
Plover: Masking-Friendly Hash-and-Sign
Lattice Signatures

Muhammed F. Esgin1, Thomas Espitau2(B), Guilhem Niot2, Thomas Prest2,
Amin Sakzad1, and Ron Steinfeld1

1 Monash University, Melbourne, Australia
{muhammed.esgin,amin.sakzad,ron.steinfeld}@monash.edu

2 PQShield SAS, Paris, France
thomas@espitau.com, guilhem@gniot.fr, thomas.prest@pqshield.com

Abstract. We introduce a toolkit for transforming lattice-based hash-
and-sign signature schemes into masking-friendly signatures secure in the
t-probing model. Until now, efficiently masking lattice-based hash-and-
sign schemes has been an open problem, with unsuccessful attempts such
as Mitaka. A first breakthrough was made in 2023 with the NIST PQC
submission Raccoon, although it was not formally proven.

Our main conceptual contribution is to realize that the same prin-
ciples underlying Raccoon are very generic, and to find a systematic
way to apply them within the hash-and-sign paradigm. Our main tech-
nical contribution is to formalize, prove, instantiate and implement a
hash-and-sign scheme based on these techniques. Our toolkit includes
noise flooding to mitigate statistical leaks, and an extended Strong Non-
Interfering probing security (SNIu) property to handle masked gadgets
with unshared inputs.

We showcase the efficiency of our techniques in a signature scheme,
Plover-RLWE, based on (hint) Ring-LWE. It is the first lattice-based
masked hash-and-sign scheme with quasi-linear complexity O(d log d) in
the number of shares d. Our performances are competitive with the state-
of-the-art masking-friendly signature, the Fiat-Shamir scheme Raccoon.

1 Introduction

Post-quantum cryptography is currently one of the most dynamic fields of cryp-
tography, with numerous standardization processes launched in the last decade.
The most publicized is arguably the NIST PQC standardization process, which
recently selected [1] four schemes for standardization: Kyber, Dilithium, Falcon
and SPHINCS+.

Despite their strong mathematical foundations at an algorithmic level, recent
years have witnessed the introduction of various side-channel attacks against
the soon-to-be-standardized schemes: see this non-exhaustive list of power-
analysis attacks against ML-DSA (Dilithium) [7,23], FN-DSA (Falcon) [19,35]

Part of this project was conducted while Guilhem Niot was a student at EPFL and
ENS Lyon, interning at PQShield.

c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14657, pp. 316–345, 2024.
https://doi.org/10.1007/978-3-031-58754-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58754-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-58754-2_12

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 317

or SLH-DSA (SPHINCS+) [22]. This motivates us to consider exploring sound
countermeasures allowing secure real-life implementations of mathematically
well-founded cryptographic approaches.

Masking Post-quantum Schemes. In general, the most robust countermea-
sure against side-channel attacks is masking [20]. It consists of splitting sensitive
information in d shares (concretely: x “ x0 ` · · · ` xd´1), and performing secure
computation using MPC-based techniques. Masking offers a trade-off : while it
increases computational efficiency by causing the running time to increase poly-
nomially in d, it also exponentially escalates the cost of a side-channel attack
with the number of shares d, see [13,21,26].

Unfortunately, masking incurs a significant computational overhead on the
future NIST standards. For example, the lattice-based signature Dilithium relies
on sampling elements in a small subset S Ĺ Zq of the native ring Zq, and
testing membership to a second subset S′ Ĺ Zq. The best-known approaches for
performing these operations in a masked setting rely on mask conversions [18].
These operations are extremely expensive, and despite several improvements in
the last few years [8,10,11], still constitute the efficiency bottlenecks of existing
masked implementations of Dilithium, see Coron et al. [12] and Azouaoui et al.
[3], and of many other lattice-based schemes, see the works of Coron et al. on
Kyber [10], and of Coron et al. on NTRU [11].

Falcon, based on the hash-and-sign paradigm, is even more challenging to
mask. The main reason is the widespread use of floating-point arithmetic; even
simple operations such as masked addition or multiplication are highly non-
trivial to mask. Another reason is a reliance on discrete Gaussian distributions
with secret centers and standard deviations, which also need to be masked. Even
without considering masking, these traits make Falcon difficult to implement and
to deploy on constrained devices.

More recent Hash-and-Sign schemes, such as Mitaka [14], Robin and Eagle
[34], also share both of these undesirable traits. Mitaka proposed novel techniques
in an attempt to make it efficiently maskable; however, Prest [32] showed that
these techniques were insecure and exhibited a practical key-recovery attack in
the t-probing model against Mitaka. As of today, it remains an open problem to
build hash-and-sign lattice signatures that can be masked efficiently.

1.1 Our Solution

In this work, we describe a general toolkit for converting hash-and-sign schemes
into their masking-friendly variants. The main idea is deceptively simple: instead
of using trapdoor sampling to generate a signature that leaks no information
about the secret key, using noise that is sufficiently large to hide the secret
on its own. While similar ideas were described in the Fiat-Shamir setting by
Raccoon [29], we show here that the underlying principles and techniques are
much more generic. In our case, we replace the canonical choice of Gaussian
distribution—which only depends on the (public) lattice and not on the short
secret key—with sums of uniform distributions. This allows us to remove all the

318 M. F. Esgin et al.

complications inherent to the sampler, as we now do not need a sampler more
complicated than a uniform one. Then since all the remaining operations are
linear in the underlying field, we can simply mask all the values in arithmetic
form and follow the usual flow of the algorithm.

The security of the scheme in this approach now relies on the hint variant
of the underlying problem (namely, Ring-LWE) as the correlation between the
signature and the secret can be exploited when collecting sufficiently many signa-
tures. To showcase the versatility of our toolkit, we propose two possible instan-
tiations of our transform: starting from the recent Eagle proposal of [34], we
construct a masking-friendly hash-and-sign signature, Plover, based on the hard-
ness of Hint-RLWE. To provide a high-level view, we describe the transformation
in Fig. 1a and Fig. 1b. Differences between the two blueprints are highlighted .
Operations that need to be masked in the context of side channels are indicated
with comments: Easy when standard fast techniques apply to mask, or Hard
otherwise. We replace the two Gaussian samples (Eagle L. 3 and 6) by the noise
flooding (Plover L. 7, the mask being generated by the gadget AddRepNoise at
L.3) in masked form. The final signature z is eventually unmasked.

Fig. 1. High-level comparison between Eagle [34] and our scheme Plover. In both
schemes, the signing key is a pair of matrices sk “ (T,A), the verification key is
vk “ T, and we have A ¨T “ β ¨ Ik. The verification procedure is also identical: in each
case, we check that z and c2 :“ A ¨ z ´ u are sufficiently short.

We also provide a similar approach using an NTRU-based signature in the
full version of this paper. Our analyses reveal that the NTRU-based approach, at
the cost of introducing a stronger assumption, sees its keygen becoming slower
but signature and verification get faster. However, as the signature size is slightly
bigger and the techniques are similar, we choose to present only the RLWE variant
here and describe the NTRU one in the full version.

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 319

1.2 Technical Overview

The main ingredients we introduce in this toolkit are the following:

1. Noise flooding. The main tool is the so-called noise flooding introduced by
Goldwasser et al. [17]: we “flood” the sensitive values with enough noise so
that the statistical leak becomes marginal. In contrast, other hash-then-sign
lattice signatures use trapdoor sampling make the output distribution sta-
tistically independent of the signing key. However, marginal does not mean
nonexistent and we need to quantify this leakage.
To achieve this in a tight manner, we leverage the recent reduction of Kim
et al. [24], which transitions Hint-MLWE to MLWE, providing a solid under-
standing of the leakage. Noise flooding has recently proved useful in the NIST
submission Raccoon [29] to analyze its leakage and optimize parameters. Here
also, the tightness of this reduction allows to reduce the relative size of the
noise while preserving security, compared to, e.g., using standard Rényi argu-
ments.

2. SNI with unmasked inputs. To get a scheme which is provably secure in the
t-probing model, we need to extend the usual definition of t Strong Non-
Interfering (SNI) Gadgets to allow the attacker to know “for free” up to t
unshared inputs of the gadgets (we call this extended property t-SNIu). This is
somehow the “dual” of the (S)NI with public outputs notion (NIo) introduced
by Barthe et al. [5].
In particular, we formally show that the AddRepNoise gadget, introduced
by Raccoon [29] to sample small secrets as a sum of small unshared inputs,
satisfies our t-SNIu definition and hence enjoys t probing security. This fills a
provable security gap left in [29], where the t-probing security of AddRepNoise
was only argued informally. Our new model is also sufficient to handle the
unmasking present in our signature proposal. We prove the security for the
t-probing EUF-CMA notion borrowed from [5].

3. Masked inversion. As a natural byproduct of the NTRU-based instantia-
tion, we propose a novel way to perform inversion in masked form. Our
proposal combines the NTT representation with Montgomery’s trick [28] to
speed up masked inversion. It is to the best of our knowledge the first time
Montgomery’s trick has been used in the context of masking. Our technique
offers an improved asymptotic complexity over previous proposals from [11,
Section 4.3 and 5]. Due to page limitation, this technique is described in the
full version only.

Advantages and Limitations. The first and main design principle of our
toolkit is of course its amenability to masking. In effect, we can mask at order
d ´ 1 with an overhead of only O(d log d). This allows masking of Plover at high
orders with a small impact on efficiency. High masking orders introduce a new
efficiency bottleneck in memory consumption, due to the storage requirements
for highly masked polynomials. Second, our proposal Plover relies on (variants
of) lattice assumptions that are well-understood (NTRU, LWE), or at least are

320 M. F. Esgin et al.

classically reducible from standard assumptions (Hint-LWE). We emphasize that
the simplicity allowed in the design leads to implementation portability. In par-
ticular, our scheme enjoys good versatility in its parameter choices—allowing
numerous tradeoffs between module sizes, noise, and modulus–enabling target
development on various device types. For example, our error distributions can be
based on sums of uniform distributions; this makes implementation straightfor-
ward across a wide range of platforms. Ultimately, since Plover is a hash-and-sign
signature, it does not require masked implementations of symmetric crypto-
graphic components, such as SHA-3/SHAKE. The number of distinct masking
gadgets is relatively small, which results in simpler and easier-to-verify firmware
and hardware.

As expected, our efficient masking approach comes at the cost of larger
parameter sizes (mainly because of the large modulus required) compared to
the regular design of hash-and-sign schemes using Gaussian distributions and
very small modulus. Additionally, the security is now query dependant : as it is
the case for Raccoon or most threshold schemes, we can only tolerate a certain
number (NIST recommendation being 264) of queries to the signing oracle with
the same private key.

2 Preliminaries

2.1 Notations

Sets, Functions and Distributions. For an integer N ą 0, we note [N] “
{0, . . . , N ´ 1}. To denote the assign operation, we use y :“ f(x) when f is
a deterministic and y ← f(x) when randomized. When S is a finite set, we note

U(S) the uniform distribution over S, and shorthand x
$← S for x ← U(S).

Given a distribution D of support included in an additive group G, we note
[T] ¨ D the convolution of T identical copies of D. For c P G, we may also note
D ` c the translation of the support of D by c. Finally, the notation P s„ Q
indicates that the two distributions are statistically indistinguishable.

Linear Algebra. Throughout the work, for a fixed power-of-two n, we note
K “ Q[x]{(xn ` 1) and R “ Z[x]{(xn ` 1) the associated cyclotomic field and
cyclotomic ring. We also note Rq “ R{(qR). Given x P K�, we abusively note
‖x‖ the Euclidean norm of the (n �)-dimensional vector of the coefficients of x.
By default, vectors are treated as column vectors unless specified otherwise.

Rounding. Let β P N, β � 2 be a power-of-two. Any integer x P Z can be
decomposed uniquely as x “ β ¨ x1 ` x2, where x2 P {´β{2, . . . , β{2 ´ 1}. In this
case, |x1| �

⌈
x
β

⌉
, where �¨� denote rounding up to the nearest integer. For odd

q, we note Decomposeβ : Zq Ñ Z ˆ Z the function which takes as input x P Zq,
takes its unique representative in x̄ P {´(q´1){2, . . . , (q´1){2}, and decomposes
x̄ “ β ¨ x1 ` x2 as described above and outputs (x1, x2). We extend Decomposeβ

to polynomials in Zq[x], by applying the function to each of its coefficients. For

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 321

c
$← Zq and (c1, c2) :“ Decomposeβ(c), we have |c1| �

⌈
q´1
2β

⌉
, E[c1] “ 0 and

E[c21] � M2´1
12 for M “ 2

⌈
q´1
2β

⌉
` 1.

2.2 Distributions

Definition 1 (Discrete Gaussians). Given a positive definite Σ P R
mˆm, we

note ρ√
Σ the Gaussian function defined over R

m as

ρ√
Σ(x) “ exp

(
´xt ¨ Σ´1 ¨ x

2

)
.

We may note ρ√
Σ,c(x) “ ρ√

Σ(x ´ c). When Σ is of the form σ ¨ Im, where
σ P K`` and Im is the identity matrix, we note ρσ,c as shorthand for ρ√

Σ,c.
For any countable set S Ă Km, we note ρ√

Σ,c(S) “ ∑
xPKm ρ√

Σ,c(x) when-
ever this sum converges. Finally, when ρ√

Σ,c(S) converges, the discrete Gaussian
distribution DS,c,

√
Σ is defined over S by its probability distribution function:

DS,
√

Σ,c(x) “ ρ√
Σ,c(x)

ρ√
Σ,c(S)

. (1)

Definition 2 (Sum of uniforms). We note SU(u, T) :“ [T] ¨ U({´2u´1,
. . . , 2u´1 ´ 1}). In other words, SU(u, T) is the distribution of the sum X “∑

iP[T] Xi, where each Xi is sampled uniformly in the set {´2u´1, . . . , 2u´1 ´ 1}.

2.3 Hardness Assumptions

In a will of unification and clarification, we choose to present the lattice prob-
lems used in this work in their Hint-variants, that is to say with some additional
statistical information on the secret values. Of course, not adding any hint recov-
ers the plain problems—here being RLWE, and NTRU in the full version. The
Hint-RLWE problem was introduced recently in [24] and reduces (in an almost
dimension-preserving way) from RLWE.

Definition 3 (Hint-RLWE). Let q,Q be integers, Dsk,Dpert be probability distri-
butions over R2

q, and C be a distribution over Rq. The advantage AdvHint-RLWE
A (κ)

of an adversary A against the Hint Ring Learning with Errors problem
Hint-RLWEq,Q,Dsk,Dpert,C is defined as:

∣∣Pr
[
1 ← A

(
a,

[
a 1

] ¨ s, (ci, zi)iP[Q]

)] ´ Pr
[
1 ← A

(
a, u, (ci, zi)iP[Q]

)]∣∣ ,

where (a, u) $← R2
q, s ← Dsk and for i P [Q]: ci ← C, ri ← Dpert, and

zi “ ci ¨ s ` ri. The Hint-RLWEq,Q,Dsk,Dpert,C assumption states that any efficient
adversary A has a negligible advantage. We may write Hint-RLWEq,Q,σs,σr,C as
a shorthand when Dsk “ Dσs and Dpert “ Dσr are the Gaussian distributions of
parameters σs and σr, respectively. When Q “ 0, we recover the classical RLWE
problem: RLWEq,Dsk

“ Hint-RLWEq,Q“0,Dsk,Dpert,C.

322 M. F. Esgin et al.

The spectral norm s1(M) of a matrix M is defined as the value maxx‰0
‖Mx‖

‖x‖ .
We recall that if a matrix is symmetric, then its spectral norm is also its largest
eigenvalue. Given a polynomial c P R, we may abusively use the term “spectral
norm s1(c) of c” when referring to the spectral norm of the anti-circulant matrix
M(c) associated to c. Finally, if c(x) “ ∑

0�iăn ci xi, then the Hermitian adjoint
of c, which we denote by c˚, is defined as c˚(x) “ c0 ´ ∑

0ăiăn cn´i xi. Note that
M(c)t “ M(c˚).

Theorem 1 (Hardness of Hint-RLWE, adapted from [24]). Let C be a dis-
tribution over R, and let BHRLWE be a real number such that s1(D) � BHRLWE

with overwhelming probability, where D “ ∑
Q cici̊ . Let σ, σsk, σpert ą 0 such

that 1
σ2 “ 2

(
1

σ2
sk

` BHRLWE

σ2
pert

)
. If σ �

√
2ηε(Zn) for 0 ă ε � 1{2, where ηε(Zn)

is the smoothing parameter of Zn, then there exists an efficient reduction from
RLWEq,σ to Hint-RLWEq,Q,σsk,σpert,C that reduces the advantage by at most 4ε.

For our scheme, concrete bounds for BHRLWE will be given in Lemma 2. Finally,
we recall the Ring-SIS (RSIS) assumption.

Definition 4 (RSIS). Let �, q be integers and β ą 0 be a real number. The
advantage AdvRSISA (κ) of an adversary A against the Ring Short Integer Solutions
problem RSISq,�,β is defined as:

AdvRSISA (κ) “ Pr
[
a $← R�

q, z ← A(a) : 0 ă ‖z‖ � β ∧
[
1 a�]

z “ 0 mod q
]
.

The RSISq,�,β assumption states that any efficient adversary A has a negligible
advantage.

2.4 Masking

Definition 5. Let R be a finite commutative ring and d � 1 be an integer.
Given x P R, a d-sharing of x is a d-tuple (xi)iP[d] such that

∑
iP[d] xi “ x. We

denote by [[x]]d any valid d-sharing of x; when d is clear from context, we may
omit it and simply write [[x]]. A probabilistic encoding of x is a distribution over
encodings of x.

– A d-shared circuit C is a randomized circuit working on d-shared vari-
ables. More specifically, a d-shared circuit takes a set of n input shar-
ings (x1,i)iP[d], . . . , (xn,i)iP[d] and computes a set of m output sharings
(y1,i)iP[d], . . . , (ym,i)iP[d] such that (y1, . . . , ym) “ f(x1, . . . , xn) for some
deterministic function f . The quantity (d ´ 1) is then referred to as the
masking order.

– A probe on C or an intermediate variable of C refers to a wire index (for
some given indexing of C’s wires).

– An evaluation of C on input (x1,i)iP[d], . . . , (xn,i)iP[d] under a set of probes
P refers to the distribution of the tuple of wires pointed by the probes in P
when the circuit is evaluated on (x1,i)iP[d], . . . , (xn,i)iP[d], which is denoted by
C((x1,i)iP[d], . . . , (xn,i)iP[d])P .

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 323

In the following, we focus on a special kind of shared circuits which are composed
of gadgets. A (u, v)-gadget is a randomized shared circuit as a building block
of a shared circuit that performs a given operation on its u input sharings and
produces v output sharings.

2.5 Probing Model

The most commonly used leakage model is the probing model, introduced by
Ishai, Sahai and Wagner in 2003 [20]. Informally, it states that during the eval-
uation of a circuit C, at most t wires (chosen by the adversary) leak the value
they carry. The circuit C is said to be t-probing secure if the exact values of any
set of t probes do not reveal any information about its inputs.

Definition 6 (t-probing security). A randomized shared arithmetic circuit
C equipped with an encoding E is t-probing secure if there exists a probabilistic
simulator S which, for any input x P K

� and every set of probes P such that
|P | � t, satisfies S(C,P) “ C(E(x))P .

Since the computation of distributions is expensive, the security proof relies on
stronger simulation-based properties, introduced by Barthe et al. [4], to demon-
strate the independence of the leaking wires from the input secrets. Informally,
the idea is to perfectly simulate each possible set of probes with the smallest set
of shares for each input. We recall the formal definitions of t-non-interference and
t-strong non-interference hereafter. These provide a framework for the composi-
tion of building blocks, which makes the security analysis easier when masking
entire schemes, as is the case here.

Definition 7 (t-non-interference). A randomized shared arithmetic circuit
C equipped with an encoding E is t-non-interferent (or t-NI) if there exists a
deterministic simulator S1 and a probabilistic simulator S2, such that, for any
input x P K

�, for every set of probes P of size t,

(I1, I2, . . . , I�) ← S1(C,P) with |I1|, |I2|, . . . , |I�| � t

and S2((x1,i)iPI1 , (x2,i)iPI2 , . . . , (x�,i)iPI�
) “ C(E(x))P .

If the input sharing is uniform, a t-non-interferent randomized arithmetic circuit
C is also t-probing secure. One step further, the strong non-interference benefits
from stopping the propagation of the probes between the outputs and the input
shares and additionally trivially implies t-NI.

We now introduce the notion of t-strong non-interference with unshared input
values (t-SNIu). The new notion is very much similar to that of t-SNI of Barthe
et al. [5] with a special additional unshared input values x′ along with the usual
shared input values x. In addition, there will be no unshared outputs in t-SNIu,
hence the interface with other gadgets is with the shared inputs only as with the
original definition.

324 M. F. Esgin et al.

Definition 8 (t-strong non-interference with unshared input values).
A randomized shared arithmetic circuit C equipped with an encoding E is t-
strong non-interferent with unshared input values (or t-SNIu) if there exists a
deterministic simulator S1 and a probabilistic simulator S2, such that, for any
shared inputs x P K

� and unshared input values x′ P K
�′
, for every set of probes

P of size t whose P1 target internal variables and P2 “ P\P1 target the output
shares,

(I1, I2, . . . , I�, I ′) ← S1(C,P) with |I1|, |I2|, . . . , |I�|, |I ′| � |P1|
and S2((x1,i)iPI1 , (x2,i)iPI2 , . . . , (x�,i)iPI�

, (x′
i)iPI′) “ C(E(x, x′))P .

We remark that for usual gadgets with no unshared inputs, our above definition
of t-SNIu reduces to the usual t-SNI notion. Looking ahead, we will model our
AddRepNoise gadget’s internal small random values as unshared inputs to the
AddRepNoise gadget.

Common Operations. Arithmetic masking, which we use in this paper, is
compatible with simpler arithmetic performed in time O(d2) and is shown to be
t-SNI by Barthe et al. [4, Proposition 2].

A t-SNI refresh gadget (Refresh), given in Algorithm 1, with complexity
O(d log d) has been proposed by Battistello et al. [6]. Its complexity has been
improved by a factor 2 by Mathieu-Mahias [27], which also proves that it is t-
SNI in [27, Section 2.2]. We use this improved variant as a building block of our
schemes. For completeness, it is reproduced in Algorithms 1 and 3.

Finally, a secure decoding algorithm Unmask is described in Algorithm 2. It
is shown by Barthe et al. [5] to be t-NIo [5, Definition 7] .

Refresh and Unmask take as a (subscript) parameter a finite abelian group
G. When G is clear from context, we may drop the subscript for concision.

Algorithm 1. RefreshG([[x]]) Ñ [[x]]′

Require: A d-sharing [[x]] of x P G

Ensure: A fresh d-sharing [[x]] of x

1: [[z]]
$← ZeroEncoding(G, d)

2: return [[x]]′ :“ [[x]] ` [[z]]

Algorithm 2. UnmaskG([[x]]) Ñ x

Require: A d-sharing [[x]] “ (xi)iP[d]
of x P G

Ensure: The clear value x P G

1: [[x]] ← Refresh([[x]])
2: return x :“ ∑

iP[d] xi

Algorithm 3. ZeroEncoding(G, d) Ñ [[z]]d
Require: A power-of-two integer d, a finite

abelian group G

Ensure: Uniform d-sharing [[z]] P G
d of 0 P G

1: if d “ 1 then
2: return [[z]]1 :“ (0)

3: [[z1]]d{2 ← ZeroEncoding(G, d{2)
4: [[z2]]d{2 ← ZeroEncoding(G, d{2)

5: [[r]]d{2
$← G

d{2

6: [[z1]]d{2 :“ [[z1]]d{2 ` [[r]]d{2
7: [[z2]]d{2 :“ [[z2]]d{2 ´ [[r]]d{2
8: return [[z]]d :“ (

[[z1]]d{2 ‖ [[z2]]d{2
)

� (u ‖ v) denote shares concatenation.

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 325

AddRepNoise The AddRepNoise procedure (Algorithm 4) is one of the key
building blocks of our scheme. It is an adaptation of the eponymous procedure
from the Raccoon signature scheme [29].

Algorithm 4. AddRepNoise(G, d,Dind, rep) Ñ [[v]]
Require: A finite Abelian group G, the number of shares d, a noise distribution Dind,

a repetition count parameter rep
Ensure: A masked element [[v]] P G

d such that v „ [d ¨ rep] ¨ Dind

1: [[v]] “ (vj)jP[d] :“ (0G)d � [[v]] P G
d

2: for i P [rep] do
3: for j P [d] do
4: ri,j ← Dind

5: vj :“ vj ` ri,j

6: [[v]] ← Refresh([[v]]) � Refresh [[v]] on each repeat

7: return [[v]]

We prove that the AddRepNoise gadget satisfies the SNI with both shared and
unshared inputs notion (t-SNIu), as defined in Sect. 2.1. In particular, there exists
a simulator that can simulate � t probed variables using � t unshared input val-
ues and � t shared input values. The underlying intuition (see Sect. 4.2 in [29] for
an informal discussion) is that the t-SNI property of the Refresh gadget inserted
between the rep MaskedAdd gadgets effectively isolates the MaskedAdd gadgets
and prevents the adversary from combining two probes in different MaskedAdd
gadgets to learn information about more than two unshared inputs, i.e. t probes
only reveal � t unshared inputs. The formal statement is given in Lemma 1.

Lemma 1 (AddRepNoise probing security). Gadget AddRepNoise is t-SNIu,
considering that AddRepNoise has no shared inputs, and that it takes as unshared
input the values (ri,j)i,j.

Proof. The AddRepNoise consists of rep repeats (over i P [rep]) of the following
Add-Refresh subgadget: a MaskedAdd gadget (line 5) that adds sharewise the d
unshared inputs (ri,j)jP[d] to the internal sharing [[v]], followed by a Refresh([[v]])
gadget (line 6). For i P [rep], we note:

1. t
(i)
1,R the number of probed internal variables (not including outputs);

2. t
(i)
2,R the number of simulated or probed output variables in i’th Refresh;

3. t
(i)
A the total number of probed variables in the i’th MaskedAdd gadget (i.e.

including probed inputs and probed outputs that are not probed as inputs of
Refresh).

We construct a simulator for the t probed observation in AddRepNoise by com-
posing the outputs of the [rep] simulators for probed observations in the Add-
Refresh subgadgets, proceeding from output to input. For i “ rep ´ 1 down to
0, the simulator for the i’th Add-Refresh subgadget works as follows.

326 M. F. Esgin et al.

The Refresh gadget is t-SNI according to [4]. Therefore, there exists a simula-
tor S(i)

R that can simulate t
(i)
1,R `t

(i)
2,R � t variables using t

(i)
in,R � t

(i)
1,R input shared

values [[v]] of the i’th Refresh gadget. The latter is also equal to the number of
outputs of MaskedAdd gadget that need to be simulated to input to S(i)

R .
Since the ith MaskedAdd gadget performs addition sharewise, we can now

construct a simulator S(i)
A that simulates the required � t

(i)
A ` t

(i)
in,R � t

(i)
A ` t

(i)
1,R

variables in the i’th MaskedAdd gadget using t
(i)
in,A � t

(i)
A ` t

(i)
1,R additions and

the corresponding summands: t
(i)
in,A input shares of the first MaskedAdd gadget

in [[v]] and t
(i)
in,A unshared inputs ri,j .

Over all i P [rep], the composed simulator S for AddRepNoise can sim-
ulate all t probed observations in AddRepNoise using a total of tin,ARN,u �∑

iP[rep] t
(i)
in,A �

∑
iP[rep] t

(i)
A ` t

(i)
1,R � t unshared input values ri,j of AddRepNoise,

where tin,ARN,u � t since the above
∑

iP[rep] t
(i)
A ` t

(i)
1,R variables are distinct

probed variables in AddRepNoise. �	

3 Plover-RLWE: Our RLWE-Based Maskable Signature

This section presents a maskable hash-and-sign signature scheme based on RLWE.
It leverages the compact lattice gadget from Yu et al. [34], and its mostly linear
operations to construct a maskable scheme relying on noise flooding, i.e. Gaus-
sian sampling is replaced by a large noise provably hiding a secret value. We
describe the unmasked scheme in Sect. 3.1, and the masked scheme in Sect. 3.3.
We introduce additional notations.

– ExpandA: {0, 1}κ Ñ Rq deterministically maps a uniform seed seed to a
uniformly pseudo-random element a P Rq.

– H : {0, 1}˚ ˆ{0, 1}2κ ˆV Ñ Rq is a collision-resistant hash function mapping
a tuple (msg, salt, vk) to an element u P Rq. We note that H is parameterized
by a salt salt for the security proof of Gentry et al. [16] to go through, and
by the verification key vk.

3.1 Description of Unmasked Plover-RLWE

Parameters. We sample RLWE trapdoors from a distribution Dsk, and noise in
the signature from a distribution Dpert. Additionally, we introduce an integer
parameter β; it is used as a divider in the signature generation to decompose
challenges in low/high order bits via Decomposeβ . Despite its name, we do not
require that β divides q; that was only required by the Gaussian sampler of [34].

Key Generation. The key generation samples a public polynomial a, derived
from a seed. The second part of the public key is essentially an RLWE sample
shifted by β. A description of the key generation is given in Algorithm 5.

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 327

Algorithm 5. Plover-RLWE.Keygen(1κ) Ñ (vk, sk)
Require: The ring Rq, a divider β, a distribution Dsk over R2

Ensure: A verification key vk “ (seed, b) P {0, 1}κ ˆ Rq, a signing key sk “ (s, e) P R2

1: seed
$← {0, 1}κ

2: a :“ ExpandA(seed) � ExpandA maps a seed to an element in R
3: (s, e) ← Dsk

4: b :“ β ´ (as ` e) mod q
5: return vk :“ (seed, b), :“ (vk, s, e)

Signing Procedure. The signature generation is described in Algorithm 6. It first
hashes the given message msg to a target polynomial u. It then uses its trapdoor
to find a short pre-image z “ (z1, z2, z3) such that A ¨ z :“ z1 ` a z2 ` b z3 “
u ´ c2 mod q for a small c2 and A :“ [

1 a b
]
. In order to prevent leaking the

trapdoor, a noise vector p is sampled and added to the pre-image z. As in [34],
the actual signature is (z2, z3), since z1 ` c2 “ u ´ a z2 ´ b z3 can be recovered
in the verification procedure. Additionally, c1 is public and does not require to
be hidden by noise. Signature size is then dominated by sending z2.

Ahead of Sect. 3.3, we note that, except for Line 5, all operations in Algorithm
6 either (i) are linear functions of sensitive data (T and p), and can therefore
be masked with overhead Õ(d), or (ii) can be performed unmasked.

Algorithm 6. Plover-RLWE.Sign(msg, sk) Ñ sig

Require: A message msg, the secret key sk “ ((seed, b), s, e), a bound B2 ą 0
Ensure: A signature (salt, z2, z3)
1: a :“ ExpandA(seed)

2: salt
$← {0, 1}2κ

3: u :“ H(msg, salt, vk)

4: A :“ [
1 a b

]
, T :“

⎡

⎣
e
s
1

⎤

⎦

5: p ← Dpert ˆ {0} � Recall Dpert is over R2
q

6: c :“ u ´ A ¨ p
7: (c1, c2) :“ Decomposeβ(c) � c “ β ¨ c1 ` c2
8: z ← p ` T ¨ c1 � z “ (z1, z2, z3) and z3 “ c1
9: return sig :“ (salt, z2, z3), auxsig “ c2 � auxsig used in security proof, but not in

verification.

Verification. The verification first recovers z′
1 :“ u´a z2 ´b z3 (equal to z1 `c2),

followed by checking the shortness of (z′
1, z2, z3). A formal description is given

in Algorithm 7. Using notations from Algorithm 6, correctness follows from:

Az “ Ap ` AT c1 “ (u ´ c) ` β ¨ c1 “ u ´ c2

To provide a more modular exposition to our algorithms and security proofs,
we next prove the EUF-CMA security of our unmasked signature proposal. Later

328 M. F. Esgin et al.

Algorithm 7. Plover-RLWE.Verify(vk,msg, sig) Ñ accept or reject
Require: sig “ (salt, z2, z3), msg, vk “ (seed, b), and a bound B2 ą 0
Ensure: Accept or reject.
1: a :“ ExpandA(seed),
2: u :“ H(msg, salt, vk)
3: z′

1 :“ (u ´ a z2 ´ b z3) mod q � z′
1 “ z1 ` c2

4: accept if { ‖(z′
1, z2, z3)‖ � B2 and ‖z3‖∞ � q{(2β) ` 1{2 }, else reject

in Sect. 3.4, we will reduce the t-probing security of our masked construction
from the EUF-CMA security of the unmasked construction. To facilitate the latter
reduction, we show the EUF-CMA security of the unmasked construction even
when the signing oracle outputs the auxiliary signature information auxsig “ c2
(see Algorithm 6) along with the signature sig.

3.2 EUF-CMA Security of Unmasked Plover-RLWE

For the Hint-RLWE reduction in Theorem 2, we introduce Definition 9. Note that
in the definition, if β divides q, then c1 and c2 are independent and uniformly
random in their supports but this is not necessary for our reduction.

Definition 9 (Distributions for Hint-RLWE). Let (c1, c2) be sampled from the
joint distribution induced by sampling c uniformly at random from Rq and setting
(c1, c2) :“ Decomposeβ(c). Then:

– We let C1 denote the marginal distribution of c1.
– For a fixed c′

1, we let C|c′
1

2 denote the conditional distribution of c2 conditioned
on the event c1 “ c′

1.

Before we move into the formal security statement, we emphasize that the secu-
rity of unmasked Plover reduces to the standard RLWE and RSIS problems when
the distributions Dsk,Dpert are chosen to be discrete Gaussians (with appropriate
parameter). This is due to the fact that Hint-RLWE reduces to RLWE as proven
in [25], see also Theorem 1.

Theorem 2. The Plover-RLWE scheme is EUF-CMA secure in the random
oracle model if RLWEq,U([´B2{√2n,B2{√2n]n)2 , Hint-RLWEq,QSign,Dsk,Dpert,C1 and
RSISq,2,2B2 assumptions hold. Formally, let A be an adversary against the
EUF-CMA security game making at most QSign signing queries and at most
QH random oracle queries. Denote an adversary H’s advantage against
Hint-RLWEq,QSign,Dsk,Dpert,C1 by AdvHint-RLWE

H (κ), and an adversary D’s advantage
against RLWEq,U([´B2{√2n,B2{√2n]n)2 by AdvRLWE

D (κ). Then, there exists an adver-
sary B running in time TB « TH « TD « TA against RSISq,2,2B2 with advantage
AdvRSISB (κ) such that

AdvEUF-CMA
A � pc ` QSign QH{22κ ` AdvHint-RLWE

H (κ) ` QH ¨ AdvRLWE
D (κ) ` AdvRSISB

for some pc � 2´n¨(2 log2(2B2{√2n)´log2(q)).

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 329

Proof. We prove the security of the above scheme with intermediary hybrid
games, starting from the EUF-CMA game against our signature scheme in the
ROM and then finally arriving at a game where we can build an adversary B
against RSISq,2,2B2 . Let A be an adversary against the EUF-CMA security game.

Game0. This is the original EUF-CMA security game. A key pair (vk, sk) ←
Plover-RLWE.Keygen(1κ) is generated and A is given vk. A gets access to a
signing oracle OSign(msg) that on input a message msg (chosen by A) out-
puts a signature, along with the auxiliary signature information (sig, auxsig) ←
Plover-RLWE.Sign(msg, sk) and adds (msg, sig, auxsig) to a table Ts. The calls to
the random oracle H are stored in a table TH and those to OSign are stored in
a table Ts.

Game1. Given a message msg, we replace the signing oracle OSign as follows:

1. Sample salt
$← {0, 1}2κ. Abort if an entry matching the (msg, salt, vk) tuple

exists in TH (Abort I).

2. Sample u′ $← Rq and decompose it as (c1, c2) :“ Decomposeβ(u′) (i.e., u′ “
β ¨ c1 ` c2).

3. Sample p ← Dpert ˆ {0}.
4. Compute z′ :“ p`T ¨ c1 ` [

c2 0 0
]
. Program the random oracle H such that

H(msg, salt, vk) :“ Az′. Store in TH the entry ((msg, salt), z′).
5. Return sig :“ (salt, z′

2, z
′
3) and auxsig :“ c2, where z′ “ (z′

1, z
′
2, z

′
3), and store

(msg, sig, auxsig) in Ts.

Observe that Abort I happens with probability at most QSignQH{22κ. If it does
not, then the view of A in Game1 is distributed identically to their view in Game0.
Indeed, in Game1, the value u output by H for signed values is still uniform in Rq

and independent of p. This is due to the fact that u :“ Az′ “ Ap`AT¨c1`c2 “
Ap` βc1 ` c2 “ Ap` u′ and u′ is uniform in Rq and independent of p. Hence,
there is an advantage loss only if Abort I occurs; that is,

∣∣∣AdvGame0
A ´ AdvGame1

A
∣∣∣ � QSignQH{22κ.

Game2. In this game, we make a single change over Game1 and replace b “
β ´ (as ` e) by b “ β ´ b′ where b′ is a uniformly random polynomial in Rq.
This means that b also follows uniform distribution over Rq.

We can observe that this reduces to Hint-RLWE problem with QSign hints. In
particular, given Hint-RLWE instance (a, b′, {c1,i, (h1,i, h2,i)}iP[QSign]) with c1,i ←
C1, and h1,i :“ p1,i ` e ¨ c1,i and h2,i :“ p2,i ` s ¨ c1,i, adversary H runs A with
verification key (a, b′) and simulates the view of A as in Game1, computing the
values of z′

1,i, z
′
2,i in step 4 of the i’th query to OSign in Game1 using the hints

h1,i, h2,i as follows: z′
1,i “ h1,i ` c2,i, z′

2,i “ h2,i, with c2,i sampled from the

conditional distribution C|c1,i

2 . At the end of the game, H returns 1 if A wins the
game, and 0 otherwise. Observe that if b′ in the Hint-RLWE instance is from the

330 M. F. Esgin et al.

real RLWE (resp. uniform in Rq) distribution, then H simulates to A its view
in Game1 (resp. Game2), so H’s advantage is lower bounded as

∣∣∣AdvGame1
A ´ AdvGame2

A
∣∣∣ � AdvHint-RLWE

H (κ).

Game3. In this game, we replace the random oracle H as follows. If an entry has
not been queried before, H returns Az where z $← {0}ˆ(

[´B2{√2n,B2{√2n]n
)2

(observe that ‖z‖ � B2). We store in TH the entry ((msg, salt), z) for an input
query (msg, salt, vk). Note that the result of Az is indistinguishable from a
uniformly random value in Rq by the RLWEq,U([´B2{√2n,B2{√2n]n)2 assumption.
Hence, we have

∣∣∣AdvGame2
A ´ AdvGame3

A
∣∣∣ � QH ¨ AdvRLWE

D (κ).

Game4. Let sig˚ :“ (salt˚, z2̊, z3̊) {P Ts be the forged signature output by A for a

message msg˚. Define z1̊ :“ u ´ az2̊ ´ bc1̊ and z˚ :“ (z1̊, z2̊, z3̊). Without loss of
generality, we assume that the pair (msg˚, salt˚) has been queried to the random
oracle H. From TH , we retrieve pz “ (pz1, pz2, pz3) corresponding to (msg˚, salt˚). If
pz “ z˚, then we abort (Abort II).

– Case 1: Suppose H(msg˚, salt˚, vk) was called by the signing oracle OSign.
Then, since sig˚ :“ (salt˚, z2̊, z3̊) {P Ts, we must have (salt˚, z2̊, z3̊) ‰
(salt˚, pz2, pz3), which implies pz ‰ z˚. Hence, Abort II never happens in this
case.

– Case 2: Suppose H(msg˚, salt˚, vk) was queried directly to H. Then, since
the first entry of pz (resp. z˚) is uniquely determined by the remaining entries
of pz (resp. z˚), Abort II happens with a probability

pc :“ max
u

Pr[(z˚
2, z

˚
3) “ (pz2, pz3) | H(msg˚, salt˚, vk) “ u “ Apz] � 2´H∞((pz2,pz3)|u)

Since H∞((pz2, pz3)) � 2n log2(2B2{√2n) and H∞(u) � n log2(q), we have:

H∞((pz2, pz3)|u) � H∞((pz2, pz3, u)) ´ H∞(u)
� H∞((pz2, pz3)) ´ H∞(u)

� n ¨ (2 log2(2B2{√2n) ´ log2(q))

Hence, we get
∣∣∣AdvGame3

A ´ AdvGame4
A

∣∣∣ � pc for pc � 2´n¨(2 log2(2B2{√2n)´log2(q)).

Observe from the verification algorithm (Algorithm 7) that Az˚ “ u “
H(msg, salt, vk) and ‖z˚‖ � B2. Also, by the construction of H, u “ Apz
with ‖pz‖ � B2 (see Game3). Consequently, if Abort II does not happen, we

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 331

can construct an adversary B that solves the RSISq,2,2B2 problem for A since
A(pz´z˚) “ 0 mod q for pz´z˚ ‰ 0 where A “ [

1 a b
]

for a random a (modelling
ExpandA as a random oracle) and random b (as discussed in Game2). More con-

cretely, let A “ [
1 a b

]
be the challenge RSIS vector given to B where a, b

$← Rq.

The adversary B samples seed $← {0, 1}κ and provides vk “ (seed, b) to A against
Game4 and programs ExpandA(seed) “ a (modelling ExpandA as a random ora-
cle). Note that the distribution of (seed, b) matches perfectly the distribution of
vk produced in Game4 due to the change of b in Game2. Since OSign is run using
only with publicly computable values in Game4, B simulates OSign queries as
in Game4. B also simulates the queries to H as in Game4 and stores the corre-
sponding tables TH and Ts. As discussed above, provided that Abort II does not
happen, B can use A’s output forgery to create an RSISq,2,2B2 solution. Hence,∣∣∣AdvRSISB ´ AdvGame4

A
∣∣∣ � pc and TB « TA. As a result, we get

∣
∣
∣Adv

RSIS
B ´ AdvEUF-CMA

A
∣
∣
∣ “

∣
∣
∣Adv

RSIS
B ´ AdvGame4

A ` AdvGame4
A ´ AdvEUF-CMA

A
∣
∣
∣

� pc ` QSignQH{22κ ` AdvHint-RLWE
H (κ) ` QH ¨ AdvRLWE

D (κ).

This concludes the proof. �	

3.3 Description of Masked Plover-RLWE

This section describes our main construction, the masked Plover-RLWE. Dsk

and Dpert are respectively replaced by sums of distributions [d repsk] ¨ Dind
sk and

[d reppert] ¨ Dind
pert to enable the masking, where repsk and reppert are newly intro-

duced parameters.

Key Generation. The key generation generates d-sharings small secrets ([[s]], [[e]])
and the corresponding RLWE sample b “ a ¨ s ` e. As in Raccoon [29], a key
technique is the use of AddRepNoise for the generation of the small errors which
ensures that a t-probing adversary learns limited information about (s, e).

Algorithm 8. Plover-RLWE.MaskKeygen(1κ) Ñ (vk, sk)
Require: The ring R, a modulus q
Ensure: A public key (seed, b) P {0, 1}κ ˆ R, a private key (s, e) P R2

1: seed
$← {0, 1}κ

2: a :“ ExpandA(seed) � Map a seed to an element in R
3: [[(s, e)]] ← AddRepNoise

(R2
q, d, Dind

sk , repsk
)

� Samples s, e from Dsk

4: [[b]] :“ β ´ (a ¨ [[s]] ` [[e]])
5: b :“ Unmask([[b]])
6: return (vk :“ (seed, b), sk :“ (vk, [[s]]))

Signature Procedure. The signature procedure is adapted to remove the com-
putation of z1 and save on masking. It recovers z′

1 “ z1 ` c2 from unmasked
values as done in the verification Algorithm 7 from unmasked values. This also

332 M. F. Esgin et al.

allows to drop e from the private key and significantly reduces its size. A formal
description is given in Algorithm 9.

Algorithm 9. Plover-RLWE.MaskSign(msg, sk) Ñ sig

Require: A message msg, the secret key sk “ ((seed, b), [[s]])
Ensure: A signature (salt, z2, z3,msg)

1: salt
$← {0, 1}2κ

2: u :“ H(msg, salt, vk)
3: a :“ ExpandA(seed)
4: [[p]] ← AddRepNoise(R2

q, d, Dind
pert, reppert) � p “ (p1, p2) P D2

pert

5: [[w]] ← [[p1]] ` a ¨ [[p2]]
6: w :“ Unmask([[w]])
7: c :“ u ´ w
8: (c1, c2) :“ Decomposeβ(c) � c “ β ¨ c1 ` c2
9: [[s]] ← Refresh([[s]]) � Refresh [[s]] before re-use

10: [[z2]] :“ [[p2]] ` c1 ¨ [[s]]
11: z2 :“ Unmask([[z2]])
12: z3 :“ c1
13: return sig :“ (salt, z2, z3), auxsig “ c2 � auxsig is used in security proof, but not

in verification.

Verification. The verification first recovers z′
1 :“ u ´ az2 ´ bz3 “ z1 ` c2. It then

checks the shortness of (z′
1, z2, z3). A formal description is given in Algorithm 7.

3.4 Security of Masked Plover-RLWE

We now turn to the security of the masked version of Plover, in the t-probing
model. Contrary to proofs for less efficient masking techniques, which have
no security loss even in the presence of the probes, we propose a fine-grained
result where we quantify precisely the loss induced by the probes and show how
the security of this leaky scheme corresponds to the security of the leak-free
unmasked Plover, but with slightly smaller secret key parameters and slightly
larger verification norm bound.

Theorem 3. The masked Plover-RLWE scheme with parameters (d,Dind
sk , repsk,

Dind
pert, reppert, B2) is t-probing EUF-CMA secure in the random oracle model if

the unmasked Plover-RLWE scheme with parameters (Dsk,Dpert, B
′
2) is EUF-CMA

secure in the random oracle model, with
⎧
⎪⎨
⎪⎩

Dsk :“ [d repsk ´ t] ¨ Dind
sk ,

Dpert :“ [d reppert ´ t] ¨ Dind
pert

B′
2 :“ B2 ` t ¨ (Bpert ` n(q{(2β) ` 1{2) Bsk),

(2)

where Bpert and Bsk denote upper bounds on the �2 norm of samples from Dind
pert

and Dind
sk , respectively. B′

2 is the norm bound used by the unmasked Plover-RLWE.

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 333

Formally, let A denote an adversary against the t-probing EUF-CMA security
game against masked Plover-RLWE making at most QSign signing queries and at
most QH random oracle queries and advantage Advpr-EUF-CMA

A . Then, there exists
an adversary A′ against EUF-CMA security of unmasked Plover-RLWE, running
in time TA′ « TA and making Q′

Sign “ QSign sign queries and QH′ “ QH random
oracle queries with advantage AdvEUF-CMA

A′ such that:

Advpr-EUF-CMA
A � AdvEUF-CMA

A′ ` QSignQH{22κ.

Proof. We describe the reduction with several hybrid games starting from the
t-probing EUF-CMA game played with adversary A against the masked signature
with random oracle H and ending with a game where we can build an adversary
A′ against the EUF-CMA security for the unmasked signature with a random
oracle H ′. In this and the following games we let Si denote the event that A
wins the t-probing EUF-CMA game.

Game0. This corresponds to the t-probing EUF-CMA unforgeability game [5]
played with adversary A. At the beginning of the game, A outputs a key
gen. probing set PKG of size � t, then a masked key generation oracle OKG
runs MaskKeygen(1κ) to output (vk :“ (seed, b), sk :“ (vk, [[s]])) and A is given
(vk,LKG), where LKG “ MaskKeygenPKG

denotes the observed values of the t
probed variables during the execution of Plover-RLWE.MaskKeygen with oracle
access to Algorithms 8 and 9 with adversary A. In addition, the adversary is
allowed to probe and learn the values of t variables during each execution of
Algorithms 8 and 9.

The adversary gets access to a (masked) signing oracle OSign(m,PS), where
m is a message and PS is a signing probing set of size at most t. The oracle returns
(sig,LS) where sig ← Plover-RLWE.MaskSign(m, sk) and LS is the observed val-
ues of the t probed variables during the execution of Plover-RLWE.MaskSign.
Before each such OSign query, the Refresh([[s]]) gadget is called by the challenger
to refresh the secret key shares (this challenger-run gadget is not probed by A).
The adversary can also query the random oracle H for the masked scheme. In
this game, queries to the masked random oracle H are answered using an inter-
nal random oracle H ′ (not accessible directly to A). The oracles in this game are
similar to those in Fig. 2 but without the highlighted lines that are introduced
in the following game. The adversary wins the game if it outputs a valid forgery
message/signature pair (msg˚, sig˚), where msg˚ has not been queried to OSign.

Game1 (Fig. 2). In this game, we change the computation of the probed
observations (LKG,LS) given to A, from the actual values to the values sim-
ulated by probabilistic polynomial time algorithms SimKG(PKG, auxKG) and
SimSig(PS , auxMS), respectively. The simulation algorithms simulate the probed
values using auxiliary information auxKG (resp. auxMS) consisting of public val-
ues and certain leaked internal values as indicated in the highlighted lines of
Fig. 2. The main idea (see Sect. 4.2 of [29] for a similar proof) is that the inter-
nal t-probed observations in all the gadgets except AddRepNoise can be simulated

334 M. F. Esgin et al.

without the secret shared inputs, whereas by SNI with unshared inputs property
of AddRepNoise in Lemma 1, only � t unshared inputs (captured by the aux-
iliary values (qsi, qei)iP[t] and (qpi)iP[t] in the masked key generation and signing
algorithms, respectively) suffice to simulate its t-probed observations. Note that
Game1 writes z′

1 as z′
1 “ p1 ` c1 e ` c2 instead of z′

1 “ u ´ a z2 ´ b z3; this is a
purely syntactic change, as the two expressions are equal and we assume that
the secret key includes the error e.

We construct the simulators SimKG and SimSig by composing the outputs of
the simulators for each gadget, going from the last gadget to the first gadget,
similar to the analysis in [5]. In the following description, we use the following
notations: For the i’th gadget in SimKG (resp.SimSig), we let ti denote the num-
ber of probed variables in this i’th gadget and by auxi the auxiliary (leaked)
information needed to simulate the internal view of the i’th gadget. Simulator
SimKG for the probed observations LKG works as follows:

1. The Unmask([[b]]) gadget (gadget 3) in Plover-RLWE.MaskKeygen is t-NIo (by
Lemma 8 in [5]) with public output b. Hence, the probed observations in
Unmask can be simulated by SimKG using � t3 input shares in [[b]] and the
auxiliary information aux3 :“ b.

2. The multiplication gadget a ¨ [[s]]` [[e]] (gadget 2) in Plover-RLWE.MaskKeygen
is computed share-wise and therefore is t-NI. Hence, the probed observations
in this gadget can be simulated by SimKG using � t2 ` t3 input shares in
[[s]], [[e]].

3. The AddRepNoise gadget in Plover-RLWE.MaskKeygen is t-SNIu with d ¨
rep unshared inputs (ri,j)iP[rep],jP[d] :“ ((psk, pek)kP[d¨rep´t], (qsk, qek)kP[t]) by
Lemma 1.
Hence, the probed observations in AddRepNoise can be simulated by SimKG
using � t1 ` t2 ` t3 � t leaked unshared inputs (qsk, qek)kP[t] (i.e. the set of safe
(unleaked) unshared inputs of AddRepNoise are denoted by (psk, pek)kP[d¨rep´t]).

Overall, SimKG can simulate the probed observations in PKG using auxiliary
information auxKG :“ (vk, (qsi, qei)iP[t]), as shown in Fig. 2.

Similarly, simulator SimSig for the probed observations LS works as follows:

1. The Unmask([[z2]]) gadget (gadget 6) in Plover-RLWE.MaskSign is t-NIo (by
Lemma 8 in [5]) with public output z2. Hence, the probed observations in
Unmask can be simulated by SimSig using � t6 input shares in [[z2]] and the
auxiliary information aux6 :“ z2.

2. The multiplication gadget [[p2]] ` c1 ¨ [[s]] (gadget 5) in Plover-RLWE.MaskSign
is t-NI. Hence, the probed observations in this gadget can be simulated by
SimSig using � t5 ` t6 � t input shares in [[p2]], [[s]].

3. The Refresh([[s]]) gadget (gadget 4) in Plover-RLWE.MaskSign is t-SNI
(by [27]). Hence, the probed observations in this gadget can be simulated
by SimSig using � t4 � t input shares in [[s]] (note that those t4 input shares
in [[s]] can be simulated by SimSig as independent uniformly random shares
due to the Refresh([[s]]) called by the challenger before each OSign call).

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 335

4. The Unmask([[w]]) gadget (gadget 3) in Plover-RLWE.MaskSign is t-NIo (by
Lemma 8 in [5]) with public output w. Hence, the probed observations in
Unmask can be simulated by SimSig using � t3 input shares in [[w]] and the
auxiliary information aux3 :“ w.

5. The multiplication gadget [[p1]] ` a ¨ [[p2]] (gadget 5) in Plover-RLWE.MaskSign
is t-NI. Hence, the probed observations in this gadget can be simulated by
SimSig using � t2 ` t3 � t input shares in [[p1]], [[p2]].

6. The AddRepNoise gadget (gadget 1) in Plover-RLWE.MaskSign is t-SNI with
d¨rep unshared inputs (ppk)kP[d¨rep´t], (qpk)kP[t]) by Lemma 4. Hence, the probed
observations in AddRepNoise can be simulated by SimSig using � t1 � t leaked
unshared inputs (qpk)kP[t]) (i.e. the set of safe (unleaked) unshared inputs of
AddRepNoise are denoted by (ppk)kP[d¨rep´t]).

Overall, SimSig can simulate the probed observations in PS using auxiliary infor-
mation auxMS :“ (msg, vk, (qpi)iP[t], sig, auxsig), as shown in Fig. 2. (note that
aux3 “ w can be computed from auxMS since w “ u ´ c, u “ H(msg, salt, vk)
with salt taken from sig, and c computed from c1 in sig and c2 in auxsig).

Fig. 2. Algorithms in Game1

Since the view of A is perfectly simulated in this game as in the previous
game, we have Pr[S1] “ Pr[S0].

336 M. F. Esgin et al.

Game2 (Fig. 3). In this game, we re-arrange the computation in OKG to first
compute a ‘safe’ verification key pb :“ β ´ (aps ` pe) using the ‘safe’ part (ps, pe) of
the secret key, and only later sample the ‘leaked’ part (qs, qe) :“ ∑

iP[t](qsi, qei) of

the secret key and use this leaked secret and pb to compute the full verification
key b :“ pb ´ (aqs ` qe). The above change to OKG is just a re-ordering of the
computation and thus does not change the view of A.

In this game, we also similarly re-arrange the computation in OSign to first
compute a ‘safe’ part of the signature xsig with pz2 “ pp2 ` pc1ps, using the ‘safe’
perturbation part pp2 and ‘safe secret key part ps, and later compute the full
signature sig from the pz2 by adding the ‘leaked’ signature part to get z2 “
pz2 ` ∑

iP[t] qpi,2 ` c1 x
∑

iP[t]qsi
“ (pp2 ` qp2) ` pc1ps ` c1qs “ (pp2 ` qp2) ` c1(ps ` qs),

where the last equality holds if pc “ c. Hence, for this re-arranged computation
to preserve the correctness of the final signature (in particular z2) as in the
previous game (and thus preserve A’s view), we need to ensure that pc :“ pu ´ pw
in the top ‘safe’ part of the computation, is equal to c :“ u´w used in the bottom
‘leaked’ part of the computation. To achieve this, we use the random oracle H ′

(not directly accessible to A) to compute pu :“ H ′(msg, salt, vk) in the ‘safe’
part of the computation, and we change the simulation of the random oracle H
accessible to A by programming H so that u “ H(msg, salt, vk) :“ pu ` [

1 a
] ¨ qp,

where qp is sampled by the simulation and stored in the table TH for H. Defining
qw :“ [

1 a
] ¨ qp, we have c “ u ´ w “ (pu ` qw) ´ (pw ` qw) “ pu ´ pw “ pc, as required.

Since pu :“ H ′(msg, salt, vk) is uniformly random in Rq and independent of[
1 a

] ¨ qp, the simulation of H is identical to the previous game from A’s view,
except if an abort happens in OSign line 18 (we say then that the event B2

occurs). However, since salt is uniformly random in {0, 1}2κ for each sign query,
the event B2 occurs with negligible probability Pr[B2] � QSignQH{22κ. There-
fore, overall we have Pr[S2] � Pr[S1] ´ Pr[B2] � Pr[S1] ´ QSignQH{22κ.

We now construct an adversary A′ against the EUF-CMA of the unmasked
signature scheme Sign with random oracle H ′, secret key distribution Dsk :“
[d repsk ´ t] ¨ Dind

sk , and perturbation distribution Dpert :“ [d reppert ´ t] ¨ Dind
pert

that simulates view of A in Game2, such that A′ wins its game with probability
� Pr[S2]. The challenger for A′ generates a challenge key pair (pvk, psk) by running
lines 1–6 of OKG in Game2 (this corresponds exactly to the key gen. algorithm
for the unmasked scheme) and runs A′ on input vk′. Then A′ runs as follows.

1. It first runs A to get PKG and then runs lines 7–12 of OKG in Game2 to get
(vk, sk,LKG) and runs A on input (vk,LKG).

2. Similarly, to respond to each OSign query (msg, PS) of A, A′ calls its Sign
algorithm on input msg (this corresponds to running lines 1–11 of OKG in
Game2), and using the returned xsig and yauxsig, A′ runs lines 12–26 of OSign
in Game2 to compute and return (sig,LS) to A (note that pw “ pu ´ pc is
computed by A′ from pu “ H ′(msg, salt, pvk) and pc obtained from c1 in xsig and
c2 in yauxsig).

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 337

Fig. 3. Algorithms in Game2

3. A′ also runs the H simulator in Game2 to respond to A’s H queries, where
H ′ is the random oracle provided to A′ by its challenger.

Consequently, the view of A is perfectly simulated as in Game2, so with prob-
ability Pr[S2], A outputs a valid forgery (msg˚, sig˚ “ (salt˚, z2̊, c1̊)) such that

338 M. F. Esgin et al.

‖(z′
1̊ , z2̊, z3̊)‖ � B2, and ‖c1̊‖∞ � q{(2β) ` 1{2 and z′

1̊ ` az2̊ ` bc1̊ “ u˚ “
H(msg˚, salt˚, vk) where msg˚ has not been queried by A to OSign. Then, A′

computes (qz′
1̊ , qz2̊) “ qp ` c1̊(qe, qs) with (qs, qe) “ (

∑
iP[t] qsi) and returns its forgery

(msg˚, xsig
˚ “ (salt˚, pz2̊, c1̊)), where (pz′

1̊ , pz2̊) :“ (z′
1̊ , z2̊) ´ (qz′

1̊ , qz2̊).

Note that, defining qw˚ :“ [
1 a

] ¨qp˚ and qb :“ aqs`qe (where qp˚ is obtained from
TH entry for the forgery H-query (msg˚, salt˚, vk)), we have qz′

1̊ ` aqz2̊ ´qbc1̊ “ qw˚

and so forgery xsig
˚
satisfies the unmasked scheme validity relation pz′

1̊ `apz2̊`pbc1̊ “
(z′

1̊ `az2̊`bc1̊)´(qz′
1̊ `aqz2̊´qbc1̊) “ u˚´ qw˚ “ H ′(msg˚, salt˚, pvk), as required. Also,

‖(pz′
1̊ , pz2̊, c1̊)‖ � ‖(z′

1̊ , z2̊, c1̊)‖ ` ‖(qz′
1̊ , qz2̊, 0)‖ � B2 ` t ¨ (Bpert ` n q

2η Bsk) :“ B′
2,

since ‖(qz′
1̊ , qz2̊)‖ � ‖qp‖`n‖c1̊‖∞‖(qe, qs)‖ � (tBpert`n(q{(2β)`1{2)tBsk). Finally,

msg˚ has not been queried by A′ to its unmasked signing oracle. It follows that
A′ wins with probability � Pr[S2] � Pr[S0] ´ QSignQH{22κ. This concludes the
proof. �	

3.5 Cryptanalysis and Parameter Selection

Now that the security of our scheme is formally proven in unmasked form for
general distributions Dsk,Dpert and the security of the masked form reduces to its
unmasked form, we wish to demonstrate concrete parameter selection for masked
Plover-RLWE. We evaluate the concrete security of our scheme against RSIS for
forgery, and against Hint-RLWE for key-indistinguishability using the reduction
from Hint-RLWE to RLWE (Theorem 1) and standard evaluation heuristics.

Optimizations. For our implementation, we use these standard optimizations:

– Norm check. We add a norm check in MaskSign against B2, allowing to
reject with low probability some large signatures, and making forgery harder.
Note that this is not rejection sampling, and it can be done unmasked.

– Bit-dropping. We can drop the ν least significant bits of b. More formally,
let us note (b1, b2) “ Decompose{2ν}(b) where ν is the number of bits dropped
in each coefficient of b. We can set 2ν ¨ b1 as a public key.

As long as ν “ O
(
log

(
σ2
pert

q
√

n

))
, we can show that breaking inhomogeneous

RSIS for
[
1 a 2ν ¨ b1

]
implies breaking it for

[
1 a b

]
with comparable param-

eters. This reduces the size of vk, while preserving the security reduction.

Forgery Attacks and Practical RSIS Security. Let σsk, σpert denote the stan-
dard deviation of the (unmasked) secret key and perturbation, respectively. In
a legitimate signature:

E

[
‖z′‖2

]
“ E

[
‖p1 ` e ¨ c1 ` c2 ` b2 ¨ c1‖2

]
` E

[
‖p2 ` s ¨ c1‖2

]
` E

[
‖c1‖2

]

« n

(
2σ2

pert ` β2

12
` q2 n

6β2
σ2
sk ` n

22ν

12
q2

12β2

)

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 339

Based on this analysis, we set B2 “ 1.2
√

n
(
2σ2

pert ` β2

12 ` q2 n
6 β2 σ2

sk ` n 22ν

12
q2

12β2

)
.

The “slack” factor 1.2 allows an extremely large number of generated signatures
to satisfy ‖z′‖ � B2, which means that the restart rate will be very low.
Solving Inhomogeneous RSIS. To forge a message, an adversary must either break
the collision resistance of H or solve the equation:

([
1 a β ¨ b1

] ¨ z′ “ u
)

∧ (‖z′‖ � B2) (3)

Note that
[
1 a β ¨ b1

] ¨ z′ “ [
1 a b

] ¨ z′′, where z′′ “ z′ ´ (z3 ¨ b2, 0, 0), and
that ‖z3 ¨ b2‖ � ‖c1‖1 ¨ ‖b2‖ � n3{2 ¨ q 2ν´2

β . Then Eq. (3) is an instance of the

inhomogeneous RSIS problem, with a bound BRSIS “ B2 ` n3{2 ¨ q 2ν´2

β .
We estimate its hardness based on Chuengsatiansup et al. [9] and Espitau

and Kirchner [15]. Under the geometric series assumption, [15, Theorem 3.3]
states that Eq. (3) can be solved in poly(n) calls to a CVP oracle in dimension
BBKZ, as long as:

BRSIS �
(
δ3n
BRSIS

q1{3
)

, where δBRSIS
“

(
(π ¨ BBKZ)1{BBKZ ¨ BBKZ

2πe

)1{(2(BBKZ´1))

.

(4)
This attack has been optimized in [9] by omitting x � n of the first columns
of A (when considered as a n ˆ 3n matrix). The dimension is reduced by x,
however, the co-volume of the lattice is increased to q

n
3n´x . This strengthens Eq.

(4) to the more stringent condition BRSIS � minx�n

(
δ3n´x
BRSIS

q
n

3n´x

)
.

Key-Indistinguishability and Hint-RLWE. In order to apply Theorem 1, we
need quantitative bounds on BHRLWE. These are given in Lemma 2, which is a
minor adaptation of [30, Lemma B.2]. A proof is provided in the full version for
completeness.

Lemma 2. For j P [QSign], let c[j] ← C1, where C1 is defined as in Def-

inition 9. Let D “ ∑
jP[QSign]

c[j] (c[j])˚. Let M “ 2
⌈

q´1
2β

⌉
` 1. We then

have Pr [s1(D) � BHRLWE] ≤ 2´κ, where BHRLWE “ QSign n M2

12

(
1 ` O(κ n log n)√

QSign

)
.

Specifically, when QSign “ ω(κn log n)2, then s1(D) is equivalent to QSign n M2

12 .

Advantage Against Hint-RLWE. An adversary breaking the key-indistinguish-
ability of vk is also able to break Hint-RLWE

q,QSign,yDsk,zDpert,C . In the Gaussian

case, Dsk
s„ D

pσsk
and Dpert

s„ D
pσpert

, where pσsk

σsk,ind
“ pσpert

σpert,ind
“ √

d rep ´ t.
Theorem 1 and Lemma 2 state that such an adversary is also able to break

RLWEq,Dσred
, where 1

σ2
red

“ 2
(

1
pσ2
sk

` BHRLWE

pσ2
pert

)
and BHRLWE is as in Lemma 2. For the

parameters we choose in practice, this entails: σred

pσpert
« β

q

√
6

n QSign
Estimating the

concrete hardness of RLWE is well-documented. We rely on the lattice estimator
[2], an open-source tool available at https://github.com/malb/lattice-estimator.

https://github.com/malb/lattice-estimator

340 M. F. Esgin et al.

Parameter Selection. Despite the many variables involved, parameter selec-

tion is fairly straightforward. We set β “ Θ(σpert), ν “ Θ
(
log

(
σ2
pert

q
√

n

))
and σsk “

o
(

β σpert

q
√

n

)
. This guarantees efficiency while ensuring that BRSIS “ O(σpert

√
n).

Fig. 4. Illustration of the constraints on q (in log scale): RSIS and RLWE must be hard,
and the Hint-RLWE � RLWE reduction must be non-vacuous.

These parameters also guarantee an efficient reduction in Theorem 1. We
estimate the number of queries, QSign, by increasing it for as long as the RLWE
instance entailed by the reduction of Theorem 1 and Lemma 2 remains secure
according to the state-of-the-art. Q′

Sign corresponds to the number of queries
allowed when the condition σ �

√
2ηε(Zn) is dropped in Theorem 1.

We illustrate constraints over the modulo q in Fig. 4. Selected parameters are
provided in Table 1, and the evolution of allowed number of queries as a function
of log q is illustrated in Fig. 5.

Table 1. Parameter sets for κ “ 128. All parameter sets feature n “ 2048.

�log q� 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

log β 31 32 33 34 35 36 37 37 38 38 39 39 40 40 41 41

log σpert 30 31 32 33 34 35 36 36 37 37 38 38 39 39 40 40

log σsk 21 22 23 24 25 26 27 26 27 26 27 26 27 26 27 26

ν 15 16 17 18 19 20 21 20 21 20 21 20 21 20 21 20

QSign 240 242 244 246 248 250 252 251 252 249 250 247 248 245 246 243

Q′
Sign 246 248 248 250 252 253 254 250 252 249 250 247 248 245 246 243

|vk| 5136 5136 5136 5136 5136 5136 5136 5648 5648 6160 6160 6672 6672 7184 7184 7696

|sig| 11488 11843 12198 12533 12908 13263 13617 13617 13972 13972 14327 14327 14682 14682 15037 15037

3.6 Implementation

We provide both a Python and a C reference implementation for Plover-RLWE,
available at https://github.com/GuilhemN/masksign-plover. They are designed
to match the high-level pseudo-code from Subsect. 3.3 and allows one to read
a concrete implementation of each of the functions we introduced. The Python
implementation aims for simplicity and is not constant-time, while the C imple-
mentation is constant-time and uses optimization techniques. We include scripts
for parameters selection under the folder params based on the lattice estimator
[2].

https://github.com/GuilhemN/masksign-plover

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 341

Fig. 5. Number of signing queries
(conservative: , standard:) and
bytesizes (|vk|: , |sig|:) as func-
tions of q. Parameter sets as in Sect. 3.5.

Fig. 6. Timings of Plover-RLWE
(Keygen: , Sign:) as functions
of d. Parameter set from Sect. 3.5 with
�log q� “ 41, and concrete parameters
from Table 2.

These reference implementations re-use several components of Raccoon ref-
erence implementations [29] for the NTT, Montgomery modular reduction, and
randomness generators. They are portable and can target various masking orders
d ´ 1. Note however that they suffer from the same issues as Raccoon reference
implementations. Specifically, a deterministic portable code written in a high-
level language cannot realistically be considered to be fully resistant to side-
channel attacks, and notably due to the use of the randombytes function defined
by NIST, which represents an abstract RBG (Random Bit Generator), but is
only suitable to ease reproducibility and generation of test vectors. Additionally,
our reference implementations are severely limited in their key management as
the NIST API does not allow for a refresh of the secret key, which is required for
t-probing security. We argue that these implementations still provide evidence
that Plover-RLWE is easy to mask at high masking orders.

General Implementation Characteristics. Plover-RLWE has building blocks
resembling those of Raccoon [29], as well as a modulus q of same magnitude and
format (product of two Solinas primes). In particular we reuse part of their
codebase and of their implementation tricks.

Signature Encoding. We encode low-order bits using binary encoding, and high-
order bits using Huffman/unary-type encoding. This encoding is similar to the
ones in Falcon and Raccoon. We chose this technique over ANS encoding –
although ANS could compress signatures further – as the latter proved hard to
implement securely in NIST Call for Additional Digital Signature Schemes, with
vulnerabilities discovered in the HuFu and HAETAE proposals1.

Mask Compression Technique. Our implementation uses the mask compression
technique introduced in [29,33] in order to reduce the size of the stored secret

1 See https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Hq-wRFDbIaU.

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Hq-wRFDbIaU

342 M. F. Esgin et al.

key, which contains the masked polynomial [[s]]. A masked polynomial at order
d can be compressed into one polynomial and d ´ 1 seeds which can be later
expanded into full polynomial masking shares. We refer to [29, Algorithms 14
and 15] and [33] for a detailed specification of this technique.

This technique could also be used to drastically reduce the memory require-
ments of Plover-RLWE. Our masking gadgets can be adapted to do runtime
computations on compressed masked polynomials to limit the impact of a larger
d on memory requirements. For reference, Raccoon [29, section 3.3.2] reduced
memory usage for a masking order d “ 32 by a factor of 15 using this technique.

Hardware. Plover-RLWE could be implemented on hardware in a similar man-
ner to Raccoon. Several versions of Raccoon were implemented on FPGA archi-
tecture, one is reported in [31]. These implementations contain a RISC-V con-
troller, a Keccak accelerator, and a lattice unit with direct memory access via a
64-bit interface, using hard-coded support for Raccoon’s arithmetic modulus q.
Plover-RLWE can share a large part of these implementations.

As for Raccoon [29, section 3.3.1] the usage of SHAKE as hash function in
the implementation of ExpandA and AddRepNoise can be highly optimized in
hardware, and the hardware XOF (eXtendable-Output Functions) sampler can
implement a full Keccak round and produce output at a very high rate.

Table 2. Performance of the Plover-RLWE reference implementation for differ-
ent masking orders on our reference platform. Across all parameter sets, we have
(κ, n, �log q� , log β, ν) “ (128, 2048, 41, 37, 21), and we set repsk “ reppert “ rep.

Variant Parameters Keygen Sign Verify

κ ´ d rep usk upert ms Mclk stack ms Mclk stack ms Mclk stack

128-1 8 27 36 1.341 2.546 49312 1.989 3.788 164128 0.432 0.820 32864

128-2 4 27 36 1.595 3.030 114848 2.272 4.316 246048 = = =

128-4 2 27 36 2.045 3.885 213184 2.835 5.386 410016 = = =

128-8 4 26 35 6.887 13.083 409856 8.732 16.588 737760 = = =

128-16 2 26 35 8.832 16.782 803200 11.288 21.460 1393248 = = =

128-32 4 25 34 30.213 57.404 1589888 37.350 70.959 2704224 = = =

Performance. We evaluated the performance of Plover-RLWE on a Ryzen Pro
7 5850U (16CPU threads at 3 GHz), boost disabled, and running Manjaro 22.1.
The results are provided in Table 2 and Fig. 6. The reference implementation
instantiates the parameter set from Table 1 such that �log q� “ 41, as it is opti-
mal for the number of possible queries for n “ 2048 and κ “ 128. Other param-
eter sets perform very similarly since – performance-wise – only the encoding
differs between them. The implementation packages parameters for d shares,
d P {1, 2, 4, 8, 16, 32}, and the distributions Dsk and Dpert are sums of uniforms
SU(usk, d ¨ repsk) and SU(upert, d ¨ reppert) with rep :“ repsk “ reppert P {2, 4, 8} a

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 343

function of d. usk and upert are chosen as to achieve a standard deviation close to
σsk and σpert. Plover-RLWE has performance very similar to Raccoon; in particu-
lar, we observe a (quasi-)linear increase in the execution times and stack usage
of our functions with d, which makes the use of a high masking order practical.
For instance, Plover-RLWE masked with a number of shares d “ 8 still performs
better than Dilithium masked with d “ 2 [29, Table 6].

References

1. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J.,
Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone, D.,
Liu, Y.K.: NISTIR 8413 – Status Report on the Third Round of the NIST Post-
Quantum Cryptography Standardization Process (2022), https://doi.org/10.6028/
NIST.IR.8413

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015), http://www.degruyter.com/view/
j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

3. Azouaoui, M., Bronchain, O., Cassiers, G., Hoffmann, C., Kuzovkova, Y., Renes,
J., Schneider, T., Schönauer, M., Standaert, F., van Vredendaal, C.: Protecting
dilithium against leakage revisited sensitivity analysis and improved implemen-
tations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4), 58–79 (2023).
https://doi.org/10.46586/tches.v2023.i4.58-79

4. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016. pp. 116–129. ACM Press (Oct 2016). https://doi.org/10.1145/2976749.
2978427

5. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.A., Grégoire, B., Rossi, M., Tibouchi,
M.: Masking the GLP lattice-based signature scheme at any order. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 354–
384. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-
78375-8 12

6. Battistello, A., Coron, J.S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (Aug
2016). https://doi.org/10.1007/978-3-662-53140-2 2

7. Berzati, A., Viera, A.C., Chartouny, M., Madec, S., Vergnaud, D., Vigilant, D.:
Exploiting intermediate value leakage in dilithium: A template-based approach.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4), 188–210 (2023). https://
doi.org/10.46586/tches.v2023.i4.188-210

8. Bronchain, O., Cassiers, G.: Bitslicing arithmetic/boolean masking conversions for
fun and profit with application to lattice-based KEMs. IACR TCHES 2022(4),
553–588 (2022). https://doi.org/10.46586/tches.v2022.i4.553-588

9. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
Compact signatures based on module-NTRU lattices. In: Sun, H.M., Shieh, S.P.,
Gu, G., Ateniese, G. (eds.) ASIACCS 20. pp. 853–866. ACM Press (Oct 2020).
https://doi.org/10.1145/3320269.3384758

https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.6028/NIST.IR.8413
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.46586/tches.v2023.i4.58-79
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-319-78375-8_12
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.46586/tches.v2023.i4.188-210
https://doi.org/10.46586/tches.v2023.i4.188-210
https://doi.org/10.46586/tches.v2022.i4.553-588
https://doi.org/10.1145/3320269.3384758

344 M. F. Esgin et al.

10. Coron, J., Gérard, F., Montoya, S., Zeitoun, R.: High-order polynomial comparison
and masking lattice-based encryption. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2023(1), 153–192 (2023). https://doi.org/10.46586/tches.v2023.i1.153-192

11. Coron, J., Gérard, F., Trannoy, M., Zeitoun, R.: High-order masking of NTRU.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(2), 180–211 (2023). https://
doi.org/10.46586/tches.v2023.i2.180-211

12. Coron, J., Gérard, F., Trannoy, M., Zeitoun, R.: Improved gadgets for the high-
order masking of dilithium. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(4),
110–145 (2023). https://doi.org/10.46586/tches.v2023.i4.110-145

13. Duc, A., Faust, S., Standaert, F.X.: Making masking security proofs concrete (or
how to evaluate the security of any leaking device), extended version. J. Cryptol.
32(4), 1263–1297 (2019). https://doi.org/10.1007/s00145-018-9277-0

14. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M.,
Wallet, A., Yu, Y.: Mitaka: A simpler, parallelizable, maskable variant of falcon.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 222–253. Springer, Heidelberg (May / Jun 2022). https://doi.org/
10.1007/978-3-031-07082-2 9

15. Espitau, T., Kirchner, P.: The nearest-colattice algorithm. Cryptology ePrint
Archive, Report 2020/694 (2020), https://eprint.iacr.org/2020/694

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407

17. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: Yao, A.C. (ed.) Innovations in Computer Sci-
ence - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Pro-
ceedings. pp. 230–240. Tsinghua University Press (2010), http://conference.iiis.
tsinghua.edu.cn/ICS2010/content/papers/19.html

18. Goubin, L.: A sound method for switching between Boolean and arithmetic mask-
ing. In: Koç, Çetin Kaya., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 3–15. Springer, Heidelberg (May 2001). https://doi.org/10.1007/
3-540-44709-1 2

19. Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M.: The hidden parallelepiped
is back again: Power analysis attacks on falcon. IACR TCHES 2022(3), 141–164
(2022). https://doi.org/10.46586/tches.v2022.i3.141-164

20. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4 27

21. Ito, A., Ueno, R., Homma, N.: On the success rate of side-channel attacks on
masked implementations: Information-theoretical bounds and their practical usage.
In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022. pp. 1521–1535.
ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3560579

22. Kannwischer, M.J., Genêt, A., Butin, D., Krämer, J., Buchmann, J.: Differential
power analysis of XMSS and SPHINCS. In: Fan, J., Gierlichs, B. (eds.) COSADE
2018. LNCS, vol. 10815, pp. 168–188. Springer, Heidelberg (Apr 2018). https://
doi.org/10.1007/978-3-319-89641-0 10

23. Karabulut, E., Alkim, E., Aysu, A.: Single-Trace Side-Channel Attacks on ω-
Small Polynomial Sampling: With Applications to NTRU, NTRU Prime, and
CRYSTALS-DILITHIUM. In: IEEE International Symposium on Hardware Ori-
ented Security and Trust, HOST 2021, Tysons Corner, VA, USA, December 12-15,
2021. pp. 35–45. IEEE (2021). https://doi.org/10.1109/HOST49136.2021.9702284

https://doi.org/10.46586/tches.v2023.i1.153-192
https://doi.org/10.46586/tches.v2023.i2.180-211
https://doi.org/10.46586/tches.v2023.i2.180-211
https://doi.org/10.46586/tches.v2023.i4.110-145
https://doi.org/10.1007/s00145-018-9277-0
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://eprint.iacr.org/2020/694
https://doi.org/10.1145/1374376.1374407
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/19.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/19.html
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.46586/tches.v2022.i3.141-164
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1145/3548606.3560579
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1109/HOST49136.2021.9702284

Plover: Masking-Friendly Hash-and-Sign Lattice Signatures 345

24. Kim, D., Lee, D., Seo, J., Song, Y.: Toward practical lattice-based proof of knowl-
edge from hint-MLWE. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part V. LNCS, vol. 14085, pp. 549–580. Springer, Heidelberg (Aug 2023). https://
doi.org/10.1007/978-3-031-38554-4 18

25. Kim, M., Lee, D., Seo, J., Song, Y.: Accelerating HE operations from key decom-
position technique. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part IV. LNCS, vol. 14084, pp. 70–92. Springer, Heidelberg (Aug 2023). https://
doi.org/10.1007/978-3-031-38551-3 3

26. Masure, L., Rioul, O., Standaert, F.: A nearly tight proof of duc et al.’s conjectured
security bound for masked implementations. In: Buhan, I., Schneider, T. (eds.)
Smart Card Research and Advanced Applications - 21st International Conference,
CARDIS 2022, Birmingham, UK, November 7-9, 2022, Revised Selected Papers.
Lecture Notes in Computer Science, vol. 13820, pp. 69–81. Springer (2022). https://
doi.org/10.1007/978-3-031-25319-5 4

27. Mathieu-Mahias, A.: Securisation of implementations of cryptographic algorithms
in the context of embedded systems. Theses, Université Paris-Saclay (Dec 2021),
https://theses.hal.science/tel-03537322

28. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factor-
ization. Math. Comput. 48(177), 243–264 (1987). https://doi.org/10.1090/s0025-
5718-1987-0866113-7

29. del Pino, R., Espitau, T., Katsumata, S., Maller, M., Mouhartem, F., Prest, T.,
Rossi, M., Saarinen, M.J.: Raccoon, A Side-Channel Secure Signature Scheme.
Tech. rep., National Institute of Standards and Technology (2023), available at
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

30. del Pino, R., Katsumata, S., Maller, M., Mouhartem, F., Prest, T., Saarinen, M.J.:
Threshold raccoon: Practical threshold signatures from standard lattice assump-
tions. Cryptology ePrint Archive, Paper 2024/184 (2024), https://eprint.iacr.org/
2024/184, https://eprint.iacr.org/2024/184

31. del Pino, R., Prest, T., Rossi, M., Saarinen, M.O.: High-order masking of lattice
signatures in quasilinear time. In: 44th IEEE Symposium on Security and Privacy,
SP 2023, San Francisco, CA, USA, May 21-25, 2023. pp. 1168–1185. IEEE (2023).
https://doi.org/10.1109/SP46215.2023.10179342

32. Prest, T.: A key-recovery attack against mitaka in the t-probing model. In:
Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp. 205–
220. Springer, Heidelberg (May 2023). https://doi.org/10.1007/978-3-031-31368-
4 8

33. Saarinen, M.J.O., Rossi, M.: Mask compression: High-order masking on memory-
constrained devices. Cryptology ePrint Archive, Paper 2023/1117 (2023), https://
eprint.iacr.org/2023/1117

34. Yu, Y., Jia, H., Wang, X.: Compact lattice gadget and its applications to hash-
and-sign signatures. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023,
Part V. LNCS, vol. 14085, pp. 390–420. Springer, Heidelberg (Aug 2023). https://
doi.org/10.1007/978-3-031-38554-4 13

35. Zhang, S., Lin, X., Yu, Y., Wang, W.: Improved power analysis attacks on falcon.
In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part IV. LNCS, vol. 14007,
pp. 565–595. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/978-3-031-
30634-1 19

https://doi.org/10.1007/978-3-031-38554-4_18
https://doi.org/10.1007/978-3-031-38554-4_18
https://doi.org/10.1007/978-3-031-38551-3_3
https://doi.org/10.1007/978-3-031-38551-3_3
https://doi.org/10.1007/978-3-031-25319-5_4
https://doi.org/10.1007/978-3-031-25319-5_4
https://theses.hal.science/tel-03537322
https://doi.org/10.1090/s0025-5718-1987-0866113-7
https://doi.org/10.1090/s0025-5718-1987-0866113-7
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2024/184
https://eprint.iacr.org/2024/184
https://eprint.iacr.org/2024/184
https://doi.org/10.1109/SP46215.2023.10179342
https://doi.org/10.1007/978-3-031-31368-4_8
https://doi.org/10.1007/978-3-031-31368-4_8
https://eprint.iacr.org/2023/1117
https://eprint.iacr.org/2023/1117
https://doi.org/10.1007/978-3-031-38554-4_13
https://doi.org/10.1007/978-3-031-38554-4_13
https://doi.org/10.1007/978-3-031-30634-1_19
https://doi.org/10.1007/978-3-031-30634-1_19

	Plover: Masking-Friendly Hash-and-Sign Lattice Signatures
	1 Introduction
	1.1 Our Solution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Notations
	2.2 Distributions
	2.3 Hardness Assumptions
	2.4 Masking
	2.5 Probing Model

	3 Plover-RLWE : Our RLWE-Based Maskable Signature
	3.1 Description of Unmasked Plover-RLWE
	3.2 EUF-CMA Security of Unmasked Plover-RLWE
	3.3 Description of Masked Plover-RLWE
	3.4 Security of Masked Plover-RLWE
	3.5 Cryptanalysis and Parameter Selection
	3.6 Implementation

	References

