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Abstract. Learning with Errors (LWE) is an important problem for
post-quantum cryptography (PQC) that underlines the security of sev-
eral NIST PQC selected algorithms. Several recent papers [7,25], [16,32]
have claimed improvements on the complexity of so-called dual attacks
on LWE. These improvements make dual attacks comparable to or even
better than primal attacks in certain parameter regimes. Unfortunately,
those improvements rely on a number of untested and hard-to-test sta-
tistical assumptions. Furthermore, a recent paper [20] claims that the
whole premise of those improvements might be incorrect.

The goal of this paper is to improve the situation by proving the cor-
rectness of a dual attack without relying on any statistical assumption.
Although our attack is greatly simplified compared to the recent ones,
it shares many important technical elements with those attacks and can
serve as a basis for the analysis of more advanced attacks. We provide
some rough estimates on the complexity of our simplified attack on Kyber
using a Monte Carlo Markov Chain discrete Gaussian sampler.

Our main contribution is to clearly identify a set of parameters under
which our attack (and presumably other recent dual attacks) can work.
Furthermore, our analysis completely departs from the existing statistics-
based analysis and is instead rooted in geometry. We also compare the
regime in which our algorithm works to the “contradictory regime” of
[20]. We observe that those two regimes are essentially complementary.

Finally, we give a quantum version of our algorithm to speed up the
computation. The algorithm is inspired by [10] but is completely formal
and does not rely on any heuristics.

Keywords: Learning with Errors · Dual attack · Lattice-based
cryptography · Quantum algorithm

1 Introduction

The Learning With Errors (LWE) problem [40] has become central to the secu-
rity of several cryptosystems. Most notably, Kyber (public-key encryption) and
Dilithium (signature) have been selected by the NIST for the Post-Quantum
Cryptography (PQC) Standardization and rely on algebraic version of LWE for
c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14657, pp. 256–285, 2024.
https://doi.org/10.1007/978-3-031-58754-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58754-2_10&domain=pdf
http://orcid.org/0000-0002-2549-951X
http://orcid.org/0000-0002-8657-9337
https://doi.org/10.1007/978-3-031-58754-2_10


Provable Dual Attacks on Learning with Errors 257

their security proofs. Other advanced cryptographic primitives such as FHE can
be built with LWE [15]. This makes LWE security estimates critical for the future
of PQC. The search LWE problem asks to recover the secret s given (A,b) where
b = As + e, A is a matrix chosen uniformly at random and e has small entries
(more details in Sect. 2.1).

There are two main approaches to attack the LWE problem: so-called primal
and dual attacks. In this paper, we will exclusively focus on dual attacks which
have recently attracted some interest due to significant claimed improvements in
their complexity. Both primal and dual attacks rely on the BKZ lattice reduction
algorithm [43] to obtain short vectors in lattices. The fundamental idea of dual
attacks is to use short vectors in the dual of the lattice to detect whether points
are close to the lattice or not, an idea that can be traced back to [5]. This
allows us to solve the distinguishing LWE problem where one is asked to detect
whether a sample comes from an LWE distribution, or a uniform distribution
[35]. In conjunction with some guessing step, this allows one to recover part of
the secret by trying several values until we get a point close to the lattice. By
repeating this operation a couple of times, we can solve the search LWE problem.

Originally, the main limiting factor (on the complexity) of dual attacks was
the need to compute one short vector (a very expensive operation) for every
few LWE samples (more details in Sect. 3) and compute a score for each secret
guess. Since then, a series of improvements have found their way into these
attacks. First, a series of works on lattice sieving have shown [13,36,38] that
those algorithms produce not only one but in fact exponentially many short
vectors “for free”. [11] suggested that this idea could be used in dual attacks
but it appears that [23] was the first paper to try to analyze it. Independently,
[7] used a “re-randomization” technique to produce many short vectors from a
single BKZ reduced basis. All those techniques claim to reduce the complexity
of attacks although the correctness relies on an unproven assumption about the
quality of those many short vectors. Then [25] noted that instead of computing
the score for each secret guess separately, all the scores can be computed at once
using a discrete Fourier transform (DFT), essentially reducing the cost to that
of a single guess. Following this work, a technical report by the MATZOV group
[32] has claimed further improvements by the use of a “modulus switching”
technique1 that significantly reduces the size of the DFT. Two recent work have
modified this attack to include a quantum [10] and lattice coding [16] speed up.

One issue with the papers above is that the number of statistical assumptions
that are necessary to justify the correctness of the algorithms has grown signif-
icantly, notably in [32]. While certain assumptions could probably be justified
(almost) formally, others are subject to more controversy [20]. In particular, the
most controversial aspect of [25,32] is that the attack only uses a few LWE sam-
ples and that all the (exponentially-many) short vectors are derived from those
samples which therefore are not statistically independent. When using a small
number of LWE samples, the problem becomes very close to the Bounded Dis-

1 A modulus switching technique was also suggested in [25] but it is unclear to us how
it compares to [32], and [20] suggests that they are different.
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tance Decoding which has been extensively studied. The status of [7] is unclear
because it computes exponentially many short vectors from exponentially many
samples, but the ratio of the number of short vectors to the number of samples
is also exponential so the issue of the statistical independence remains but it
does not seem as problematic. This makes it unclear whether an argument like
that of [20] applies to such a case.

The purpose of this paper is to encourage a more rigorous analysis of dual
attacks on LWE to better understand under what set of parameters they provably
work. We note in that regard that a recently accepted paper at TCC 2023 [33]
has focused on similar problems in statistical decoding/“dual attacks” in coding
theory. The authors claim in the conclusion that at least part of their results
apply to lattice dual attack. We believe that it would indeed be interesting to
see what this approach yields for lattices, however we point out that the notion
of dual attack that the authors have in mind looks quite different from the one
in this paper. In short, and with our notations, the “dual attack” of [33] would
be akin to splitting A horizontally instead of vertically. This splitting would
not correspond anymore to a decomposition of Lq(A) as Lq(Aguess)+Lq(Adual)
and therefore looks incompatible with existing works on dual attacks on LWE.
Furthermore, our understanding of [33] is that generating parity check vectors h
corresponds to generating many short dual vectors in L⊥

q (A), independently of
the splitting of A. This is completely at odds with lattice dual attacks where we
split A to generate dual vectors in L⊥

q (Adual) which is much cheaper. Overall
it looks like [33] might be a completely different kind of dual attack. See [39,
Appendix A] for more details.

1.1 Contributions

The main contribution of this paper is to provide a completely formal, non-
asymptotic analysis of a simplified dual attack. To simplify the presentation, we
do not include elements such as the guessing complexity and modulus switching2

to focus on the most controversial element, namely the fact that the attack only
uses m LWE samples (with m not much bigger than the dimension n of the
samples) and that all the short vectors are derived from those m samples.

Our approach completely departs from the existing statistics-based attacks
and is instead rooted in geometry. This allows us to obtain a relatively short
proof and leverage existing results on the geometry of lattices.

One of the most important technical contribution of this paper is to make
completely clear (Theorem 5) under what choice of parameters the attack works,
without any statistical assumption. As far as we are aware, no other dual attack
has been formally analyzed in this way. We believe that this is important since
virtually all algorithms in the literature rely on statistical assumptions that
clearly cannot hold for all parameter regimes but without a proper analysis, it
is impossible to tell when and why they hold.

2 See Sect. 7 for more details about modulus switching.
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We also provide some new results on random q-ary lattices in a similar spirit
to that of Siegel, Rogers and Macbeath [31,41,44]. This allows us to obtain
some sharper bounds on λ1 for random q-ary lattices and show that the Gaussian
Heuristic is quite tight for such lattices. This heuristic is usually considered valid
for “random” lattices and has been extensively tested. Up to our knowledge, the
only formal analysis of λ1 for random q-ary lattice is in [47, Lemma 7.9.2] which
only analyzes the expected value and therefore provides a much weaker bound
on λ1. We refer to Sect. 2.3 for more details.

Finally, we give a quantum version of our algorithm to speed up the com-
putation. The algorithm is inspired by [10] and reuses some technical lemmas
to speed up the computation of sums of cosines that appear in the algorithm.
Similarly to our classical algorithm, we prove that our quantum algorithm is
correct without relying on any heuristics.

1.2 Comparison with [20]’s Contradictory Regime

A recent paper [20] has claimed that virtually all recent dual attacks rely on an
incorrect statistical assumption and that they are, therefore, probably incorrect.
They do so by formalizing what they claim to be the key statistical assumption
of those paper, and show that for the parameter regime of the attacks, it falls
into what they call the “contradictory regime”, a regime where this assumption
can be proven not to hold.

As a byproduct of our analysis, we are able to compare the regime in which
our analysis works with the contradictory regime of [20]. Interestingly, the two
are essentially complementary with a small gap inbetween. This suggests that
our analysis and that of [20] are quite tight and provide an almost complete
characterization of when dual attacks work in our simplified setting. However,
we nuance this conclusion by noting that the statistical model used in [20] to
argue about the contradiction does not seem to match what happens in our
algorithm. We refer to Sect. 6 for more details.

1.3 Organisation of the Paper

In Sect. 2, we introduce the various technical elements that are necessary to anal-
yse the dual attack. In Sect. 3, we first present a basic dual attack whose purpose
is to introduce the reader to the ideas of dual attacks without overwhelming them
with technical details. This dual attack is very naive and computes one short
vector per LWE sample, in the spirit of [5]. We emphasize that this attack and
Theorem 4 are not new but that our analysis is significantly simpler than in pre-
vious papers. In Sect. 4, we introduce our simplified dual attack in the spirit of
[32] and formally analyse its correctness without assumption. We provide some
rough estimates on the complexity of our attack on Kyber using a Monte Carlo
Markov Chain discrete Gaussian sampler. In Sect. 5, we give a quantum version
of the algorithm from Sect. 4 and prove its correctness. In Sect. 6, we compare
our regime with that of [20]. Finally, in Sect. 7, we describe what we believe is
the main obstacle to develop a formal analysis of the full algorithm in [32].
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2 Preliminaries

We denote vectors and matrices in bold case. We denote by xT the transpose
of the (column) vector x, which is therefore a row vector. We denote by In the
identity matrix of size n × n. For any vector x ∈ R

n, we denote by ‖x‖ its
Euclidean norm. We denote by 〈x,y〉 the scalar product between two vectors
x and y. For any function f : R

n → C, we denote by ̂f its Fourier transform
over R

n defined by ̂f(x) =
∫

Rn f(y)e−2iπ〈x,y〉 dx. For any n ∈ N and R > 0, we
denote by Bn(R) (resp. Bn(R)) the open (resp. closed) ball of radius R in R

n.
We also let BZ

n(R) = Bn(R) ∩ Z
n be the set of integers points in this ball, and

similarly for B
Z

n(R). For any two distributions P and Q, we denote by dTV(P,Q)
the statistical distance (or total variation distance) between P and Q. For any
finite set X, we denote by U(X) the uniform distribution over X.

2.1 LWE

Let n,m, q ∈ N and let χe be a distribution over Zq, which we call the noise
distribution. For every vector s ∈ Z

n
q , we denote by LWE(m, s, χe) the probability

distribution on Z
m×n
q ×Z

m
q obtained by sampling a matrix A ∈ Z

m×n
q uniformly

at random, sampling a vector e ∈ Z
m
q according to χm

e , and outputting (A,b)
where b := As + e. This is the “matrix form” for the LWE distribution where
each pair (A,b) encodes m LWE samples bi = 〈Ai, s〉 + ei in the sense of [40].
We have chosen this formalism because it is simpler for dual attacks. The value
of m is typically in the order of n and depends on the cryptosystem.

The search LWE problem is to find s given oracle access to a sampler for
LWE(m, s, χe). The decision LWE problem is to decide, given oracle access to
either LWE(m, s, χe) or U(Zm×n

q × Z
m
q ), which one it is. In practical scenarios,

the attacker may not have access to the sampler but rather only possess a limited
number LWE samples. In this case, the search LWE problem asks, given those
LWE samples, to recover s if possible.

The LWE secret s is usually generated according to a distribution χs over Z
n
q .

One can therefore, in principle, analyse the success probability of an algorithm
for search/decision LWE on a distribution LWE(m, s, χe) where s ←$ χn

s . In this
paper, we will not need to make any assumption on the distribution of the secret
since our algorithms work for every secret.

2.2 Discrete Gaussian Distribution

Let n ∈ N and s > 0. For any x ∈ R
n, we let ρs(x) := e−π‖x‖2/s2

. As usual,
we extend to ρs to sets by ρs(X) =

∑

x∈X ρs(x) for any set X. For any lattice
L ⊂ R

n, we denote the discrete Gaussian distribution over L by DL,s(x) = ρs(x)
ρs(L)

for any x ∈ L. We denote DL,1 by DL for simplicity.
In general, the smaller s is, the harder it is to construct a sampler for DL,s.

The notion of smoothing parameter [34] captures the idea that sampling for
a valuer of s above this threshold is significantly easier than sampling below
because the distribution looks more like a continuous Gaussian. There are many
algorithms to sample above the smoothing parameter [14,24,28], including a
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time-space trade-off [3]. Sampling below the smoothing parameter is much more
challenging and usually inefficient [4]. At the extreme, sampling for sufficiently
small values of s allows one to solve the Shortest Vector problem (SVP) [4]
which is known to be NP-hard under randomized reduction [6]. The Monte
Carlo Markov Chain based algorithm of [46] works for all values of s but the
complexity significantly depends on s. We will use this algorithm in this paper.

Theorem 1 ([46, Theorem 1, (8), (23) and (24)3]). There is an algorithm
that given a basis B of a lattice L ⊂ R

n, any ε > 0 and any s > 0, returns a
sample according to some distribution DL,s,ε such that dTV(DL,s,ε,DL,s) � ε.

This algorithm runs in time ln
(

1
ε

) · 1
Δ · poly(n) where 1

Δ =
∏n

i=1 ρ
s/‖b̃i‖(Z)

ρs(L) and
˜b1, . . . , ˜bn are the Gram-Schmidt vectors of B.

For any q ∈ N, we denote by DZn
q ,s the modular discrete Gaussian distribution

over Z
n
q defined by DZn

q ,s(x) = ρs(x+qZn)
ρs(Zn) for any x ∈ Z

n
q . We define the periodic

Gaussian function fL,s : R
n → R by fL,s(t) = ρs(L+t)

ρs(L) . We have fL/s,1(t/s) =
fL,s(t). In the following, we denote fL,1 as fL.

Lemma 1 ([17, Lemma 2.14]). For any L, s > 0, x ∈ R
n, fL,s(x) � ρs(x).

Lemma 2 ([12, Lemma 7], see also [45, Theorem 1.3.4]). For any
lattice L ⊂ R

n, x ∈ R
n and u � 1/

√
2π, ρs((L − x) \ Bn(us

√
n)) �

(

u
√

2πee−πu2
)n

ρs(L).

Corollary 1 ([45, Corollary 1.3.5]). For any lattice L ⊂ R
n, t ∈ R

n and
r � δ := s

√

n/2π, ρs((L − t) \ Bn(r)) � ρs(r − δ)ρs(L).

Lemma 3 ([5, Claim 4.1]). For any lattice L and s > 0, we have ̂fL,s = DL̂,1/s

which is a probability measure over the dual lattice ̂L.

2.3 Lattices

We denote by ̂L = {x ∈ span(L) : ∀y ∈ L, 〈y,x〉 ∈ Z } the dual of a lattice L ⊂
R

n. We denote by L∗ = L \ {0 } the set of nonzero vectors of a lattice L. We
denote by λ1(L) the length a shortest nonzero vector in L.

Let n ∈ N, 1 � k � n and q be a prime power. We say that a lattice L is
a n-dimensional q-ary lattice if qZ

n ⊆ L ⊆ Z
n. Given a matrix A ∈ Z

n×k, we
consider the following n-dimensional q-ary lattices:

Lq(A) = {x ∈ Z
n : ∃s ∈ Z

k, As = x mod q } ,

L⊥
q (A) = {x ∈ Z

n : ATx = 0 mod q } .

We refer the reader to [22], [47, Section 2.5.1] or [35] for more details on those con-
structions. Note that, equivalently, we can write Lq(A) = AZ

k
q + qZ

n. It is well-
know that for any q-ary lattice L, there exists A and B such that L = Lq(A) =

3 [46] uses the normal distribution e−‖x‖2/2σ2
so s =

√
2πσ with our notations.
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L⊥
q (B), and that L̂⊥

q (A) = 1
q Lq(A). Furthermore det(Lq(A)) = qn−rkA � qn−k

and therefore det(L⊥
q (A)) = qrkA � qk. Finally, since Zq is a field, a random

matrix A ∈ Z
n×k
q has full rank (equal to k) with probability at least 1−kqk−1−n.

We will consider the distributions Ln,k,q and L⊥
n,k,q of q-ary lattices defined over

the set of integer lattices by

Ln,k,q(L) = PrA ←$ U(Zn×k
q ) [L = Lq(A)] ,

L⊥
n,k,q(L) = Pr

A ←$ U(Z
n×(n−k)
q )

[

L = L⊥
q (A)

]

.

In other words, the distribution is obtained by taking a matrix A ∈ Z
n×k
q

with uniform and i.i.d entries, and looking at the q-ary lattice generated by
A; and similarly for the orthogonal version. Note that contrary to the Loeliger
ensemble Ln,k,q,1, we do not have the rescaling factor q1−k/n, see e.g. [47, Defini-
tion 7.9.2]. It will be more convenient to use L⊥

n,k,q for proofs, but we often want
to apply them for Ln,k,q. Whenever neither k nor n − k are too small, those two
distributions are very close. The following lemma was inspired by [19, Lemma 2]
which does not contain any proof.

Lemma 4 ([39, Appendix C.1]). Let n ∈ N, 1 � k � n and q be a prime
power. Then dTV(L⊥

n,k,q,Ln,k,q) � poly(n, k) q−min(k,n−k).

Those distributions satisfy good uniformity properties when q goes to infin-
ity. In particular, the following theorem shows that we can compute statistical
properties of lattices sampled according to L⊥

n,k,q. The first part of this theorem
is close to [30, Theorem 1]. This result is in some sense the q-ary version of the
result by Siegel on random (real) lattices and its generalization by Rogers and
Macbeath [31,41,44].

Theorem 2 ([39, Appendix C.2]). Let n ∈ N, 1 � k � n and q be a prime
power. Let 1 � p � n and f : (Zn

q )p → R, then

EL ←$ L⊥
n,k,q

⎡

⎣

∑

x1,...,xp∈L

f(x1, . . . ,xp)

⎤

⎦ =
∑

x1,...,xp∈Zn

q(k−n)r(x1,...,xp)f(x1, . . . ,xp)

where r(x1, . . . ,xp) := rkZn
q
(x1, . . . ,xp) is the rank of the xi mod q over Z

n
q .

We can apply this theorem to bound the expected number of lattice points
in a ball, and therefore obtain bounds on λ1.

Theorem 3 ([39, Appendix C.3]). Let n ∈ N, 1 � k � n and q be a prime
power. For any 0 < r � q,

EL ←$ L⊥
n,k,q

[|L∗ ∩ Bn(r)|] = qk−n
(|BZ

n(r)| − 1
)

,

VL ←$ L⊥
n,k,q

[|L∗ ∩ Bn(r)|] � qk−n(q − 1)(|BZ

n(r)| − 1).

In particular, if |BZ

n(r)| � qn−k, then PrL ←$ L⊥
n,k,q

[λ1(L) � r ] �
q1+k−n|BZ

n(r)|.
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Recall that the Gaussian heuristic says that for a “random” lattice L, λ1(L)
is approximately

GH(L) :=
(

vol(Bn)
det(L)

)−1/n

=
det(L)1/nΓ (1 + n

2 )1/n

√
π

≈ det(L)1/n

√

n

2πe
.

This heuristic is usually considered valid for “random” lattices and has been
extensively tested. Up to our knowledge, the only formal analysis of λ1 for ran-
dom q-ary lattice is in [47, Lemma 7.9.2] which only analyzes the expected value
and not the variance. The following corollary shows that this heuristic is indeed
very sharp for random q-ary lattices.

Corollary 2 (Informal, [39, Appendix C.4]). Let n ∈ N, 1 � k � n and q be
a prime power. Let α ∈ [0, 1] and r = q1−k/n vol(Bn)−1/n. Under the assumption
that |BZ

n(αr)| ≈ vol(Bn(αr)), which holds when αr � √
n, we have

PrL ←$ Ln,k,q
[λ1(L) � αGH(L)] � qαn.

Lemma 5 (The Pointwise Approximation Lemma [5, Lemma 1.3)],
modified). Let L ⊂ R

n be a lattice, and h : R
n → R a L-periodic function

whose Fourier series ĥ is a probability measure over ̂L. Let N ∈ N, δ > 0 and
X ⊆ R

n a finite set. Let W = (w1, · · · ,wN ) be a list of vectors in the dual
lattice chosen randomly and independently from the distribution ĥ. Then with
probability at least 1 − |X|2−Ω(Nδ2), hW (x) := 1

N

∑N
i=1 cos(2π 〈wi,x〉) satisfies

that |hW (x) − h(x)| � δ for all x ∈ L + X.

Proof. The proof is the one in [5] with the following modifications. Let δ > 0.
For any x ∈ R

n, Hoeffding’s inequality guarantees that the mean of N samples
is not within a window of δ of the correct expectation with probability at most
2−Ω(Nδ2). Since f is periodic over the lattice L, it suffices to check that the
inequality that we want holds for all x ∈ X. Hence, by a union bound, the prob-
ability that the approximation is within a window δ of the correct expectation
for all x ∈ X simultaneously is at least 1 − |X|2−Ω(Nδ2). ��

2.4 Short Vector Sampling

For the purpose of this paper, we will only need to know that there is a way to
sample relatively short vectors (SV) in a lattice and we will treat such an algo-
rithm as a black box. Since such an algorithm would typically be parametrized
(see below), we introduce an integer parameter β to capture this fact.

Black Box 1. For any integers n � m, β and prime power q, there exists a
deterministic algorithm B and two functions TSV and �SV such that when B is
given A ∈ Z

m×n
q , it returns a nonzero vector in L⊥

q (A) in time TSV(m,β, qn)

and EA ←$Z
m×n
q

[

‖B(A)‖2
]

� �SV(m,β, qn)2.
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One way to implement this black box is to use lattice reduction algorithms
such as BKZ: they provide a very flexible way to take a basis of lattice and
compute relatively short vectors in this lattice. Since the literature on this topic
is quite extensive and there are many cost models associated to that task, we
refer the reader to e.g. [25] for more details. For simplicity, we assume that the
algorithm is deterministic but we could make it probabilistic by adding random
coins to the input of the algorithm and take those into account in the expected
value. In the case of BKZ, the parameter β is the block size.

3 Basic Dual Attack

In this section, we present a basic dual attack whose purpose is to introduce the
reader to the ideas of dual attacks without overwhelming them with technical
details. This dual attack is very naive and assumes that we access to essentially
an unlimited number of samples. It computes one short vector per m LWE
samples, in the spirit of [5]. We emphasize that this attack and Theorem 4 are
not new but that our analysis is significantly simpler than in previous papers.

Fix s ∈ Z
n
q an unknown secret and (A,b) some LWE samples. Recall that

b = As + e for some unknown e ∈ Z
m
q . We split the secret s into two parts

sguess ∈ Z
nguess
q and sdual ∈ Z

ndual
q where n = nguess + ndual. The matrix A ∈

Z
m×n
q is correspondingly split into two parts:

A =
[

Aguess Adual

]

, s =
[

sguess
sdual

]

. (1)

Therefore, b = Aguesssguess + Adualsdual + e. The algorithm now makes a guess
s̃guess ∈ Z

nguess
q on the value of sguess and tries to check whether this guess is

correct. Consider the lattice

L⊥
q (Adual) = {x ∈ Z

m : xTAdual = 0 mod q } . (2)

By the inequalities of Sect. 2.3, we have that det(L⊥
q (Adual)) � qndual . Check

that for any x ∈ L⊥
q (Adual),

xTb = xTAguesssguess + xTAdualsdual + xTe = xTAguesssguess + xTe (mod q).

Therefore, xT (b−Aguesss̃guess) = xTAguess(sguess − s̃guess) +xTe (mod q). The
main observation is now that:

– if the guess is correct (s̃guess = sguess) then xT (b − Aguesss̃guess) = xTe
(mod q) follows roughly a modular Gaussian distribution,

– if the guess is incorrect (s̃guess �= sguess) then it follows a uniform distribution
because x �= 0 and A was chosen uniformly at random.

A crucial ingredient in the reasoning above is the length of x. Indeed, the
scalar product xTe will follow a modular Gaussian whose deviation is propor-
tional to ‖x‖. This is where the BKZ lattice reduction algorithm usually comes
in: from a basis of L⊥

q (Adual), we compute a short vector x using Black box 1.
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The algorithm for this attack is described in Algorithm 1. We group many
LWE samples in N tuples of m samples which we write in matrix form. We then
compute one dual vector for each tuple of m LWE samples as explained above.
In this attack, the value of m can be chosen arbitrarily and there usually is an
optimal value of m that can be computed based on the complexity of computing
a short vector, i.e. it depends on the specific instantiation of Black box 1.

While this kind of attack is already known to be correct, we reprove it for
several reasons. First, we are not satisfied with the informal treatement of the
proof in the literature. Second, our proof does not use any assumption whereas
most papers in the literature use the Central Limit Theorem or approximate
sums of Gaussian as a Gaussian at some point (see [39, Section 2.4]). Figure 1
gives a high level view of the variable involved and their dependencies.

Theorem 4 ([39, Appendix B]). Let n,m, β be integers, q be a prime power,
nguess + ndual = n, s ∈ Z

n
q , σe > 0 and N ∈ N. Let 0 < δ < ε

where ε := exp
(−πσ2

e�SV(m,β, qndual)2/q2
)

and �SV comes from Black box
1. Let (A(1),b(1)), . . ., (A(N),b(N)) be samples from LWE(m, s,DZq,σe

), then
Algorithm 1 on (m,nguess, ndual, q, δ,N, (A(i),b(i))i) runs in time poly(m,n) ·
(N · TSV(m,β, qn) + qnguess) and returns sguess with probability at least 1 −
exp

(

−N(ε−δ)2

2

)

− (qnguess − 1) exp
(

−Nδ2

2

)

over the choice of the (A(i),b(i)).

Remark 1. As expected, we recover the well-known fact that for the attack to
succeed with constant probability, we can take δ = ε/2 and then we need at least
N = 8nguess log(q)+Ω(1)

ε2 samples. Furthermore, a careful look at the proof shows
that Black box 1 can be weakened even further to only require an inequality on
the moment-generating function of ‖B(A)‖2.

Algorithm 1: Basic dual attack
Input: m, n = nguess + ndual (see (1)), q prime power, δ > 0 and N ∈ N.
Input: list of N LWE samples (A(1),b(1)), . . . , (A(N),b(N)).
Output: (Guess of) the first nguess coordinates of the secret or ⊥.

1 for j from 1 to N do

2 Compute a basis of L⊥
q (A

(j)
dual) ;

3 Compute a short vector xj ∈ L⊥
q (A

(j)
dual) using Black box 1 ;

4 for s̃guess ∈ Z
nguess
q do

5 Compute the list y1, . . . , yN where yj = xT
j (b(j) − A

(j)
guesss̃guess) ;

6 if 1
N

∑N
j=1 cos(2πyj/q) � δ then return s̃guess ;

7 return ⊥

4 Modern Dual Attack

The main limitation of the basic dual attack is the requirement to compute
one short vector for each tuple of m LWE samples. Looking at Fig. 1, this is
necessary to ensure the statistical independence of the variables that go into
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Fig. 1. Conceptual representation of the variables involved in Algorithm 1.

the distinguisher. However, computing a short vector is an expensive operation
that we have to repeat many times. Another issue is that the attack requires an
exponential number of LWE samples, something which is not always realistic.

As explained in the introduction, a series of work have progressively intro-
duced the idea of generating all short vectors from a limited number of LWE
sample, i.e. a single (A,b). This is the case in [7,23,25], and [32] and it dra-
matically reduces the complexity of the attack. Unfortunately, the statistical
analysis of these attacks has been lacking in the literature: [7,23]4 and [25]
offer no real proof of correctness to speak of. Only [32] tries to provide a com-
plete proof of correctness, which is very detailed, but has to rely on statistical
assumptions. Those assumptions have been called into question [20], and more
importantly are extremely difficult to verify. Stepping back, we believe that the
reason for this situation is that they try to analyse their attacks using a similar
proof strategy to that of our basic dual attack (Sect. 3). However, the basic dual
attack requires the independence of many variables to work. Since those vari-
ables become dependent in their attack, these papers inevitably have to assume
or prove that non-independent quantities are “independent enough”.

In this section, we start completely from scratch: we design and analyze
without any assumption a modern dual attack. Our proof scheme is completely
different from the basic one and shows that those attacks do work. The main
outcome of this proof is that we can finally understand the constraints on the
various parameters that are necessary for the attack to work.

4.1 Intuition

Fix s ∈ Z
n
q an unknown secret and (A,b) some LWE samples. Recall that

b = As+ e for some unknown e ∈ Z
m
q . As in the basic dual attack, we split the

secret s into two parts sguess ∈ Z
nguess
q and sdual ∈ Z

ndual
q where n = nguess+ndual.

The matrix A ∈ Z
m×n
q is correspondingly split into two parts:

A =
[

Aguess Adual

]

, s =
[

sguess
sdual

]

. (3)

4 Part of [23] formally analyzes a similar attack to our basic attack. This paragraph
only applies to the rest that relies on sieving to produce many short vectors.
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The algorithm now makes a guess s̃guess ∈ Z
nguess
q on the value of sguess and tries

to check whether this guess is correct. Check that

b − Aguess · s̃guess = Aguess · (sguess − s̃guess) + Adual · sdual + e. (4)

Consider the lattice

L⊥
q (Adual) = {x ∈ Z

m : xTAdual = 0 mod q } . (5)

Fix N ∈ N and s > 0, and let W = (w1, . . . ,wN ) ∈ L⊥
q (Adual)N be sampled

according to DN
L⊥

q (Adual),qs. For any x ∈ R
m, define

gW (x) =
1
N

N
∑

j=1

cos(2π 〈x,wj〉 /q) (6)

for all x ∈ R
m. We will evaluate gW at b−Aguess ·s̃guess for all s̃guess ∈ Z

nguess
q and

keep the highest value. We now explain the intuition for this. Let L = Lq(Adual)
to simplify notations. Recall that in Sect. 2.2, we have defined the standard
periodic Gaussian function fL,1/s(x) = ρ1/s(x+L)

ρ1/s(L) for any x ∈ R
m and s > 0.

The important fact is that for large N , with high probability on the choice of
the wj , gW and fL,1/s are close everywhere for integer vectors (Lemma 6). This
fact essentially comes from [5]. Therefore, it suffices to analyse the behaviour of
fL,1/s. For this, we rely on standard Gaussian tailbounds (Lemma 7) to get that
for any s > 0 and x ∈ R

m, we essentially have

fL,1/s(x) ≈ ρ1/s(dist(x, L)). (7)

In other words, fL,1/s measures the distance to the lattice L.

We are now ready to see what makes the attack work. The intuition is that
for most choices of A and e, for all s̃guess ∈ Z

nguess
q \ { sguess },

dist(b − Aguess · sguess, L) < dist(b − Aguess · s̃guess, L) (8)

and therefore

fL,1/s(b − Aguess · sguess) > fL,1/s(b − Aguess · s̃guess)
and the same will be true for gW , which means that the algorithm will correctly
output sguess. This is the main idea of our analysis but making it formal requires
some care. The first step (Lemma 8) is to show that essentially

if 2 ‖e‖ < λ1(Lq(A)) then f
L,

1
s
(e) > f

L,
1
s
(e+x) for all x ∈ Lq(Aguess)\L. (9)

This requires some explanations. Going back to (8), we have that

dist(b − Aguess · sguess, L) = dist(e + Adual · sdual, L)
= dist(e, L) since Adual · sdual ∈ L

= ‖e‖ if ‖e‖ < λ1(L)/2.
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On the other hand, if s̃guess �= sguess then

dist(b − Aguess · s̃guess, L) = dist(e+Adual · sdual +Aguess(sguess − s̃guess), L)

= dist(e+Aguess(sguess − s̃guess), L) since Adual · sdual ∈ L

= dist(e+ x, L)

where
x = Aguess(sguess − s̃guess) ∈ Lq(Aguess).

Assume for now that x ∈ Lq(Aguess) \ L which we will see below is not always
true but holds with probability exponentially close to 1 over the choice of A.
Then

dist(b − Aguess · s̃guess, L) = dist(e + x, L) = min { ‖e + x + z‖ : z ∈ L }
� min { ‖e + y + z‖ : z ∈ L,y ∈ Lq(Aguess) \ L }
� min { ‖y + z‖ : z ∈ L,y ∈ Lq(Aguess) \ L } − ‖e‖
� λ1(L + Lq(Aguess)) − ‖e‖ .

The last step holds because y+ z �= 0 for all z ∈ L and y ∈ Lq(Aguess) \L. This
is where our assumption that x ∈ Lq(Aguess) \ L is crucial. The condition in (8)
now becomes

‖e‖ < λ1(L + Lq(Aguess)) − ‖e‖
and this gives us (9) because L+Lq(Aguess) = Lq(Adual)+Lq(Aguess) = Lq(A).

Now that we have (9), the second step is to apply it to A. Recall that we made
a crucial assumption above: it only applies to e+x for x ∈ Lq(Aguess)\L where
x = Aguess(sguess − s̃guess) and sguess �= s̃guess. This condition is equivalent to
x /∈ AdualZ

ndual
q +qZ

m since L = Lq(Adual). A sufficient condition for this to hold
is that A has full rank over Zq which happens with probability exponentially
close to 1 over the choice of A. This allows us to conclude (Theorem 5) that
Algorithm 2, which essentially performs the steps highlighted above, works for
almost all A and e that satisfy roughly 2 ‖e‖ < λ1(Lq(A)). At this point, one
can make two interesting observations:

– It tells us that if 2 ‖e‖ < λ1(Lq(A)) then we can distinguish e from any e+x
by using fL,1/s. This makes intuitive sense since this condition guarantees
that e is the closest vector to 0 in Lq(A) which is a necessary condition for
the algorithm to work unconditionally5

– Even though we take short vectors in the dual lattice Lq(Adual), it looks like
only the length of the shortest vectors in A matters for the analysis! This
is just a result of the simplifications that we have made above to give the
intuition. The length of the dual vectors does play a role in Lemma 8 and the
subsequent lemmas.

5 This condition could be relaxed if we allow the algorithm to fail for a small fraction
of e but this is out of the scope of this article.
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4.2 Formal Analysis

This section gives a formal analysis of the intuitions from the previous section.
We will reuse the notation defined there. Our first lemma formalizes that gW ,
defined in (6) and used in the algorithm to compute the “score” of a guess, is
very close to the periodic Gaussian function fLq(Adual).

Lemma 6. Let B ∈ Z
m×n
q , s, δ > 0 and N ∈ N. With probability at least

1−qm ·2−Ω(Nδ2) over the choice of W = (w1, . . . ,wN ) from DN
L⊥

q (B),qs, we have
|gW (x) − fLq(B),1/s(x)| � δ for all x ∈ Z

m, where gW is defined in (6) and
fLq(B) is defined in Sect. 2.2.

Proof. Let L = Lq(B) and for any j, let w′
j = 1

qwj and W ′ = (w′
j)j . Since

̂L = 1
q L⊥

q (B) and DLq(B),qs = DqL̂,qs = DL̂,s, we indeed have that W ′ is sampled

from DN
L̂,s

which is a probability distribution over ̂L. Let h = fL,1/s which is

L-periodic, then ̂h = DL̂,s by Lemma 3. For any x ∈ R
m, gW (x) = hW ′(x) where

hW is defined in Lemma 5. Apply Lemma 5 to h with X = { 0, . . . , q − 1 }m to
get that with probability at least 1−|X|2−Ω(Nδ2) over the choice of W ′, we have
|h(x) − hW ′(x)| � δ for all x ∈ L + X. But L = Lq(B) is a q-ary lattice, i.e.
qZ

m ⊂ L so L + X ⊃ qZ
m + { 0, . . . , q − 1 }m = Z

m which concludes. ��
The next lemma formalizes the idea that the periodic Gaussian function fL

estimates the distance of its argument and the lattice L.

Lemma 7. Let L ⊂ R
m and s > 0, then for any x ∈ R

m:

– fL,1/s(x) � ρ1/s(dist(x, L)),
– if dist(x, L) � τ := 1

s

√

m/2π then fL,1/s(x) � ρ1/s(dist(x, L) − τ).

Proof. The first fact is a direct consequence of Lemma 1. Indeed, write x = z+t
where z ∈ L and t ∈ R

m are such that dist(x, L) = ‖t‖. Since fL,1/s is L-periodic
and z ∈ L, fL,1/s(x) = fL,1/s(x − z) = fL,1/s(t) � ρ1/s(t) = ρ1/s(‖t‖). For the
second fact, let � = dist(x, L) and observe that by definition (L − x) \ Bm(�) =
L − x. By assumption, � � τ := 1

s

√

m/2π, so we can apply Corollary 1 to get
that ρ1/s((L − x) \ Bm(�)) � ρ1/s(� − τ)ρ1/s(L) and therefore

fL,1/s(x) =
ρ1/s(L − x)

ρ1/s(L)
=

ρ1/s((L − x) \ Bm(�))
ρ1/s(L)

� ρ1/s(� − τ).

��
Lemma 8. Let B ∈ Z

m×n
q , L ⊂ Z

m a lattice, e ∈ Z
m, s, δ > 0 and N ∈ N. Let

τ = 1
s

√

m/2π and η � 0 and assume that λ1(L + Lq(B)) � τ + ‖e‖ and

ρ1/s(e) − ρ1/s(λ1(L + Lq(B)) − ‖e‖ − τ) > 2δ + η.
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Then, with probability at least 1 − qm · 2−Ω(Nδ2) over the choice of W =
(w1, . . . ,wN ) from DN

L⊥
q (B),qs, we have

gW (e) � ρ1/s(e) − δ > ρ1/s(λ1(L + Lq(B)) − ‖e‖ − τ) + δ + η � gW (e + x) + η

for all x ∈ L \ Lq(B), where gW is defined in (6).

Proof. Apply Lemma 6 to get that with probability at least 1−qm ·2−Ω(Nδ2) over
the choice of w1, . . . ,wN i.i.d. from DL⊥

q (B),qs, we have |gW (y)−fLq(B),1/s(y)| �
δ for all y ∈ Z

m. By Lemma 7, we have gW (e) � fLq(B),1/s(e) − δ � ρ1/s(e) − δ.
Let x ∈ L \Lq(B), then z−x ∈ L+Lq(B) and z−x �= 0 for any z ∈ Lq(B).

As a result, Lq(B) − x ⊆ (L + Lq(B)) \ {0 }. Hence,

dist(x, Lq(B)) = min
z∈Lq(B)

‖x + z‖ � min
y∈(L+Lq(B))\{ 0 }

‖y‖ = λ1(L + Lq(B)) � τ + ‖e‖ .

(10)
But then

dist(e + x, Lq(B)) � dist(x, Lq(B)) − ‖e‖ � τ. (11)

We can therefore apply Lemma 7 to get that for any x ∈ L \ {0 },

gW (e + x) � fLq(B),1/s(e + x) + δ � ρ1/s(dist(e + x, Lq(B)) − τ) + δ.

Since ρ1/s : [0,∞) → R is decreasing, and reusing (10) and (11) we further have

ρ1/s(dist(e + x, Lq(B)) − τ) � ρ1/s(dist(x, Lq(B)) − ‖e‖ − τ)
� ρ1/s(λ1(L + Lq(B)) − ‖e‖ − τ).

Putting everything together, and using our assumption, we have

gW (e) − gW (e + x) � ρ1/s(e) − ρ1/s(λ1(L + Lq(B)) − ‖e‖ − τ) − 2δ > η

��
We can now state our main result by putting everything together. It will be

useful to note that Lq(Aguess) + Lq(Adual) = Lq(A) which is readily verified.

Algorithm 2: Modern dual attack
Input: m, n = nguess + ndual (see (1)), q prime power, N ∈ N

Input: LWE sample (A,b), list W = (w1, . . . ,wN ) of vectors in
L⊥

q (Adual).
Output: (Guess of) the first nguess coordinates of the secret, or ⊥.

1 sguess ← ⊥; Smax ← 0 ;
2 for s̃guess ∈ Z

nguess
q do

3 Compute the list y1, . . . , yN where yj = wT
j (b − Aguesss̃guess) ;

4 S ← ∑N
j=1 cos(2πyj/q) ;

5 if S � Smax then Smax ← S; sguess ← s̃guess ;
6 return sguess
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Theorem 5. Let A ∈ Z
m×n
q , e ∈ Z

m, s ∈ Z
n
q , s, δ > 0 and N ∈ N. Let

τ = 1
s

√

m/2π. Assume that m � n, A has full rank, λ1(Lq(A)) � τ + ‖e‖, and

ρ1/s(e) − ρ1/s(λ1(Lq(A)) − ‖e‖ − τ) > 2δ.

Let b = As + e mod q. Let W = (w1, . . . ,wN ) be samples from DN
L⊥

q (Adual),qs,
then Algorithm 2 on (m,nguess, ndual, q,N, (A,b),W ) runs in time poly(m,n) ·
(N + qnguess) and returns sguess with probability at least 1 − qm · 2−Ω(Nδ2) over
the choice of W .

Proof. Let B = Adual and L = Lq(Aguess). Then L + Lq(B) = Lq(A). Our
assumptions are therefore exactly that of Lemma 8 for η = 0 which we can
apply to get that with probability at least 1 − qm · 2−Ω(Nδ2) over the choice of
W = (w1, . . . ,wN ) from DN

L⊥
q (B),qs = DN

L⊥
q (Adual),qs, we have

gW (e) > gW (e + x) (12)

for all x ∈ L \ Lq(Adual), where gW is defined in (6). Furthermore, A has full
rank and m � n so its columns are linearly independent over Zq and

L \ Lq(Adual) = Lq(Aguess) \ Lq(Adual) = Lq(Aguess) \ qZ
m. (13)

Assume that we are in the case where W satisfies the above inequalities
and consider the run of Algorithm 2 on (m,nguess, ndual, q,N, (A,b),W ). The
algorithm tests all possible values of s̃guess ∈ Z

nguess
q and returns the one that

maximizes S. Let s̃guess ∈ Z
nguess
q and Δs̃guess = sguess − s̃guess. First note that

b − Aguesss̃guess = (As + e mod q) − Aguesss̃guess
= Adualsdual + AguessΔs̃guess + e mod q.

For any j, let yj (̃sguess) be the value computed at Line 3. Note that

yj (̃sguess) = wT
j (b − Aguesss̃guess)

= wT
j Adualsdual + wT

j (AguessΔs̃guess + e) mod q

but wj ∈ L⊥
q (Adual) so wT

j Adual = 0 mod q, hence

= wT
j (AguessΔs̃guess + e) mod q.

Let S(̃sguess) be the value computed at Line 4 and check that

S(̃sguess) =
∑N

j=1
cos(2πyj (̃sguess)/q)

=
∑N

j=1
cos(2πwT

j (AguessΔs̃guess + e)/q) by periodicity of cos

= NgW (AguessΔs̃guess + e).

There are two cases to distinguish:
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– If s̃guess = sguess then S(̃sguess) = NgW (e).
– If s̃guess �= sguess then S(̃sguess) = NgW (e + x) where x = AguessΔs̃guess ∈

Lq(Aguess) = L. But A (and hence Aguess) has full rank by assumption and
Δs̃guess �= 0 so x �= 0 mod q. It follows by (13), x ∈ Lq(Adual) \ qZ

m =
L \ Lq(Adual). Hence, by (12), S(̃sguess) < NgW (e) = S(sguess).

This shows that S(sguess) > S(̃sguess) for all s̃guess �= sguess. Therefore, Algorithm
2 correctly returns sguess. Note that the entire argument was under the assump-
tion that (12) holds for W , which we already argued holds with probability at
least 1 − qm · 2−Ω(Nδ2).

The naive analysis of the complexity is straightforward and gives qnguess ·
poly(m,n) · N. By using the DFT trick as we did in the proof of Theorem 4 we
can improve the running time to poly(m,n) · (N + qnguess).

4.3 Informal Application

Choosing the parameters in order to apply Theorem 5 is not immediately obvi-
ous. In this section, we explain how to do so in a concrete case of interest. In
order to simplify things, we will neglect some factors and point out the various
lemmas that can be used to make this reasoning completely formal.

Fix n,m and let q be a prime power. Let s ∈ Z
n
q be a secret and σe > 0.

Let (A,b) be sampled from LWE(m, s,DZq,σe
), and e so that b = As + e. By

Corollary 1, we have
‖e‖ � σe

√

m/2π (14)

with high probability. Let s > 0 to be defined later. We choose δ to be quite
smaller than the smallest possible value ρ1/s(‖e‖), for example

δ = 1
100ρ1/s(σe

√

m/2π) = 1
100e−ms2σ2

e/2. (15)

We choose N accordingly so that the success probability is very high, i.e.

N =
poly(m) + n log2(q)

δ2
. (16)

A has full rank with high probability and therefore det(Lq(A)) = qm−n. By
Theorem 3, and the informal Corollary 2, we have

λ1(Lq(A)) � GH(Lq(A)) = vol(Bm)−1/nq1−m/n ≈
√

m

2πe
q1−n/m.

Let τ = 1
s

√

m/2π. In order to apply Theorem 5, we need to satisfy the conditions

λ1(Lq(A)) � τ + ‖e‖ and ρ1/s(e) − ρ1/s(λ1(Lq(A)) − ‖e‖ − τ) > 2δ.

Since we have chosen δ to be very small compared to ρ1/s(e), those inequalities
can be shown (see [39, Appendix D]) to be essentially equivalent to

λ1(Lq(A)) � τ + 2 ‖e‖ .



Provable Dual Attacks on Learning with Errors 273

This condition will be satisfied when
√

m
2πeq1−n/m � 1

s

√

m/2π + 2σe

√

m/2π
that is

q1−n/m � ( 1s + 2σe)
√

e. (17)

In other words, we have a lower bound on s. We observe that there is a trade-
off between the cost of sampling from DL⊥

q (Adual),qs and the cost of running
Algorithm 2 since a large value of s:

– makes it easy to sample from DL⊥
q (Adual),qs,

– but makes δ = 1
100ρ1/s(σe

√

m/2π) small and therefore N = Ω(δ−2), and the
complexity, gigantic.

We note that the total complexity of the attack, including the cost of generating
the small dual vectors, is a highly nontrivial function of the parameters. Con-
sequently, it is not at all clear that the optimal choice of s is the lower bound
identified above. We will analyze the complexity in greater detail in the next
section.

4.4 Complexity Estimates

In this section, we describe how to concretely estimate the complexity of
the attack described in Sect. 4 and provide numbers for Kyber. We continue
with the setup from the previous section (Sect. 4.3) which we do not repeat.
Recall that by Theorem 5, the complexity of the attack, to which we add the
cost Tsampling(N, qs) of sampling N independent Gaussian vectors according to
DL⊥

q (Adual),qs is

poly(m,n) · (N + qnguess) + Tsampling(N, qs) (18)

and it succeeds with very high probabability given the choice of the parameters
above. For the sampling of the dual vectors, we propose the following approach:
given a block size 2 � β � m,

1. compute a basis of L⊥
q (Adual),

2. run BKZ with block size β on this basis to obtain a reduced basis B,
3. use the Markov chain Monte Carlo (MCMC) based Gaussian sampler from

[46] (Theorem 1) for parameter qs with basis B to generate N independent
samples.

The complexity of this procedure is

Tsampling(N) = TBKZ(m,β) + N · TMCMC(L⊥
q (Adual), qs) (19)

where TBKZ(m,β) is the cost of BKZ and TMCMC(L, s) is the cost of producing
one sample from DL,s. We apply Theorem 1 to get that

TMCMC(L⊥
q (Adual), qs) = ln

(

1
ε

) · 1
Δ · poly(n) , Δ =

ρqs(L⊥
q (Adual))

∏n
i=1 ρqs/‖b̃i‖(Z)

(20)



274 A. Pouly and Y. Shen

where ˜b1, . . . , ˜bn are the Gram-Schmidt vectors of the BKZ-β-reduced basis B
of L⊥

q (Adual) and ε > 0. Note that the output distribution of the algorithm is
ε-close to the discrete Gaussian. Since we are going to use N samples, and by
the data processing inequality, this translates into a failure probability of Nε for
the algorithm, so we need to choose ε to be quite small, e.g. ε � 1/N . Putting
(18) and (19) together we get that the total complexity of the attack is

poly(m,n) · (N + qnguess) + TBKZ(m,β) + N · TMCMC(L⊥
q (Adual), qs) (21)

subject to the constraints (14), (15), (16), (17) which we summarize below:

δ = 1
100e−ms2σ2

e/2, N =
poly(m) + n log2(q)

δ2
,

q1−n/m � ( 1s + 2σe)
√

e, ‖e‖ � σe

√

m/2π,

ε � 1/N.

In practice, computing Δ with (20) is nontrivial. One can show that (see [39,
Appendix E])

1
Δ

�
m
∏

i=1

ρ‖b̃i‖/qs(Z) (22)

which is easier to estimate but still requires to estimate the
∥

∥

∥

˜bi

∥

∥

∥. For this, we
can assume that the Geometric Series Assumption (GSA) [42] holds for BKZ-β
reduced basis. The GSA is known to be reasonably accurate when β � m and
β � 50 which is the case in our experiments, but it does not correctly model
what happens in the last m − β coordinates [1]. For our purpose, we consider
the GSA to be enough to obtain credible estimates on the complexity.

Independently of the GSA, however, formula (22) is expensive to compute
due the product of m terms. Indeed, we will need to compute this quantity
many times in our optimizer to find a good set of parameters (see below). For
the estimates below, we use (22) and the GSA to compute the final complexity
estimate but we use the approximate formula below in the parameter optimizer
which is very cheap to compute:

if ‖b1‖ � 2qs then
1
Δ

� exp

(

log
(

1 + 2e−πα
)

+
2

ln(H4
β)

E1 (πα)

)

(23)

where α = (qs)2/ ‖b1‖2, E1 is the generalized exponential integral and Hβ is the
Hermite factor for BKZ-β reduced basis. See [39, Appendix E] for more details.

In order to find a good set of parameters, we wrote an optimizer that tries
all reasonable values of m, β and nguess, and sets s to

s = max
( √

e

q1−n/m − 2
√

eσe
,
‖b1‖
2q

)

so that we can use (23). We also limit the range of m to [32n, 2n] so that the
ratio m/n is not too close to 0 and 1.



Provable Dual Attacks on Learning with Errors 275

In Table 1, we give the complexity estimates of our algorithm, computed by
our optimizer. The first set of columns corresponds to the algorithm analyzed
above, including the use of the GSA to estimate the complexity of the Gaussian
sampling as described in [39, Appendix E]. To estimate the complexity of BKZ,
we use the cost estimates in [8,32] using [13] as the sieving oracle; specifically,
we rely on the “lattice estimator” of [9].

Those cost are not competitive with the state of the art because our algorithm
does not include modulus switching. Modulus switching is a critical component
to reduce the complexity but its formal analysis is nontrivial and therefore we
decided not to include it in this paper. In order to get an idea of what our
algorithm extended with modulus switching would give, we include a second
set of columns where we simply replace qnguess by 2nguess in (21) which would
correspond to switching the modulus to 2 in the guessing part. We emphasize
that this is only a very rough estimate and not a formal analysis. The real
complexity with modulus switching will most likely be higher than what we
report. Furthermore, all our complexity estimates ignore the polynomial factors.

Table 1. Dual attack cost estimates and their parameters as described in Sect. 4.4. All
costs are logarithms in base two. Note that the cost of attacks with modulus switching
are estimates of what an algorithm with modulus switching could give if the algorithm
of Sect. 4 was extended with modulus switching.

Scheme No modulus switching With modulus switching

attack m nguess ndual β s attack m nguess ndual β s

Kyber512 185 1013 15 497 550 0.200 141 763 141 371 390 0.170

Kyber768 273 1469 23 745 870 0.260 202 1169 201 567 610 0.240

Kyber1024 376 2025 31 993 1230 0.270 279 1575 261 763 890 0.260

5 Quantum Dual Attack

In this section, we present a quantum version of Algorithm 2 and show that we
can obtain a speed-up on the complexity. The technique is inspired by [10] which
was never published and is a quantum variant of [32].

5.1 Algorithm and Analysis

We will need a quantum algorithm which estimates the mean value of
cos(2π(〈wi,b〉)/q) where the wi are vectors accessible via a quantum oracle.
This mean value can be used to compute the DFT sums in the algorithm much
faster than with a classical computer. The idea is inspired by [2, Theorem 47]
and can be seen as a special case of quantum speedup of Monte Carlo meth-
ods [37]. For more background on quantum algorithms, we refer the readers to
[10, Sections 2.4 and 4].

https://github.com/malb/lattice-estimator
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Theorem 6 ([10, Theorem 5]). Let N be a positive integer and W be a list
of N vectors in Z

n: w0, . . . ,wN−1. Let fW (b) = 1
N

∑N−1
i=0 cos(2π(〈wi,b〉)/q),

where b ∈ Z
n
q . Let OW be defined by OW : |j〉|0〉 �→ |j〉|wj〉. For any ε, δ > 0,

there exists a quantum algorithm A that given b ∈ Z
n
q and oracle access to OW

outputs AOW (b) which satisfies |AOW (b) − fW (b)| ≤ ε with probability 1 − δ.
The algorithm makes O(ε−1 · log 1

δ ) queries to OW , and requires O(log(1ε ) +
poly(log(n))) qubits.

We will have to search for a minimum element in a collection but the oracle
that computes the value of each element is probabilistic and may return a wrong
result with small probability. We say that a (probabilistic) real function f has
bounded error if there exists x ∈ R such that f() returns x with probability at
least 9/10. The problem of finding the minimum in a collection (without errors)
has been studied in [21, Theorem 1]. On the other hand, the problem of searching
for a marked element in a collection with bounded-error oracle has been studied
in [26]. This idea can easily be used to adapt the algorithm of [21] to bounded-
error oracles. Indeed, the algorithm in [21] simply performs a constant number
of Grover searches by marking nodes that are bigger than the current value.
Therefore it suffices to replace this Grover search by the algorithm of [26].

Theorem 7 ([26]+[21]). Given n algorithms, quantum or classical, each com-
puting some real value with bounded error probability, there is a quantum algo-
rithm that makes an expected O(

√
n) queries and with probability at least 9/10

returns the index of the minimum among the n values. This algorithm uses
poly(log(n)) qubits.

Algorithm 3: Quantum modern dual attack
Input: m, n = nguess + ndual (see (1)), q prime power, N ∈ N, η > 0.
Input: LWE sample (A,b).
Input: Oracle OW for a list W = (w1, . . . ,wN ) of vectors in L⊥

q (Adual).
Output: (Guess of) the first nguess coordinates of the secret, or ⊥.

1 Use Theorem 6 to create an algorithm A with δ = 1
10

, ε = η and q ;

2 create oracle Ô(s̃guess):
3 return AOW (b − Aguesss̃guess)

4 Use Theorem 7 to find s̃guess such that Ô(s̃guess) is maximum ;
5 return s̃guess

Theorem 8 ([39, Appendix F.1]). Let A ∈ Z
m×n
q , e ∈ Z

m, s ∈ Z
n
q , s, δ > 0

and N ∈ N. Let τ = 1
s

√

m/2π and η > 0. Assume that m � n, A has full rank,
λ1(Lq(A)) � τ + ‖e‖, and

ρ1/s(e) − ρ1/s(λ1(Lq(A)) − ‖e‖ − τ) > 2δ + η.
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Let b = As + e mod q. Let W = (w1, . . . ,wN ) be samples from DN
L⊥

q (Adual),qs

and OW an oracle for W in the sense of Theorem 6. Then Algorithm 3 on
m,nguess, ndual, q, N, η/2, (A,b),OW makes an expected O

(

η−1 · qnguess/2
)

calls
to OW and returns sguess with probability at least 1 − qm · 2−Ω(Nδ2) over the
choice of W . The algorithm uses O(log(η−1) + poly(log(N)) qubits.

In terms of proofs, the correctness of the quantum algorithm is very similar
to the classical one. The main difference is that we use Theorem 6 to compute
gW which only returns an approximation. This adds an additional error term
that we can take into account in Lemma 8 using η.

5.2 Applications

In order to apply Theorem 8, one needs to provide an oracle OW to access
the samples. The implementation of this oracle has a significant impact on the
complexity since it is queried an exponential number of times by the algorithm.
We outline two possible implementations. Before that, note that in practice we
will usually choose η to be a small value compared to δ in Theorem 8, say
η = δ/100. This way, η has almost no influence on the maximum length of the
errors e that we can handle.

BKZ Preprocessing with a Quantum Klein Sampler. For a value of s that
is not too small, one can first compute a basis L⊥

q (Adual) of the dual lattice and
reduce it using BKZ with block size β to obtain a new basis M. One then creates
a quantum circuit that implements the Klein sampler [24] with M hard-coded in
the circuit. This circuit will be the oracle OW . In the details, the Klein sampler is
a probabilistic algorithm so we can view it as a deterministic algorithm that takes
random coins (and M) as input. We can see the input j of the oracle as the value
of the random coins so that the outputs w1, . . . ,wN that correspond to inputs
1, . . . , N are distributed according to the Gaussian distribution. Since the Klein
sampler runs in polynomial time, each call to OW takes polynomial time. The
BKZ preprocessing is purely classical and done only once before the quantum
algorithm runs. This means that the total runtime will be6, per Theorem 8

TBKZ(β) +
√

N · qnguess/2 · poly(log(m)) .

This is always better than the classical complexity since
√

N · qnguess � N +
qnguess . Note that when using a Klein sampler, the value of s is a function of the
quality of the basis M and therefore depends on β. Furthermore, it is impos-
sible for s to be smaller than the smoothing parameter of the lattice this way.
Alternatively, one could also use the MCMC sampler that we used in Sect. 4.4:
although its running time is not polynomial, it only uses polynomial memory so
it would still only require a polynomial number of qubits, and it allows one to

6 We chose η = δ/100 and we explained in Sect. 4.3 that we need to choose N = 1/δ2

up to polynomial factors so η−1 = poly(log(m)) · √
N .
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choose smaller values of s which seems to be quite beneficial. Note that in both
cases (Klein and MCMC), we get no quantum speed up on the sampling.

Classical Sampler with a Quantum Memory. A feature of the Klein sam-
pler is that it can output an arbitrary number of samples and the running time
is proportional to the number of samples. This is not the case of all samplers.
For example, [4] describes Gaussian samplers that works for smaller values of s
than the smoothing parameter and produces 2n/2 samples but runs in time 2n,
even if we only require one sample. [3] contains another such algorithm with a
time-space trade-off. Using such samplers with our quantum algorithm is prob-
lematic because the samples are produced and stored in a classical memory, but
the algorithm requires quantum oracle access to those samples. We have two
options:

– We can assume that we have access to a QRACM (classical memory with
quantum random access) [29]. A QRACM of size N is a special quantum
memory holding N classical values but providing O(log(N))-time quantum
access to those values. Such a QRACM directly implements the oracle OW

so the total execution time becomes

Tsampler +
√

N · qnguess/2 · log(N) · poly(log(m)) .

We note however that practical realizability of QRACM is debated and is
potentially a strong assumption. We refer the readers to [27] for more details.

– We can replace A in the algorithm by a very large circuit containing all
N hard-coded samples that computes the sum gW in a naive way (without
Theorem 6). This circuit will take time Npoly(log(m)) to evaluate, therefore
the total complexity will be

Tsampler + N · qnguess/2 · poly(log(m)) .

Note that this might be worse than the classical algorithm if the value of N
is larger than qnguess/2.

Finally, we note that presently samplers such as [3] are still too expensive to be
useful in dual attacks but future samplers might get more efficient.

6 Comparison with [20]’s Contradictory Regime

In [20], the authors claim that [32] falls into what they call the “contradictory
regime” and conclude that the result is most likely incorrect. They similarly
conclude the recent derivative works [10,16], as well as [25] are flawed. They
do so by reconstructing the key heuristic claim of [32] and showing, both by
theoretical arguments and experiments, that this heuristic is incorrect. We copy
this heuristic below, slightly adjusted to our notations. In the heuristic, the
function fW is the same as hW in Lemma 5, which is the same as gW defined in
(6) up to a factor 1/q in the cosine.
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Heuristic 1 ([20, Heuristic Claim 3]). Let Λ ⊆ R
n be a random lattice

of determinant 1, W ⊆ ̂Λ be the set consisting of the N = (4/3)n/2 short-
est vectors of ̂Λ. For some σ > 0 and T � 1, consider tBDD ←$ N (0, σ2)n

and i.i.d t(i)unif ←$ U(Rn/Λ) where i ∈ { 1, . . . , T }. Let7 � =
√

4/3 · GH(n),
ε = exp(−2π2σ2�2). If ln T � Nε2,

Pr
[

fW(tBDD) > fW(t(i)unif ) for all i ∈ { 1, . . . , T }
]

� 1 − O

(

1√
ln T

)

where N (0, σ2) denotes the normal distribution.

There are several obvious (minor) problems about this heuristic since [32]
works with integer lattices and discrete Gaussians. As a first step, we rewrite
this heuristic in a way that is closer to [32] and we also change the notations to
ours (see [39, Appendix G.1] for details about the rewrite).

Heuristic 2 ([20, Heuristic Claim 3] adapted). Let A ∈ Z
m×n
q with i.i.d.

coefficients. Let L = Lq(A) ⊆ Z
m and W ⊆ L⊥

q (A) be the set consisting of
the N = (4/3)d/2 shortest vectors of L⊥

q (A). For some σe > 0 and T � 1,

consider e ←$ Dn
Zq,σe

and i.i.d t(i)unif ←$ U(Zm/L) where i ∈ { 1, . . . , T }. Let
� =

√

4/3 · GH(L), ε = exp(−πσ2
e�2). If ln T � Nε2,

Pr
[

gW (e) > gW (t(i)unif ) for all i ∈ { 1, . . . , T }
]

� 1 − O

(

1√
ln T

)

.

In [20, Section 4.2 and 4.3], the authors argue by theoretical arguments that
Heuristic 1 does not hold. Although [20] did not define what they mean by
“random lattice” in the heuristic, they in fact use random q-ary lattices in their
experiments and also the theoretical properties of “random lattices” that they
use hold for q-ary lattices. Therefore, their analysis holds also for Heuristic 2.

Their reasoning is as follows: assume that we have a large number of random
candidates (the t(i)unif ) and one point close to the lattice L (the point e), then
Heuristic 2 says that we can always distinguish e from the candidates (since
it has maximum value of gW ). The contradiction comes from the fact that in
reality, for T large enough, many of candidates will be closer to L than e and
therefore no algorithm can distinguish them [18]. This gives rise to what [20]
calls the “contradictory regime” where an algorithm would somehow be able to
distinguish indistinguishable distributions.

We first compare this regime to that of our algorithm and we then discuss
the statistical model chosen by [20] in Heuristic 1.

7 We overload the notation GH: in [20], GH(m) corresponds to our GH(L) for L of
volume 1, that is vol(Bm)−1/m.
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6.1 Almost Complementary Regimes

In Sect. 4.3, we have applied our main theorem to a concrete instance and derived
that8 for a typical LWE problem where the ratio m/n is fixed (and not too close
to 0 or 1), q is large and the error follows a discrete Gaussian of parameter σe,
our algorithm works as soon as

q1−n/m � ( 1s + 2σe)
√

e (24)

where

N =
poly(m) + n log2(q)

δ2
, δ = 1

10e−ms2σ2
e/2.

In our attack, T is the number of guesses that the algorithm makes, that is
T = qnguess . In order to match [20, page 21], we will choose s so that ln T = Nε2:

ln T = Nε2 ⇔ nguess ln(q) =
poly(m) + n log2(q)

δ2
ε2

⇔ nguess ln(q) = (poly(m) + n log2(q))100e2ms2σ2
e/2e−2πσ2

e�2

⇔ nguess ln(q)
100(poly(m) + n log2(q))

= e(ms2−2π�2)σ2
e .

Note that nguess < n < m so for large enough value of m, the left-hand side of
this expression is smaller than 1 (recall that poly(m) comes from the choice of N
so we can always make it slightly bigger to artificially increase the denominator
if we want). It follows that we can always choose s such that lnT = Nε2 in such
a way that (24) holds (see [39, Appendix G.2]) and therefore Theorem 5 ensures
that our algorithm works in this regime.

We will now compare this with [20]’s contradictory regime. This regime,
defined in [20, page 21] is when9

r GH(Lq(Adual)) <

√

m

2π
σe, where r = T−1/m. (25)

Note here that the lattice is Adual because [20] modularizes the algorithm by
separating the lattice in which dual-distinguishing is done, with the part of the
lattice that is enumerated over (see Sect. 6.2). Indeed, this regime comes from
Heuristic 1 and the lattice in question is the one where dual vectors are generated.

Recall that for the algorithm to work, A and therefore Adual must have full
rank, so det(Lq(Adual)) = qm−ndual . Now observe that

r GH(Lq(Adual))
√

m
2π σe

=
T−1/m

√

m
2πeq1−ndual/m

√

m
2π σe

=
q−nguess/mq1−ndual/m

√
eσe

.

8 Under some mild technical simplification to make the computation easier.
9 Recall that because of the difference between the normal distribution and the discrete

Gaussian, we have σ = σe/
√

2π in our analysis, see [39, Appendix G.1].



Provable Dual Attacks on Learning with Errors 281

Recall that n = ndual + nguess so the contradictory regimes corresponds to

q1−n/m < σe

√
e. (26)

Comparing between the working regime (24) and the contradictory one (26),
and recalling that we can choose s as large as we want, we observe that they do
not overlap and the bounds only differ by a factor of two. This suggest that, for
our algorithm, the “theoretically working” regime and the contradictory regime
almost characterize whether the dual attack will work or not. However, the next
section will explain that those regimes are based on different distributions of
targets.

6.2 On the Distribution of Targets

The authors of [20] decided to modularize the algorithm by separating the lattice
in which dual-distinguishing is done (Lq(Adual)) from the part of the lattice
that is enumerated over (Lq(Aguess)). In fact, Heuristic 1 only mentions the
dual-distinguishing and not the enumeration. This however, poses a difficulty
because it is clear that the “targets” (b−Aguesss̃guess in our terminology, t(i)unif

in Heuristic 1) are not arbitrary but have some structure.
The authors of [20] decided to model the statistics of the targets in a way that

is independent of the actual choice of Aguess: they chose the uniform distribution
over the fundamental domain of Lq(Adual). In the case of [32] and our algorithm,
the algorithm exclusively works over integers which is why we propose Heuristic
2 as an integer-version of Heuristic 1. This means that we now have two different
settings:

– In Heuristic 2, t(i)unif is sampled uniformly in Z
m/L.

– In reality, t(i)unif = e+ x(i) where x(i) can be any vector in L′ \ qZ
m where L′

is another random q-ary lattice, chosen independently of L but fixed in the
algorithm. In our algorithm, L = Lq(Adual) and L′ = Lq(Aguess).

Indeed, a key point in the proof of Theorem 5 is to show that points of the form
e + x(i) as described are always far away from L, a fact that does not hold for
completely uniform targets. As a result, with high probability over the choice of
A, the targets (except for the correct guess) are all bounded away from 0 in the
dual lattice. For uniform targets, the argument of [20] is statistical in nature:
while there can be very short vectors, they are unlikely and the contradiction
comes from the fact that if we try too many targets, we will eventually find
a short one and get a false-positive. On the other hand, our algorithm and
analysis is not statistical: for the vast majority of choices of A, all targets satisfy
the bound unconditionally and we can safely look at all targets without the risk
of any false-positive.

In conclusion of this section, it seems that the contradictory regime of [20]
nicely complements the working regime of our algorithm. On the other hand, the
statistical model that underlines this contradictory regime and what happens in
our algorithm are different. We leave it as an open question to explain exactly
why the two regimes seem to align perfectly.



282 A. Pouly and Y. Shen

7 Open Questions

We have analysed formally a dual attack in the spirit of [32]. However, as noted in
[20], the algorithm used by [32] produces many short dual vectors in a sublattice
L′′ of L⊥

q (Adual) (instead of the entire L⊥
q (Adual)). In other words, W is roughly

the set of vectors of L′′ in a ball and therefore gW does not exactly measure the
distance to L but rather to a more complicated lattice. This fact makes the
analysis of gW considerably more challenging and we believe that more research
is needed to understand how this affects the choice of the parameters.

Another issue that we have avoided is that of modulus switching. Indeed,
while [32] claims that this techniques bring significant improvements in the
complexity, [20] claims that geometric arguments contradicts this statement.
We leave as an open problem the study of a modification of our algorithm that
would include modulus switching. We believe that a formal analysis would be
the best way to resolve this issue. A priori, we do not see any major reason why
this could not be analysed formally but it may prove to be a nontrivial technical
challenge due to the effects of rounding modulo p on the uniform distribution
modulo q. We note in this direction that the approach of [16] of using lattice
codes instead of modulus switching might be a better fit for a formal analysis.

Finally, we have analyzed the case where the algorithm has access to m LWE
samples in dimension n, and our algorithm typically requires m ≈ 2n to have
a good complexity. In practice, however, it is common to only have n samples,
something that our algorithm cannot handle. While there is a standard technique
to deal with this, namely sampling in the lattice

{(x,y) ∈ Z
m × Z

ndual : xTAdual = y mod q},

we leave it as future work to include this improvement to our analysis.
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