ . Recall that Encaps would
compute di∗ = H1(up∗ , wi∗) with wi∗ := DH(up∗ , vi∗) and define ui∗ := up∗ ·gdi∗

and πi∗ := πp∗ · hdi∗ = hxi∗ −x0 . So when setting ui∗ := u∗, the reduction B does
not know di∗ = log(u∗/up∗). It thus generates the proof τi∗ using the simulator
guaranteed by zero knowledge of PoL. To compute πi∗ , it uses û∗ = hx from its
co-CDH challenge and sets πi∗ := û∗/hx0 (and πi∗ := h0 if j = 0).

368 J. Alwen et al.

While B can simulate the proofs, not knowing di∗ , it cannot consistently
answer if A queries H1 on (up∗ , wi∗). On the other hand, as long as this query
has not been made, the simulation is consistent. Now, to make this query, A
would have to solve CDH w.r.t. up∗ and vi∗ . But if A ever does so, then B
should have guessed differently and embedded u∗ as up∗ and v∗ as vi∗ (assuming
for the moment there are no Dec queries). B’s guessing strategy will therefore
be to guess the index i∗ of the first key ui∗ generated during a query Enc(p∗) on
the path to the challenge for which A will solve CDH via an RO query. (Note
that B does not know the path; it simply guesses the index of an Enc query.)

For now we only considered the case that A makes the query MChal(j∗) or
Enc(j∗) assuming uj∗ was itself created during an Enc query; but uj∗ might
have been created during a Dec query. That is, the attacked key (i.e., the one for
which A solves CDH) has been generated by the adversary. Security now relies
on the fact that ultimately the attacked key was derived (possibly via many Dec
queries) from an honest key, say ui∗ (which might be u0).

Since A must provide proofs τi for the hops from ui∗ to uj∗ (where τi

proves knowledge of di = xi − xpari), B can extract the values di and sum
them to di∗→j∗ := xj∗ − xi∗ , which it can use to “translate” CDH solutions
for uj∗ to ui∗ . Thus, it can embed u∗ as ui∗ and embed v∗ as the cipher-
text the adversary breaks. A solution w = DH(uj∗ , v∗) then yields a solution
w/(v∗)di∗→j∗ = gxj∗ r/gr(xj∗ −xi∗) = DH(u∗, v∗).

Our strategy is thus to guess the following index i∗: if the first attacked key
is uj∗ , then i∗ is the closest ancestor of j∗ with a public key generated by the
challenger. That is, at the latest i∗ = j∗ (if j∗ is generated during an Enc query),
and at the earliest i∗ = 0.

Answering Rev Queries. Say B embeds u∗ as ui∗ and consider a query Enc(i∗),
which creates a new key uj . If node j turns out not to lie on the challenge path,
then A is allowed to query Rev(j). However, if B ran Encaps to answer the query,
setting uj := u∗ · gdj with dj := H1(ui∗ , DH(ui∗ , vj)), then it would not know
xj = log uj to answer the Rev query.

But recall that B hopes that A attacks key ui∗ ! Every time Enc or MChal is
queried on i∗, the reduction thus embeds v∗ from its co-CDH challenge into the
ciphertext. In particular, using random self-reducibility, B chooses a uniform sj

and defines the new ciphertext as vj := v∗ · gsj . If A ever queries H1(ui∗ , wj)
for wj := DH(ui∗ , vj), the game stops and B returns w∗ := wj/(u∗)sj =
gx∗(r+sj)/gx∗sj = DH(u∗, v∗). On the other hand, as long as no such query is
made, dj is not defined, and thus B can simply sample xj , set uj := gxj (which
implicitly defines dj) and simulate the proofs τj and πj . This way, B can then
answer the query Rev(j).

The case Enc(i) for an index i whose path from i∗ consists of only Dec queries
is dealt with similarly: B embeds v∗·gsj as vj and samples xj freshly. As long as A
does not query H1(ui, wj) with wj = DH(ui, vj), the simulation is perfect. If the
adversary makes that query, it can be translated back to a solution DH(u∗, vj),
and thus to DH(u∗, v∗), by extracting di∗→i = xi−x∗ from the τ -proofs provided

Updatable Public-Key Encryption, Revisited 369

by the adversary when making the Dec queries linking ui∗ to ui: we have w∗ :=
wj · (u∗)−sj · v−di∗→i

j = g(x∗+di∗→i)(r+sj)g−x∗sjg−(r+sj)di∗→i = DH(u∗, v∗).

Extracting from Adversarial Proofs. Simulation-extractability of τ -proofs only
lets us extract from proofs computed by the adversary (and not ones created by
the simulator). So what happens if the adversary “copies” proofs simulated by
the challenger?

In particular, consider the situation where we embedded our challenge key u∗

as ui∗ and the adversary attacked one of its Dec-descendants uj∗ . If none of the
key/proof pairs (ui, τi) on the path from i∗ to j∗ appear elsewhere in the tree,
then the statement/proof pairs are different from those of the simulated proofs,
and we can extract their witnesses. On the other hand, assume that on this path,
there is a pair (uk∗ , τk∗) which appears elsewhere as (uk′ , τk′) in the tree. If (and
only if) k′ was created in a query Enc(i′) and i′ is a Dec-descendant of i∗, then
τk′ was simulated, and thus we cannot extract from τk′ = τk∗ . (Note that since
for every uk there is a unique valid πk, we have (uk∗ , τk∗ , πk∗) = (uk′ , τk′ , πk′).)

However, this just means that we should have guessed differently: assume
k∗ is the last “copied” node on the path from i∗ to j∗. If we had embedded
our challenge key u∗ as uk∗ (when we created it as uk′ when answering an Enc
query) then we could now solve CDH: since, by assumption, no nodes between
uk∗ and uj∗ are copied, we can extract from their τ -proofs and thus compute
dk∗→j∗ = xj∗ − xk∗ , which lets us shift a CDH solution for uj∗ to one for uk∗ .
Note that we would not be able to answer Rev for k′ and its Dec-descendants,
but such queries are disallowed (as they are part of chall-set, cf. Fig. 1).

Our actual guess strategy is therefore: let uj∗ be the first key the adversary
attacks during the game; then what is the index of the Enc query that creates
the node (uk∗ , τk∗) so that when starting from uj∗ and moving up Dec-edges,
(uk∗ , τk∗) is the first key/proof pair created by the challenger during an Enc
query (at latest, this is u0).

Answering Dec Queries. We address answering decryption queries Dec(i) for
nodes whose secret key is not known to the reduction. These are all nodes
whose public key u∗ is the embedded co-CDH instance, or any Dec-descendant of
such nodes. Here, we again follow the ideas for proving CCA-security of DHIES,
namely to inspect the random-oracle table. We moreover use the fact that CDH
solutions can be checked via the pairing using the associated proof πi: given a
ciphertext vj for key ui = gxi , we have Kj = H2(ui, wj) with wj := DH(ui, vj)
and the latter can be efficiently checked: setting ûi := πi · hx0 = hxi (where
hx0 := û∗ if i∗ = 0), check if e(wj , h) ?= e(vj , ûi).

So to decrypt ciphertext vj for key ui we do the following: if there has been
a query (ui, DH(ui, vj)) to H2, then we return the same key again; if there has
not been such a query, we sample a fresh key Kj and (implicitly) program the
random oracle: store an entry (ui, vj , ⊥, Kj), meaning that (ui, DH(ui, vj)) gets
mapped to Kj . To detail how the Dec queries are answered, we first address
programming of the random oracles.

370 J. Alwen et al.

Programming the Random Oracles. Answering Enc, Dec and MChal queries
results in defining the entries of the random oracle tables for H1 and H2. The
inputs are of the form (u, w), on which H1 outputs d and H2 which outputs K.
For certain queries, these entries are partial, since the reduction does not know
all inputs/outputs, i.e., the RO is programmed implicitly. The reduction thus
stores RO entries of the form (u, û, v, w, u′, d, K), some of whose components can
be ⊥. For u = gx, the (non-⊥) values are: û = hx, w = vx = DH(u, v), u′ = u ·gd

and d and K are the outputs of, respectively, H1 and H2, on input (u, w). Note
that û, w and u′ are determined by the other values. During Enc and MChal
queries, implicit programming happens at the following positions:

1. When embedding the key u∗ as ui∗ for i∗
= 0, letting p∗ := pari∗ , the reduc-
tion implicitly defines the oracles at (up∗ , v

xp∗
i∗) (where xp∗ was chosen by the

reduction); H1 is set to di∗ := log(ui∗/up∗) (unknown to the reduction) and
H2 is set to Ki∗ (chosen by the reduction). When answering this query, the
reduction thus stores the following entry (where ûp∗ := hxp∗):

(up∗ , ûp∗ , vi∗ , ⊥, ui∗ ,⊥, Ki∗)

2. For any call of Enc or MChal at position i with ui = u∗ or i being a Dec-
descendant of a node with public key u∗, the reduction creates vj (embedding
v∗ from its co-CDH instance) and uj (:= gxj for fresh j) and defines H1 and
H2 at position (ui, DH(ui, vj)), which is unknown to the reduction. While the
reduction chooses the value Kj at this position for H2 (for the MChal query,
Kj corresponds to “K(1)”), it will not know the value dj = log(uj/ui) for H1.
The reduction thus stores (ui, ûi, vj , ⊥, uj ,⊥, Kj), where, as above, ûi = û∗ if
i∗ = 0 and ûi := πi · hx0 = hxi otherwise.

For every random-oracle query (u, w) the adversary makes, the reduction
checks if (u, w) = (ui, DH(ui, vj)) holds when i = i∗, or i = pari∗ or i is a Dec-
descendant of i∗. It does this by checking u ?= ui and e(w, h) ?= e(vj , ûi). (Note
that such queries to H1 cannot be answered, since the reduction does not know
dj = log(uj/ui).)

If this is the case for i = pari∗ , the reduction stops, since the guess i∗ was
wrong, as pari∗ would have been the right guess. If it happens for i∗ or any
of its Dec-descendants, the reduction stops and returns the co-CDH solution
(computed as described above). Otherwise, fresh values d and K are sampled
and a new entry (u, ⊥, ⊥, w, u · gd, d, K) is created. We say that in this case the
RO was explicitly programmed.

Details of Answering Dec Queries. Let us consider a query Dec(i′, v′, u′, τ ′, π′).
If τ ′ and π′ are valid, a new (for now: half-)node is created. If i′ is a full node,
the oracle would do the following: run Decaps on ski′ , that is, compute d′ :=
H1(ui′ , DH(ui′ , v′)); check if u′ = ui′ · gd′ ; if so, return K := H2(ui′ , DH(ui′ , v′))
and declare the new node a full node; else return ⊥.

If i′ is a half-node, then the reduction can simulate the Dec oracle perfectly, as
the latter uses only public values. Moreover, if i′ /∈ chall-set, then the reduction

Updatable Public-Key Encryption, Revisited 371

knows ski′ and can thus simulate the oracle perfectly as well. For i′ ∈ chall-set
and i′ being a full node, the reduction uses its extended RO table as follows:

(i) If there is an entry (ui′ , ∗, v′, ⊥, u′′, d, K) for some u′′, d (where possi-
bly d = ⊥) and K, then the RO was already implicitly programmed at
(ui′ , DH(ui′ , v′)) (either during and Enc or MChal query as described above,
or during a Dec query as described below). The reduction checks if u′ = u′′

(as Decaps does) and if so, it declares the new node a full node and returns
K; else, it declares the new node a half node and returns ⊥.

(ii) Else if there is an entry (ui′ , ⊥, ⊥, w, u′′, d, K) for some u′′ and w =
DH(ui′ , v′), which can be checked using ûi′ = πi′ · hx0 , then the RO was
already explicitly programmed at (ui′ , DH(ui′ , v′)). As above, the reduction
checks if u′ = u′′ (as Decaps does); if so, it declares the new node a full node
and returns K; else, it declares the new node a half node and returns ⊥.

(iii) If none of the above apply, then sample d and K, create new entry (ui′ , ûi′ , v′,
⊥, ui′ · gd, d, K) and proceed as in Decaps. (Note that, with overwhelming
probability, this will return ⊥, since d will be inconsistent with ui′ and u′.)

Finally, note that the only RO query that would reveal the challenge bit b is
querying H2 on (uic , DH(uic , vjc)), where ic is the value queried to MChal and
jc the current value of j at that point. “Explicit” queries are dealt with by our
guessing strategy: if the guess i∗ was correct then such a query is used to solve
co-CDH. On the other hand, “implicit” queries via the Dec oracle cannot occur,
since this would correspond to Dec(i′, v′, u′, τ ′, π′) with u′ = uic and v′ = vic ,
which is forbidden (as trivial wins).

5.2 Joiner Security

We next state the following lemma, which formalizes the joiner security, CCA-J,
of our UKEM scheme. The full proof is deferred to the full version.

Lemma 3. Let G be an asymmetric bilinear group. If PoL is a simulation-
extractable proof system, co-CDH holds for G and adversary A is algebraic in
Ĝ, the UKEM construction from Fig. 2 is CCA-J secure in ROM. More precisely,
for any algebraic adversary A, there exist reductions B and B′ such that

AdvCCA−J(A) ≤ εsimPoL,ne
+ εextPoL,nd

(B′) + Advco−CDH
G (B),

where ne and nd are upper bounds on the number of A’s Enc and Dec
queries, resp.

Proof Intuition. We build upon the proof of Lemma 2 (member security). The
only difference is that instead of MChal, the adversary A now calls JChal(u′, π′).
Accordingly, instead of embedding v∗ in the ciphertext returned by the MChal
oracle, the reduction B against co-CDH now embeds v∗ in the ciphertext v′

returned by JChal; specifically, using random self-reducibility, it sets v′ := v∗ ·gs′

for a random s′. The security of v′ encrypted to u′ hinges on the link between u′

372 J. Alwen et al.

and the honest u0 via the associated proof π′. More precisely, unless A queries
H2 on w′ := DH(u′, v′), both the “random” key K(0) and the “real” key K(1) =
H2(u′, w′) are random and independent, so A’s advantage is 0. On the other
hand, if A makes such an RO query, B can compute the co-CDH solution by
extracting from the proof π′ as follows.

Extracting from the π′ Proof. Since A is algebraic, when it calls JChal(u′, π′), B
can extract the representation of π′ as a linear combination of all Ĝ elements
given to A so far, which are (precisely) the πj proofs returned by the Enc oracle.
B knows the logarithm of each such πj because it emulates the Enc oracle by
running Encaps honestly. Thus, B can use the representation of π′ and the known
logarithms to compute the logarithm d′ of π′. Since π′ is valid, d′ is equal to the
logarithm of u′/u0 = u′/u∗. Thus B can use d′ and s′ chosen when embedding v′

as v′ = v∗ · gs′ to translate w′ = DH(u′, v′) = DH(u∗ · gd′
, v∗ · gs′) from A’s RO

query to the solution w∗ = DH(u∗, v∗) analogously to the reduction for member
security: w∗ = w′ · (u∗)−s′ · (v′)−d′ .

Answering Rev Queries. If, after the JChal call, A makes a query Enc(i) creating
a node j, then it is allowed to query Rev(j). B deals with such queries the same
way as the reduction for member security: It samples the secret key xj itself.
This implies that B cannot answer a query (ui, DH(ui, vj)) to H1, which should
return dj = log(gxj/ui). But again, such a query would allow B to solve its
co-CDH instance, had it embedded v∗ in vj .

In more detail, recall that Rev queries are allowed for nodes outside of chall-
set which is the dec-closure of all nodes (and their duplicates) created before the
JChal call. If after the JChal query A queries Enc(i) for some i ∈ chall-set, B
samples xj itself and returns vj = v∗ ·gsj for a random sj together with simulated
proofs πj and τj . If A later “breaks” vj by making an RO query (ui, wj) with
wj = DH(ui, vj) then B translates wj to the co-CDH solution DH(u∗, v∗): it does
so by collecting and summing all d values on the path from node 0 to node i: for
any Dec edge, B extracts d from the τ proof provided by A; for any Enc edge,
B generated d itself, as all Enc edges in chall-set were created before JChal and
hence by running Encaps. Knowing d0→i s.t. ui = u0 ·gd0→i = u∗ ·gd0→i and sj s.t.
vj = v∗ ·gsj , the reduction can compute DH(u∗, v∗) = DH(ui, vj)·(u∗)−sj ·v−d0→i

j .
Observe that for the above “simulated” edges, B does not know the logarithm

of the simulated πj . This does not affect extraction from the proof π′ above, since
extraction is done when JChal is called, thus before any proofs are simulated.
Extracting from Adversarial τ Proofs. Say A breaks some vj embedded in the
response to Enc(i) as described above. Simulation-extractability allows B to
extract from τ -proofs for Dec edges as long as these were not simulated. However,
A could copy a node with a simulated proof via a Dec query. Therefore, we need
to modify B’s strategy, similarly to the proof of member security.

Consider the following example : A starts by calling JChal and then queries
Enc(0) creating node 1, at which point B picks x1 and sets u1 = gx1 as described
above. Now A forwards the outputs of the above Enc query to Dec(0), creating
node 2 with (u2, τ2) = (u1, τ1). Finally, A queries Enc(2), which creates node

Updatable Public-Key Encryption, Revisited 373

3. Since node 2 is in chall-set, B, following the above strategy, would choose a
fresh key x3 for u3 := gx3 . However, if A queries (u2, DH(u2, v3)) to H1, then B
would not be able to answer, since it does not know d3 := x3 −x2; moreover, the
value DH(u2, v3) is of no use, as B can compute it itself as vx2

3 = vx1
3 . B should

thus just have computed u3 honestly as u3 = u2 · gd3 . It could then still answer
Rev(3), as required, since it knows x3 = x1 + d3.

B’s strategy is thus the following: u∗ is embedded as u0, and before the
JChal query, every Enc query is answered by running Encaps (and thus B does
not know the resulting secret key). After the JChal query, every query Enc(i)
creating node j must be answered in a way so B knows the resulting secret key
xj . We distinguish two cases: (1) B knows xi, or xk for any Dec-“ancestor” k of
i: then B, knowing xi, runs Encaps, and will thus know xj . (2) Else B sets the
resulting key as uj := gxj and vj := v∗ · gsj for fresh xj , sj , and simulates the
proofs.

Note that for every i /∈ chall-set, B either knows xi, or it can compute it
by running Decaps between the node k for which it knows xk and i in order to
derive xi. Therefore, B can answer all Rev queries for such i.

Moreover, when A makes an unanswerable RO query, B can use it to break
co-CDH. Any such query is of the form (ui, wj = DH(ui, vj)) where j is a node
created in mode (2) above (for which B does not know dj). B extracts all d values
from the proofs τ on the path from the root to node i. This must succeed as
long as none of the proofs was simulated, which we show next.

Towards a contradiction, assume that for some k on that path, τk for the
statement (upark , uk) was simulated. B must have simulated the proof when, after
the JChal call, A called Enc(park′), creating node k′ with uk′ = uk. However, this
means that B chose xk′ itself, and thus i has a Dec-ancestor with a known secret
key, meaning that node j was not created in mode (2), which is a contradiction.

Since B can extract all values d and thus compute d0→i with ui = u∗ · gd0→i ,
and since vj = v∗ · gsj , it can translate DH(ui, vj) to DH(u∗, v∗), as done above.

Acknowledgments. This work was funded by the Vienna Science and Technol-
ogy Fund (WWTF) [10.47379/VRG18002] and by the Austrian Science Fund (FWF)
[10.55776/F8515-N]. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions.

References

[AAN+22] Alwen, J., et al.: CoCoA: concurrent continuous group key agreement. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol.
13276, pp. 815–844. Springer, Cham (2022). https://doi.org/10.1007/978-
3-031-07085-3 28

[ABR98] Abdalla, M., Bellare, M., Rogaway, P.: DHIES: an encryption scheme based
on the Diffie-Hellman problem. In: Contributions to IEEE P1363a, Septem-
ber 1998

https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-031-07085-3_28

374 J. Alwen et al.

[ABR01] Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assump-
tions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45353-9 12

[ACDT20] Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and
improvements for the IETF MLS standard for group messaging. In: Mic-
ciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170,
pp. 248–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56784-2 9

[ACDT21] Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of secure
group messaging protocols and the security of MLS. In: Vigna, G., Shi, E.
(eds.) ACM CCS 2021, pp. 1463–1483. ACM Press, November 2021

[ACJM20] Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key
agreement with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12551, pp. 261–290. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-64378-2 10

[AHKM22] Alwen, J., Hartmann, D., Kiltz, E., Mularczyk, M.: Server-aided continuous
group key agreement. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
ACM CCS 2022, pp. 69–82. ACM Press (2022)

[AJM22] Alwen, J., Jost, D., Mularczyk, M.: On the insider security of MLS. In:
Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp.
34–68. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-
4 2

[AMT23] Alwen, J., Mularczyk, M., Tselekounis, Y.: Fork-resilient continuous group
key agreement. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023.
LNCS, vol. 14084, pp. 396–429. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-38551-3 13

[AW23] Asano, K., Watanabe, Y.: Updatable public key encryption with strong
CCA security: security analysis and efficient generic construction. IACR
Cryptology ePrint Archive, p. 976 (2023)

[BBLW22] Barnes, R., Bhargavan, K., Lipp, B., Wood, C.A.: Hybrid public key
encryption. RFC 9180, February 2022

[BBR+23] Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-
Gordon, K.: The messaging layer security (MLS) protocol. RFC 9420, July
2023

[BLS01] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pair-
ing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 30

[BLS04] Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly
groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol.
3006, pp. 17–25. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24654-1 2

[Bow] Bowe, S.: Bls12-381: New zk-snark elliptic curve construction
[CCD+20] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A

formal security analysis of the signal messaging protocol. J. Cryptol. 33(4),
1914–1983 (2020)

[Dam92] Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-
540-46766-1 36

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-031-15979-4_2
https://doi.org/10.1007/978-3-031-15979-4_2
https://doi.org/10.1007/978-3-031-38551-3_13
https://doi.org/10.1007/978-3-031-38551-3_13
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36

Updatable Public-Key Encryption, Revisited 375

[DKW21] Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption
in the standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part
III. LNCS, vol. 13044, pp. 254–285. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-90456-2 9

[DP92] De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without
interaction (extended abstract). In: 33rd FOCS, pp. 427–436. IEEE Com-
puter Society Press, October 1992

[DV19] Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agree-
ment with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC
2019. LNCS, vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26834-3 20

[EJKM22] Eaton, E., Jao, D., Komlo, C., Mokrani, Y.: Towards post-quantum key-
updatable public-key encryption via supersingular isogenies. In: AlTawy,
R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 461–482. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99277-4 22

[FKL18] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its
applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96881-0 2

[FO22] Fuchsbauer, G., Orrù, M.: Non-interactive mimblewimble transactions,
revisited. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part I. LNCS,
vol. 13791, pp. 713–744. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-22963-3 24

[FPS20] Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and
signed ElGamal encryption in the algebraic group model. In: Canteaut, A.,
Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 63–95.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 3

[GHJL17] Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full
forward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 519–548. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56617-7 18

[GM15] Green, M.D., Miers, I.: Forward secure asynchronous messaging from punc-
turable encryption. In: 2015 IEEE Symposium on Security and Privacy, pp.
305–320. IEEE Computer Society Press, May 2015

[HKP+21] Hashimoto, K., Katsumata, S., Postlethwaite, E., Prest, T., Westerbaan,
B.: A concrete treatment of efficient continuous group key agreement via
multi-recipient PKEs. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp.
1441–1462. ACM Press, November 2021

[HLP22] Haidar, C.A., Libert, B., Passelègue, A.: Updatable public key encryption
from DCR: efficient constructions with stronger security. : Yin, H., Stavrou,
A., Cremers, C., Shi, E. (eds.) ACM CCS 2022, pp. 11–22. ACM Press,
November 2022

[HPS23] Haidar, C.A., Passelégue, A., Stehlé, D.: Efficient updatable public-key
encryption from lattices. Cryptology ePrint Archive, Paper 2023/1400
(2023). https://eprint.iacr.org/2023/1400

[JMM19] Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal
guarantees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 6

https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-99277-4_22
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-031-22963-3_24
https://doi.org/10.1007/978-3-031-22963-3_24
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://eprint.iacr.org/2023/1400
https://doi.org/10.1007/978-3-030-17653-2_6

376 J. Alwen et al.

[JS18] Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained
state compromise: the safety of messaging. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96884-1 2

[OP01] Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems
for the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001.
LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44586-2 8

[PR18] Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 3–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 1

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. J. Cryptol. 13(3), 361–396 (2000)

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer
Society Press, October 1999

[SKSW22] Sakemi, Y., Kobayashi, T., Saito, T., Wahby, R.S.: Pairing-friendly curves.
internet-draft draft-IRTF-CFRG-pairing-friendly-curves-11, Internet Engi-
neering Task Force, November 2022. Work in Progress

https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1

	Updatable Public-Key Encryption, Revisited
	1 Introduction
	2 Preliminaries
	3 Updatable Key Encapsulation (UKEM)
	3.1 Functionality
	3.2 Security

	4 Construction
	5 Security of the Construction
	5.1 Member Security
	5.2 Joiner Security

	References

