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Abstract. A zero-knowledge proof enables a prover to convince a veri-
fier that x ∈ S, without revealing anything beyond this fact. By running
a zero-knowledge proof k times, it is possible to prove (still in zero-
knowledge) that k separate instances x1, . . . , xk are all in S. However,
this increases the communication by a factor of k. Can one do better?
In other words, is (non-trivial) zero-knowledge batch verification for S
possible?

Recent works by Kaslasi et al. (TCC 2020, Eurocrypt 2021) show
that any problem possessing a non-interactive statistical zero-knowledge
proof (NISZK) has a non-trivial statistical zero-knowledge batch veri-
fication protocol. Their results had two major limitations: (1) to batch
verify k inputs of size n each, the communication in their batch protocol
is roughly poly(n, log k) + O(k), which is better than the naive cost of
k · poly(n) but still scales linearly with k, and, (2) the batch protocol
requires Ω(k) rounds of interaction.

In this work we remove both of these limitations by showing that
any problem in NISZK has a non-interactive statistical zero-knowledge
batch verification protocol with communication poly(n, log k).
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1 Introduction

Zero-knowledge proofs, introduced in the groundbreaking work of Goldwasser,
Micali, and Rackoff [18], allow a prover to convince a verifier that a given state-
ment “x ∈ S” is true, without revealing anything beyond its validity. Since their
inception, zero-knowledge proofs have had a profound impact on cryptography,
complexity theory, and more generally throughout theoretical computer science.

The full version is available at [25].
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Remarkably, these proof-systems are now being used in practical systems as
well.1

In this work, we study batch verification of zero-knowledge proofs: assuming
that S has a zero-knowledge proof, can one prove, still in zero-knowledge, that
x1, . . . , xk all belong to S? The immediate answer to this question is yes – one
can simply prove separately that each xi ∈ S, and the resulting protocol only
has a linear in k loss in zero-knowledge error. What we ask however, is whether
there is a protocol that can do so with much shorter communication.

We focus on the setting of statistical zero-knowledge (SZK) proofs – these
are proof-systems in which both the soundness and zero-knowledge properties
hold in a strong information-theoretic sense. Statistical zero-knowledge proofs
are known for most of the commonly studied problems in cryptography and are
closely related to constructions of encryption and signature schemes. In partic-
ular, the study of batch verification of zero-knowledge proofs is motivated by
their enabling of batch proofs that public-keys, ciphertexts or signatures are
well-formed, and more generally, for better understanding the rich structure2 of
SZK.

The question of batch verification for statistical zero-knowledge proofs was
raised in a recent pair of works by Kaslasi et al. [22,23]. These works showed that
every problem possessing a non-interactive SZK proof, has an interactive SZK
proof-system for batch verification, with non-trivial communication complexity.
Recall that non-interactive statistical zero-knowledge proofs (NISZK) [15,35],
similarly to their computational counterparts [2], are defined in the common
random string model, in which all parties have access to a common random
string (aka a CRS).3

Thus, [22,23] construct SZK batch verification protocols for every problem in
NISZK. However, their results suffer from some important drawbacks. First, the
communication complexity of their protocol is (up to poly-logarithmic factors)
poly(n)+O(k). This is better than the naive protocol which has communication
poly(n) · k, but the improvement is still limited. We call a batching protocol
achieving such communication a weak batching protocol, since, ideally, we would
like the dependence on k to be much smaller. Second, while the starting point is
a problem that has a non-interactive SZK proof, the resulting batch protocol is
highly interactive, requiring Ω(k) rounds of interaction, which can be exorbitant
for large values of k.

Our Results. In this work, we improve on the results of [22,23] and construct a
strong batch verification protocol in which the communication only grows poly-
logarithmically with k. Furthermore, the resulting protocol is non-interactive (in
the CRS model).

1 See https://zkproof.org and references therein.
2 See Vadhan’s thesis [38] for further background.
3 As is typically done in the statistical setting (see [15]), we focus on the case that

the CRS is a uniform random string (rather than the related common “reference”
string model, which is sometimes considered in the computational setting).

https://zkproof.org
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Theorem 1 (Batch Proofs for NISZK). Suppose Π ∈ NISZK and k =
k(n) ∈ N such that k(n) ≤ 2n0.01

, where n denotes the length of a single instance
of Π. Then, Π⊗k has an NISZK protocol in which the communication complex-
ity and the length of the common random string is poly

(
n, log k

)
. The complete-

ness, soundness, and zero-knowledge errors are all negligible in n and k, and the
verifier runs in time poly(n, k).

Here and throughout, Π⊗k denotes the set of k-tuples of inputs (x1, . . . , xk)
(of equal length), all of which belong to Π.4 We remark that a poly(n) depen-
dence in the communication complexity is inevitable, even when k = 1, assuming
the existence of a sub-exponentially hard problem in NISZK (this follows from
known limitations on laconic provers [13,17]).

In addition, our protocol is significantly simpler than those in [22,23]. The
main technical observations underlying it are that:

1. Hash functions with bounded independence (specifically 4-wise independence
suffices) preserve very specific types of entropies, and,

2. A cascade of such hash functions can be derandomized while still preserving
this behaviour.

We elaborate on these points next.

1.1 Technical Overview

In this section, we provide an overview of our construction of batch NISZK
protocols for any problem in NISZK.

Batching Protocol for Permutations. The starting point of our protocol is
the same as those of [22,23]. In particular, [22] first demonstrate a very simple
batching protocol for a specific promise problem in NISZK, denoted PERM, of
checking whether a given length-preserving circuit C : {0, 1}n → {0, 1}n is a
permutation (these are the YES instances of the problem) or a 2-to-1 function
(these are the NO instances). Hereon, we will use the notation N = 2n. Over-
loading notation, we will use C to also represent the distribution induced by
evaluating the circuit on a uniformly random input.

A straightforward NISZK protocol for (a single instance of) PERM is to have
the CRS contain a random string r ∈ {0, 1}n and the proof is an x ∈ {0, 1}n

such that C(x) = r. This simple protocol clearly has perfect completeness and
soundness error 1/2 (which can be amplified by repetition). The protocol is
perfectly zero-knowledge since the simulator can just sample x at random and
output (x, r = C(x)). The communication complexity and CRS length are both
n, corresponding to the input and output length of C – significantly, these are
otherwise independent of the size of C.

This protocol can be easily extended to prove that circuits C1, . . . , Ck all
belong to PERM as follows. The CRS is again a uniformly random r ∈ {0, 1}n,
4 In the technical sections we refer to promise problems, in which the formal definition

of Π⊗k requires that all k inputs satisfy the promise of Π, see Sect. 2.
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but now the proof is a string x ∈ {0, 1}n such that (Ck ◦ Ck−1 ◦ · · · ◦ C1)(x) = r
(here ◦ denotes composition of functions). Completeness and zero-knowledge are
as before. As for soundness, observe that even if one of the Ci’s is 2-to-1, then
the composed circuit has an image of size at most 2n/2 and so with probability
at least 1/2, the CRS string r is sampled outside the image and so a suitable
preimage x does not exist.

Approximate Injectivity. If the problem PERM were NISZK-complete, we
would be done – given k instances of any NISZK problem Π, we could reduce
each of them to an instance of PERM, and run the above batch NISZK protocol.
Unfortunately, PERM is not known to be NISZK-complete, and in fact seems
unlikely to be, as it has a perfect zero-knowledge proof.

Still, [22,23] identify a closely related problem that they show to be NISZK-
complete. This problem is called Approximate Injectivity, denoted by AIL,δ, and
is specified by two parameters L and δ.5 In the AIL,δ problem, the instance is a
circuit C : {0, 1}n → {0, 1}m, where m ≥ n, and:

– YES instances are circuits that are injective on all except a δ-fraction of
inputs; that is, for all except δ · N elements x ∈ {0, 1}n, there is no x′ �= x
such that C(x) = C(x′).

– NO instances are circuits where for all except a δ-fraction of inputs x, there
are at least L elements x′ such that C(x) = C(x′).

They then show that, even for sub-exponential values of L and δ, the problem
AIL,δ is NISZK-complete.

For this overview, it will be convenient to focus first on an exact variant of
AIL,δ that we will call Exact Injectivity, denoted EIL. Here YES instances are
required to be fully injective, whereas NO instances are exactly L-to-1. We will
describe how to construct a batch NISZK protocol for this problem, and later
describe how to make this work with just approximate injectivity.

Batch Protocol for Exact Injectivity. We would now like to design an
NISZK protocol that distinguishes between the YES case where input circuits
C1, . . . , Ck : {0, 1}n → {0, 1}m are all injective, and the NO case where at least
one of them is highly non-injective (i.e., it is L-to-1). Simply composing the cir-
cuits as we did in the protocol for PERM does not work, even syntactically, since
the co-domain of each circuit Ci is larger than the domain of Ci+1. Since it is
in general unclear how to injectively map the co-domain of the former to the
domain of the latter, a natural approach is to perform this mapping at random.

Thus, consider selecting hash functions h1, . . . , hk : {0, 1}m → {0, 1}n from
a suitable hash function family (e.g., of bounded independence), and applying
these in between consecutive applications of the Ci’s. This defines the following
“chain” circuit:

C(x) = (hk ◦ Ck ◦ · · · ◦ h2 ◦ C2 ◦ h1 ◦ C1)(x).

5 The NISZK hardness of AI also follows from the instance dependent universal one-
way hashing constructed in the earlier work of Ong and Vadhan [29].
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Before continuing, looking ahead, a major problem with this approach is
that even if each hash function requires merely a constant number of bits to
represent it, and if the hash functions are chosen independently, then they must
be communicated between the parties, which implies that communication (or
CRS length) still scales linearly with k. Getting around this requires an entirely
separate set of techniques that we describe towards the end of this section. For
now, we ignore this issue and focus on simply constructing a NISZK protocol
with short prover to verifier communication.

Does Naive Hashing Work? Clearly, if even one of the Ci’s is L-to-1, then
similarly to the case of PERM, the size of the range of the chain circuit C
is at most N/L. So in the NO case we have what we want, but what about
the YES case? Can we argue that if C1, . . . , Ck are all injective then C is also
injective (with high probability)? Unfortunately, the answer is negative. Even if
the functions hi were chosen completely at random, by the birthday bound, a
very large number of collisions is likely to occur. Let alone further compositions,
the expected size of the range of even (h1 ◦ C1) is only (1 − (1 − 1/N)N ) · N ≈
(1 − 1/e) · N , which is a constant factor smaller than N . These collisions from
the hi’s skew the output distribution of C, and after a large (k 	 n) number
of compositions it is unclear whether we will be able to distinguish between the
YES and NO cases. Indeed, even if each composition decreases the entropy of
the resulting circuit by merely 1/p(n) for some polynomial p, after k 	 p steps,
the two cases become indistinguishable.

Prior work [22,23] handled this using a delicate interactive protocol in which
information is only gradually revealed both to the prover and the verifier. This
gradual process handled each circuit in the chain, in order, via a constant-round
interactive protocol. In each round, the collisions coming out of the corresponding
hash hi were “nipped at the bud” (i.e., immediately when they appeared). This
approach led to a total of Ω(k) rounds, which, in particular, also meant that the
communication complexity was Ω(k).

At this point we depart from the [22,23] approach. We show that as a matter
of fact, in the YES case, even though there are many collisions in C, its output
distribution still has higher entropy (for a particular notion of entropy) than
in the NO case. Given such a gap between YES and NO instances, we then
construct an NISZK protocol that takes advantage of this. We find the fact
that we can control the output distribution of the circuit even after a huge
number of compositions (i.e., even if k is sub-exponential in n) quite surprising,
and we elaborate on this below.

The Range of C. To see why C stands any chance of having high entropy
when all the Ci’s are injective, it is useful to think about the size of its range. As
observed earlier, even if C1 is injective and h1 is a completely random function,
the expected size of the range of (h1 ◦ C1) is, with good probability, close to
(1 − 1/e) · N . This is computed as follows:

– There are N elements y ∈ {0, 1}m that are in the range of C1, since it is
injective.
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– For any z ∈ {0, 1}n, the probability there exists a y in the image of C1 with
h1(y) = z is:

(
1 − (1 − 1/N)N

)
≈ 1 − 1/e.

– The expected number of z’s in the range of (h1 ◦ C1) is thus ≈ (1 − 1/e) · N .

It can also be shown that the size of this range concentrates around this expec-
tation. The expected size of the range of (h2 ◦C2 ◦h1 ◦C1) will also be a constant
factor smaller than (1−1/e)·N . If this trend continues, then after k compositions
there is no hope that C will have a large range.

Fortunately, it does not. Suppose that the function (Ci ◦ hi−1 ◦ · · · ◦ C1) has
range of size S 
 N , for some i and hash functions h1, . . . , hi−1. Then, the
expected size of the range of (hi ◦ Ci ◦ · · · ) when hi is completely random is
computed as:

– For any z ∈ {0, 1}n, the probability there exists a y in the image of (Ci ◦ · · · )
with hi(y) = z can be approximated using the Taylor series as:

(
1 − (1 − 1/N)S

)
≈ S

N
− O

(
S2

N2

)
.

– The expected number of z’s in the range of (hi◦Ci◦· · · ) is thus ≈ S−O(S2/N).

So if (S2/N) is smaller than o(S), the size of the range does not shrink by a
constant factor. In other words, as we keep composing with (h2 ◦ C2), (h3 ◦ C3),
etc., the size of the range of the composed circuit might quickly drop to o(N),
but after that the rate of its decrease goes down, and the size of the range nearly
stabilises. By careful arguments along these lines, it can in fact be shown that,
with high probability, the size of the range of C is at least Ω(N/k).

Entropies of C. The arguments so far indicate that if all the Ci’s are injective,
the range of C is of size at least Ω(N/k), whereas if even one of them is L-to-1,
it is at most N/L. If L is much larger than k (as can be arranged6), there is a
significant gap between these numbers. While this is encouraging, it is insufficient
for an NISZK protocol. The problem of distinguishing between circuits whose
range is large and ones whose range is small is, in fact, NP-hard7, and thus
unlikely to have an SZK protocol (let alone an NISZK one).

We do, however, know how to construct NISZK protocols that distinguish
between circuits whose output distribution has large entropy, and circuits with a
small range. To help with precision, we define the following notions of entropy of
a distribution D. Below, Dx denotes the probability mass placed on the element
x by D.
6 Recall that k ≤ 2nε

, for some small ε > 0, and as noted earlier, the problem AIL,δ is
NISZK-hard [23] even for some sub-exponential values of L.

7 This NP-hardness can be shown by reducing from SAT. Given a SAT formula φ,
construct a circuit that takes input (x, y) where x, y ∈ {0, 1}n, and outputs 0n if
φ(x) = 0, and y otherwise. If φ is not satisfiable, the size of the range of this circuit
is 1, whereas if it has even one satisfying assignment, it is 2n. So an algorithm that
can distinguish between these two cases can be used to solve SAT.
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– Max Entropy: H0(D) = log |Supp(D)|.
– Shannon Entropy: H1(D) =

∑
x −Dx log Dx.

Circuit C having a small range corresponds to H0(C) being small. Following the
work of Goldreich et al. [15], we know NISZK protocols that can distinguish
between circuits with large and small Shannon entropies. As the max entropy is
always larger than the Shannon entropy, this immediately gives us an NISZK
protocol that can distinguish between circuits with large Shannon entropy and
those with small range.

So if we can show that in the YES case the composed circuit C has high
Shannon entropy, we would be done. We show this by proving a stronger state-
ment. We consider the following notion of entropy that is a lower bound on the
Shannon entropy8:

– Rényi Entropy: H2(D) = − log
∑

x D2
x.

We show that in the YES case (i.e., when C1, . . . , Ck are injective), C actually
has large Rényi entropy. We consider this notion of entropy for two reasons. First,
the quantity inside the log above (i.e.,

∑
x D2

x, aka the collision probability of
D) is simpler and easier to work with. The more important reason, however, is
the following. Eventually, we are going to derandomise the construction of C so
that we don’t need Ω(k) bits to describe all the functions hi. We show that the
derandomization procedure we use more-or-less preserves the Rényi entropy of
C. It is not at all clear, however, whether the process preserves the Shannon
entropy. So it would not have been sufficient to show that C has high Shannon
entropy, and we do need it to have high Rényi entropy.

Preservation of Rényi Entropy. Next we describe how we bound the Rényi
entropy of C, arguing in terms of its collision probability, denoted by cp(C). Note
that H2(D) = − log (cp(D)). For each i ∈ [0, k], define the following distribution:

Di ≡ (hi ◦ Ci ◦ · · · ◦ h1 ◦ C1)(x),

where x is uniformly random. To show that the Rényi entropy of C is high if
all the Ci’s are injective, we proceed inductively, and show that C’s collision
probability is small. First, D0 is simply the uniform distribution over {0, 1}n,
and its collision probability is 1/N . We then show that for each i ∈ [k]:

E
hi

[cp(Di)] ≤ cp
(
Ci(Di−1)

)
+

1
N

= cp(Di−1) +
1
N

,

where the inequality follows from the law of total expectation and the pairwise
independence of hi, and the equality follows from the fact that Ci is injective.
This shows that the expected collision probability of Dk ≡ C is at most (k+1)/N .
We then similarly bound the variances of the cp(Di)’s, and inductively use con-
centration bounds to show that, with high probability, the collision probability
8 Technically, this is only one of a family of measures called Rényi entropies, of which

the Shannon entropy is also one. We simply refer to this as Rényi entropy for con-
venience.
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of Dk is not much larger than O(k/N). The above bound on the expectation
can be shown as long as the hi’s are drawn from a family that is pairwise-
independent. And for the bound on the variance, it is sufficient that they are
4-wise independent.

So the Rényi entropy of C, with high probability over the choice of h1, . . . , hk,
is not much less than (n − log k). If at least one of the Ci’s was L-to-1, then C
has a range of size at most N/L, and thus max entropy of at most (n− log L). So
as long as k 
 L, there is a gap between these bounds and we have an NISZK
protocol that distinguishes between these cases. For any k < 2no(1)

, there is a
setting of L 	 k and δ for which AIL,δ is NISZK-hard, and so we can support
batching of k instances of any NISZK problem with this approach.

Dealing with Approximate Injectivity. So far, however, we have ignored
the fact that in the actual NISZK-complete problem AIL,δ, the circuits are only
approximately injective or L-to-1. In the NO case, the approximation is not an
issue as it only slightly increases the size of the range of the circuit. In the YES
case, however, we need to be careful.

To be more precise, recall that YES instances of AIL,δ are circuits where up
to a δ fraction of inputs may not be mapped injectively. When this happens, the
relation cp

(
Ci(Di−1)

)
= cp(Di−1) that we used to inductively bound the colli-

sion probabilities of Di breaks down – composition with Ci does not necessarily
preserve collision probabilities any more. For instance, suppose C1 is such that
it maps (1 − δ)N inputs injectively, and maps all of the remaining δN inputs to
0m. The collision probability of C1(x) is now at least δ2, which could already be
much larger than O(k/N) and O(L/N).

However, while the collision probability of C1(x) is not small, it is, in fact,
close to another distribution whose collision probability is small. Consider a
function Ĉ1 that satisfies the following two properties:

– Ĉ1 : {0, 1}n → {0, 1}m is injective.
– For any x that C1 maps injectively, Ĉ1(x) = C1(x).

Fix any such function. Note that the statistical distance between C1(x) and
Ĉ1(x) is at most δ – the probability mass from all the inputs on which C1 and
Ĉ1 might disagree. And also, the collision probability of Ĉ1(x) is 1/N , as Ĉ1 is
injective.

Recall that our earlier approach was to show that the collision probability
of Dk is small. While we cannot hope for this any more following the above
observations, we may still endeavour to show that Dk is close to a distribution
whose collision probability is small. This would also be sufficient for constructing
an NISZK protocol, using a simple reduction to the Statistical Difference from
Uniform (SDU) problem (also complete for NISZK [15]) by hashing and using
the Leftover Hash Lemma.

So far using the closeness of C1 and Ĉ1, for any h1, we can show the following
bound on statistical distance from the data processing inequality:

Δ(h1 ◦ C1, h1 ◦ Ĉ1) ≤ δ.
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So D1 ≡ (h1 ◦ C1) is indeed close to a distribution whose collision probability is
small. To take this argument further, similarly define Ĉi for the other circuits
Ci, and define the following corresponding distributions:

D̂i ≡ (hi ◦ Ĉi ◦ · · · ◦ h1 ◦ Ĉ1)(x).

We have shown above that for any choice of h1, the distributions D1 and D̂1 are
close. We would like to argue that for any choices of h1, . . . , hk, the distributions
Dk and D̂k are close. It is not straightforward to argue this for further compo-
sitions, however. Ideally, we would like to also say, for instance, that for any h1

and h2, the distributions of (h2 ◦C2 ◦h1 ◦ Ĉ1) and (h2 ◦ Ĉ2 ◦h1 ◦ Ĉ1) are close, to
enable a hybrid argument where we slowly replace the Ci’s with the Ĉi’s. This
is, however, not true. Consider an h1 that maps all inputs to an x on which C2

is not injective. Then, the distance between (C2 ◦h1 ◦ Ĉ1) and (Ĉ2 ◦h1 ◦ Ĉ1) can
be very large.

Pathological cases like this can be avoided if the distribution of (h1 ◦ Ĉ1) has
high entropy. Roughly, if this distribution has high entropy, then it cannot place
too much probability mass on the elements on which C2 and Ĉ2 differ. Observe
that the distance between (C2 ◦ h1 ◦ Ĉ1) and (Ĉ2 ◦ h1 ◦ Ĉ1) is upper bounded by
this probability mass. Using such arguments, we can show that if D̂1 ≡ (h ◦ Ĉ1)
has high Rényi entropy, then the distance between D2 and D̂2 is small.

Note that for any choice of h1, . . . , hk, the entropy of any D̂i is at least that of
D̂k, as entropy cannot be increased by composition with deterministic functions.
We can then proceed inductively to show that for any hash functions h1, . . . , hk

for which D̂k has high Rényi entropy, the distance between Dk and D̂k is small.
That is, for any such choice of hash functions (which happens with high prob-

ability), C is close to a distribution that has high Rényi entropy. This implies, in
particular, that with high probability C will be close to a distribution that has
high Shannon entropy. This latter statement seems sufficient for our purposes,
but is not. We will actually need the former stronger statement to perform the
derandomization of C as discussed next.

Derandomizing the Reduction. What we have so far is a randomized reduc-
tion from AI⊗k

L,δ to a problem in which the YES instances are circuits that are
close to having high Rényi entropy, and NO instances are circuits that have low
max entropy. As noted earlier, although throughout the previous discussion we
have assumed that the hash functions h1, . . . , hk are truly random, it suffices to
use 4-wise independent hash functions to bound the collision probability. This
still yields a reduction that uses a lot of randomness. Namely, since we need to
sample k independent 4-wise independent hash functions, the randomness grows
linearly with k. Recall that our goal is to construct an NISZK protocol with a
CRS of size poly(n, log k). In our protocol, both the verifier and prover run the
reduction using randomness from the CRS, therefore we cannot afford to sample
k independent hash functions for this reduction.

It is natural to try to reduce the randomness by using correlated hash func-
tions, but one has to be extremely careful as in each step we apply the hash
function to a potentially correlated input.
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We explain how to overcome this problem in the exact injectivity case, since
that captures the main idea of the derandomization. We recall that our reduction
outputs a chain

C(x) = (hk ◦ Ck ◦ · · · ◦ h2 ◦ C2 ◦ h1 ◦ C1)(x).

alternating between the input circuits and the random hash functions. We can
view the description of the hash functions h1, . . . , hk as additional input to the
circuit C and denote

Ch1,...,hk
(x) = (hk ◦ Ck ◦ · · · ◦ h2 ◦ C2 ◦ h1 ◦ C1)(x).

Completeness of our protocol relies on the guarantee that if all of the circuits
C1, . . . , Ck are injective then with high probability over h1, . . . , hk, the circuit
Ch1,...,hk

would have a small collision probability.
Once an input x is fixed, the circuit C can be modeled as a small-width

Read Once Branching Program (ROBP), with h1, . . . , hk as the inputs. The key
observation is that the collision probability of C can therefore also be computed
using a small-width ROBP. Hence, we can use Nisan’s [28] pseudorandom gen-
erator (PRG) for ROBP to sample the h1, . . . , hk, while nearly preserving the
collision probability, and thus keeping the same guarantee even when sampling
pseudorandom h1, . . . , hk. We remark that here we crucially use the fact that
the collision probability can be computed via a local process (namely sampling
two inputs and checking for a collision). This does not seem to be the case for
other notions of entropy (e.g., Shannon entropy), for which we do not know a
similar derandomization.

In more detail, for any two fixed inputs x1, x2, we can define a ROBP
Mx1,x2(h1, . . . , hk) of length k and width 22n that outputs 1 if and only if
Ch1,...,hk

(x1) = Ch1,...,hk
(x2). The collision probability can thus be written as

cp(Ch1,...,hk
) = Pr

x1,x2←{0,1}n
[Mx1,x2(h1, . . . , hk) = 1] .

Using the linearity of expectation, the expected collision probability over the
choice of h1, . . . , hk is

E
h1,...,hk

[cp(Ch1,...,hk
)] = E

x1,x2←{0,1}n

[
Pr

h1,...,hk

[Mx1,x2(h1, . . . , hk) = 1]
]

.

If we employ a PRG for ROBP, with error ε, the collision probability increases
by at most ε more than if h1, . . . , hk were sampled uniformly at random. Since
the seed length in Nisan’s PRG only depends logarithmically on ε, we can afford
to use ε = 2−Ω(n) and so the collision probability is indeed preserved up to very
small factors. Thus, using Nisan’s PRG reduces the seed length to poly(n, log k),
as desired.

The Protocol. To summarize, given k instances of any NISZK problem Π,
both the verifier and the prover first reduce the instances to AIL,δ instances
C1, . . . , Ck : {0, 1}n → {0, 1}m. Then they utilize poly(n, log k) bits from CRS
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as the seed for Nisan’s PRG. The output of the PRG is then used to sample
4-wise independent hash functions, denoted as h1, . . . , hk : {0, 1}m → {0, 1}n.
These functions are used to construct the chain circuit C(x) = (hk ◦ Ck ◦ · · · ◦
h2 ◦ C2 ◦ h1 ◦ C1)(x).

In the YES case (i.e. when all instances are YES instances of Π), with prob-
ability all but negligible in n, k, there exists a Ĉ such that:

– Ĉ has high Rényi entropy.
– The distribution of C is very close to that of Ĉ.

As a consequence, C can be reduced to a YES instance of SDU by hashing its
output with an appropriate pairwise-independent hash function. In the NO case
(i.e. some instances are NO instances of Π), the max entropy H0(C) will be
small. As a result, applying the same reduction on C will yield a NO instance
of SDU.

The prover and verifier then run the NISZK protocol for SDU on this
instance. This uses an additional poly(n) bits from the CRS and poly(n) bits of
communication. Here we crucially use the fact that the communication of the
NISZK protocol for SDU only depends on the input/output size of the circuit,
rather than the size of its description

(
as in our case the former is poly(n) whereas

the latter is k · poly(n)
)
. The negligible error associated with the reduction is

incorporated into the completeness error of the protocol.

1.2 Related Works

The two closest relevant works, already mentioned above are [22,23], where the
former constructed an honest-verifier SZK protocol for batch verification of
NISZK, whereas the latter constructed a malicious-verifier (and public-coin)
protocol. We remark that our NISZK protocol can be transformed into an
interactive public-coin (malicious verifier) SZK protocol using standard trans-
formations [16].

If one drops the zero-knowledge requirement and merely strives for short
communication, batch verification is possible for every problem in NP (or more
generally PSPACE), using the IP = PSPACE Theorem [24,36]. That pro-
tocol however has an exponential-time prover. Reingold, Rothblum and Roth-
blum [31,32,34] constructed batch verification protocol for every problem in UP
(i.e., NP problems in which YES instances have a unique witness) in which the
honest prover runs in polynomial-time given the witnesses. Curiously, this line
of work also started with a protocol achieving weak batching [32] (i.e., with an
additive linear dependence on k) and gradually improved to a poly-logarithmic
dependence on k [31,34].

A separate and exciting line of work has constructed non-interactive compu-
tationally sound batch verification protocols for all of NP (aka batch arguments
or BARGs for short) [5–9,20,21,30,39]. In contrast to the NISZK setting, these
results focus on protocols for all of NP but only offer computational soundness
and rely on unproven cryptographic assumptions such as LWE. A recent work
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by Bitansky et al. [1] has shown that different notions of batch proofs auto-
matically yield hiding properties such as witness indistinguishibilty and, under
suitable cryptographic assumptions, even full fledged zero-knowledge.

Lastly, we mention the work of Goel et al. [12] who construct efficient zero-
knowledge proofs for disjunctions, whereas batch verification can be viewed as
zero-knowledge proofs for conjuctions; and the works of Brakerski et al. [4] and
Nassar et al. [26] who construct computationally sound protocols for monotone
policies within NP.

1.3 Discussion and Open Problems

Theorem 1 introduces a non-interactive batching verification protocol for the
NISZK class, achieving substantial communication efficiency compared to inde-
pendent executions. This is an encouraging indication for the possibility of batch
verification in zero-knowledge proofs. Below are some natural open problems for
future investigation:

1. Theorem 1 gives a non-interactive batching verification protocol for problems
in NISZK. The most pressing open question is whether a similar result holds
for SZK – namely, for every Π ∈ SZK does there exist an SZK proof for
Π⊗k with communication poly(n, log k)? Or, alternatively, one that features
less strigent, yet non-trivial, communication such as sub-linear dependence
on k?

2. As highlighted in [22], one avenue of research focuses on prover efficiency. It
is known that problems in SZK∩NP have SZK protocol where the prover is
efficient given an NP-witness [27]. All the current batch protocols for NISZK
proceed by reducing to NISZK-complete problems and thus do not preserve
this efficiency. Is it possible to construct batch protocols even for NISZK ∩
NP that preserve prover efficiency?

3. Is it possible to improve the multiplicative overhead in our construction to be
a fixed constant? That is, can we achieve communication O(c)+polylog(n, k),
where c is the communication for a single instance? This might necessitate
avoiding the complete problems, since the reduction introduces a polynomial
overhead (or, alternatively, achieving the result only for a limited class of
problems).
Pushing things even further, can we push the constant to be close to 1 (aka
a “rate-1” batch-proof)? Results of this flavor have been recently achieved in
the computational setting [9,30].

4. Our protocol shows an efficient closure property of NISZK for conjunc-
tions. What about more general efficient forms of closure: given a formula
φ : {0, 1}k → {0, 1}, does there exist an SZK protocol for φ(b1, . . . , bk),
where bi = 1 ↔ xi ∈ S, with sublinear in k communication?

2 Preliminaries

For any N ∈ N, we denote the set of numbers {1, . . . , N} by [N ]. For convenience,
we may write a boolean circuit C with n input bits and m output bits as C :
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[N ] → [M ] where N = 2n,M = 2m. For any circuit C : [N ] → [M ] and
any set S ⊆ [N ], we denote by C(S) the set of images of inputs in S, that is
C(S) = {C(x) : x ∈ S}. For an element y ∈ [M ], we denote by C−1(y) the set of
preimages of y. For any set S, we denote by US the uniform distribution over S.
For any positive integer n, we denote by Un the uniform distribution of {0, 1}n.

A promise problem is a pair Π = (Y,N) of disjoint sets (i.e., Y ∩ N = ∅).
We use x ∈ Π to denote that x ∈ Y ∪ N and say that x satisfies the promise.
We denote by YES(Π) = Y and refer to this set as the “YES” instances and by
NO(Π) = N the “NO” instances.

Definition 1. Let Π be a promise problem, and let k = k(n) ∈ N. We define
the promise problem Π⊗k where

YES
(
Π⊗k

)
=

{
(x1, . . . , xk) ∈ (

YES(Π)
)k : |x1| = · · · = |xk|

}

and

NO
(
Π⊗k

)
=

{
(x1, . . . , xk) ∈ Πk : |x1| = · · · = |xk|

}∖
YES

(
Π⊗k

)
.

2.1 Probability Theory Background

Lemma 1 (Chebyshev’s inequality). Let X be a random variable. Then,
for every α > 0:

Pr
[|X − E [X] | ≥ α

] ≤ Var [X]
α2

.

Definition 2 (Statistical Distance). The statistical distance between two
distributions X and Y over a finite domain D is defined as

Δ(X,Y ) = max
S⊆U

(X(S) − Y (S)) =
1
2

∑

u∈U

|X(u) − Y (u)|.

Fact 1. Let D be a domain and X be a distribution over D. If |Supp(X)| < δ·|D|
then Δ(X,UD) > 1 − δ.

Definition 3. The collision probability of a distribution X is defined as

cp(X) = Pr
x,x′←X

[x = x′].

Definition 4. Consider a random variable X over domain D. For any x ∈ D,
denote by px = Pr [X = x]. We recall the following notions of entropy of X:

– Max Entropy: H0(X) = log (|{x | px �= 0}|).
– Shannon Entropy: H1(X) = −∑

x∈D px log (px).
– Renyi Entropy: H2(X) = − log

(∑
x∈D p2x

)
= − log (cp(X)).

Technically, all of the above (as well as the notion of “min-entropy” which we
do not use in this work) are usually referred to as Renyi entropies of various
orders. For convenience, we use this term only for H2 and the terms above for
the others.

Fact 2. For any random variable X, we have: H2(X) ≤ H1(X) ≤ H0(X).
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2.2 Hash Functions with Bounded Independence

Definition 5. (	-wise Independent Hash Functions). For 	 = 	(n) ∈ N and
m = m(n) ∈ N, a family of functions F = (Fn)n∈N, where Fn = {f : {0, 1}m →
{0, 1}n} is called 	-wise independent if for every n ∈ N and every 	 distinct
domain elements x1, x2, . . . , x� ∈ {0, 1}m, and every y1, y2, . . . , y� ∈ {0, 1}n, it
holds that:

Pr
f

$←Fn

[ �∧

i=1

f(xi) = yi

]
= 2−�·n.

Lemma 2 (See, e.g., [37, Sect. 3.5.5]). For every 	 = 	(n) ∈ N and m =
m(n) ∈ N, there exists a family of 	-wise independent hash functions F (	) =
{f : {0, 1}m → {0, 1}n} where a random function from Fn,m can be selected
using O(	 · max(n,m)) random bits, and given a description of f ∈ F (	) and
x ∈ {0, 1}m, the value f(x) can be computed in time poly(n,m, 	).

Lemma 3 (Leftover Hash Lemma [19], see also [37, Sect. 6.2]). For any
polynomial k = k(n) and ε = ε(n) ∈ (0, 1), if H = {h : {0, 1}n → {0, 1}m} is
a family of pairwise independent hash functions such that m = k − 2 log(1/ε),
then for any distribution X over {0, 1}n such that cp(X) < 2−k it holds that

Δ
((

H,H(X)
)
,
(
H,Um

)) ≤ ε,

where H distributed uniformly over H.

Remark 1. The Leftover Hash Lemma is typically described with respect to
sources that have large min-entropy. However, examining the proof given in
[37, Sect. 6.2] shows that an upper bound on the collision probability suffices.

3 Non-Interactive Statistical Zero-Knowledge

In this section, we present the formal definitions of NISZK and some of its
complete problems that are useful in our work. In Sect. 3.1, we define a new
problem that is more directly useful, and prove that it is complete for NISZK.

Definition 6 (NISZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈
[0, 1]. A non-interactive statistical zero-knowledge proof (NISZK) with com-
pleteness error c, soundness error s and zero-knowledge error z for a promise
problem Π, consists of a probabilistic polynomial-time verifier V, a computa-
tionally unbounded prover P and a polynomial 	 = 	(n) such that the following
properties hold:

– Completeness: For any x ∈ YESn(Π):

Pr
r←{0,1}�(|x|)

[V(x, r, π) accepts] ≥ 1 − c(n),

where π = P(x, r).
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– Soundness: For any x ∈ NOn(Π):

Pr
r←{0,1}�(|x|)

[∃π∗ s.t. V(x, r, π∗) accepts] ≤ s(n),

– Zero Knowledge: There exists a probabilistic polynomial-time algorithm Sim
(called the simulator) such that for any x ∈ YESn(Π):

Δ
((

U�,P(x,U�)
)
,Sim(x)

)
≤ z(n),

where U� denotes a random variable distributed uniformly over {0, 1}�(n).

Unless otherwise specified, we assume by default that c(·), s(·) and z(·) are
negligible in the input size, and say that Π has an NISZK protocol if the latter
holds. We further use NISZK to denote the class of all such promise problems.

We note that parallel repetition of NISZK reduces the completeness and
soundness errors at an exponential rate, while increasing the zero-knowledge
error at only a linear rate.9 We recall some known complete problems for NISZK
that are useful in our work.

Definition 7 (Statistical Difference from Uniform [15]). The Statistical
Difference from Uniform problem, denoted SDU, is a promise problem defined by
the following sets:

YESn(SDU) = {circuit C : Δ(C,Un) < 1/n} ;
NOn(SDU) = {circuit C : Δ(C,Un) > 1 − 1/n} ,

where C is a circuit that outputs n bits. The size of an instance C is its output
length n.

Lemma 4 (SDU is NISZK-complete [15]). The promise problem SDU is
complete for NISZK. Moreover, the NISZK protocol for SDU only needs black-
box access to the instance circuit; and for a parameter s that is any polynomial in
the input and output sizes of the circuit in the instance, there are such protocols
with the following properties:

– the communication complexity and the length of the common random string
are poly(s),

– the completeness, soundness, and zero-knowledge errors are 2−s.

We note that the “moreover” part is not stated explicitly in [15], but follows by
examining their proof.

9 We remark that this property does not hold for interactive zero-knowledge proofs
[11,14]. The reason that it works for NISZK is that in NISZK the verifier cannot
cheat as there is no interaction [3].
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Definition 8 (Approximate Injectivity [22,23]). For any L = L(n) ∈ N

and any δ = δ(n) ∈ [0, 1], the Approximate Injectivity problem AIL,δ is a
promise problem defined as follows over circuits taking n bits of input and out-
putting 3n bits:

YESn(AIL,δ) =
{
circuit C : Pr

x←{0,1}n

[∣∣C−1(C(x))
∣
∣ > 1

] ≤ δ

}
;

NOn(AIL,δ) =
{
circuit C : Pr

x←{0,1}n

[∣∣C−1(C(x))
∣
∣ < L

] ≤ δ

}
.

Lemma 5 (AI is NISZK-hard [22,23], see also [29, Theorem 2]). For any
L(n) < 2n0.1

and non-increasing δ(n) > 2−n0.1
, the problem AIL,δ is NISZK-

hard.

Remark 2. In [22,23], the definition of the AI problem does not restrict the
output length of the circuits to 3n as Definition 8 does. This restricted version,
however, is equivalent in complexity to the unrestricted version. An instance
C : {0, 1}n → {0, 1}m of the unrestricted AI problem can be reduced to an
instance Ĉ of the restricted version as follows:

– If m > 3n, Ĉ takes as input (x, y) ∈ {0, 1}n+(m−3n)/2 and outputs (C(x), y).
– If m < 3n, Ĉ(x) outputs C(x) padded with (3n − m) zeroes.

Neither of these transformations change its membership in YES(AI) or NO(AI),
and the resulting circuits are of size O(m + n) larger than that of C.

3.1 Smooth Entropy Approximation

We start by defining smoothened versions of the various entropy measures
defined in Sect. 2, again slightly modified from usual convention to fit our appli-
cation.

Definition 9 (Smooth Entropy [33]). For any ε ≥ 0, the ε-smooth Rényi
entropy of a random variable X is defined as:

Hε
2(X) = max

Y ∈Bε(X)
H2(Y ),

where Bε(X) is the set of all distributions within statistical distance ε of X.

We define the following variant of the Entropy Approximation problem [15]
using the smooth Rényi and max entropies. Similar problems can be defined
with other entropy measures as well [10]. We show in Lemma 6 below that this
problem has an NISZK protocol, and that it is, in fact, NISZK-complete, as
stated in Theorem 2.
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Definition 10 (Smooth Entropy Approximation). For any ε = ε(n) ∈
[0, 1], the ε-Smooth Entropy Approximation problem, denoted by SEAε, is a
promise problem defined by the following sets:

YESn(SEAε) = {(C, k) | Hε
2(C) ≥ k + 1} ;

NOn(SEAε) = {(C, k) | H0(C) ≤ k − 1} ,

where C is a circuit that takes n bits as input and outputs m ≤ 3n bits, and k
is a positive real number that is at most the output length of C. The input and
output sizes of an instance (C, k) refer to the input and output lengths of C,
respectively.

Lemma 6 (NISZK Protocol for SEA). Consider any m = m(n) and ε =
ε(n) such that ε(n) < o

(
1/max(n,m) · log2 m

)
. Then, SEAε has an NISZK

protocol where, for any instance (C, k) with input and output lengths n and m,
respectively, the communication complexity and the length of the common random
string are poly(n,m). The completeness, soundness, and zero-knowledge errors
of this protocol are all 2−Ω(max(n,m)).

Proof. We show a reduction from SEA to SDU that preserves the input and
output lengths of the circuit up to a poly(n,m) blowup. The rest follows from
Lemma 4. For any m and k ≤ m, let Hm,k =

{
h : {0, 1}m → {0, 1}k

}
be the

pairwise-independent family of hash functions promised by Lemma 2, where each
hash function is described by O(max(m, k)) = O(m) bits.

Consider an instance (C, k) of SEAε,g where the input length of C is n and
its output length is m. Construct the circuit C ′ that corresponds to 20 log m
copies of C evaluated independently. Its input length is n′ = n · (20 log m), and
its output length is m′ = m · (20 log m). Similarly, let k′ = k · (20 log m). The
reduction, on input (C, k), outputs a circuit Ĉ that works as follows:

– It takes as input a description h of a hash function in Hm′,k′ and an x ∈
{0, 1}n′

.
– It outputs

(
h, h

(
C ′(x)

))
.

The output length of Ĉ is m̂ = O(m′) + k′ < O(max(n′,m′)). Its input length
is also O(max(n′,m′)).

Suppose (C, k) ∈ YES(SEAε). That is, Hε
2(C) ≥ k + 1, and thus Hε′

2 (C ′) ≥
k′ + 20 log m, where ε′ = ε · (20 log m). This implies that there is a distribution
Y that is at most ε′-far from C ′ that has cp(Y ) ≤ 2−(k′+20 log m). Let H denote
the random variable corresponding to a uniformly random h ∈ Hm′,k′ . By the
leftover hash lemma (Lemma 3), the statistical distance between (H,H(Y )) and
(H,Uk) is at most 2−(20 log m)/2. Thus, the distance between (H,H(C)) and
(H,Uk) is at most ε′ + 2−10 log m < 1/m̂. So Ĉ ∈ YES(SDU).

Suppose (C, k) ∈ NO(SEAε). That is, H0(C) ≤ k − 1. This means that C has
support of size at most 2k−1, and C ′ has support of size at most 2k′−20 log m.
This implies that the support size of (H,H(C ′)) is at most |Hm,k| ·2k′−20 log m =
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2−20 log m · 2m̂. This implies that the distance of (H,H(C ′)) from (H,Uk) is at
least (1 − 2−20 log m) ≥ (1 − 1/m̂). Thus, Ĉ ∈ NO(SDU). ��

Theorem 2 (SEA is NISZK-complete). For any ε(n) ∈ (
2−n0.1

, o(1/n)
)
,

the problem SEAε is NISZK-complete under randomized reductions.

Proof (Proof of Theorem 2). By Lemma 6, for any ε(n) < o(1/n), we know that
SEAε is contained in NISZK. We now show a reduction from AIL,δ. Specifically,
for any L = L(n) and δ = δ(n), with ε(n) = δ(n), we claim that if C is a YES
instance of AIL,δ, then (C, n − 1) is a YES instance of SEAε, and the same for
NO instances.

Suppose C : {0, 1}n → {0, 1}3n is a YES instance of AIL,δ. Consider any
injective function Ĉ on the same domain and co-domain that agrees with C on
all inputs on which C is injective. Then, the statistical distance between the
output distributions of C and Ĉ is at most δ. Further, the Rényi entropy of Ĉ
is n. So Hε

2(C) = n. Thus, (C, n − 1) is a YES instance of SEAε.
Suppose C is a NO instance of AIL,δ. Then, the size of its range is at most

(1 − δ) · (N/L) + δN ≤ N · (δ + 1/L). So H0(C) ≤ n − log L + log (1 + δL). As
long as L ≥ 8 and δL ≤ 1, this is at most (n−2), and (C, n−1) is a NO instance
of SEAε for any ε.

Therefore, for any ε(n) ∈ (2−n0.1
, 1/8), choosing δ(n) = ε(n) and L(n) =

1/ε(n), we get a reduction to SEAε from AIL,δ, which is hard for NISZK. So for
such ε, the problem SEAε is also hard for NISZK (Lemma 5). This completes
the proof of the theorem. ��

4 Derandomizing Batch Reductions

In this section, we set up a framework for derandomizing the specific kinds
of randomized reductions that we perform in Sect. 5. These reductions result
in a sequential composition of circuits alternated with randomly chosen hash
functions from some hash family. We refer to the composition as a chaining
circuit. Due to page constraints, we only formally define chaining circuits and
state our derandomization lemma. The formal proofs are deferred to the full
version [25].

Definition 11 (Randomized Chaining Circuit). Let R : {0, 1}d×{0, 1}m →
{0, 1}n be a Boolean circuit family and denote Rρ(y) := R(ρ, y) for each (ρ, y) ∈
{0, 1}d×{0, 1}m, and let C1, . . . , Ck : {0, 1}n → {0, 1}m be a sequence of Boolean
circuits. A circuit C̄ : {0, 1}n ×{0, 1}dk → {0, 1}n of the following form is called
a randomized chaining circuit:

C̄(x, ρ1, . . . , ρk) = (Rρk
◦ Ck ◦ . . . ◦ Rρ1 ◦ C1)(x).

The parameter k is called the chain length.
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Lemma 7. For any n, d, k ∈ N, t ∈ R and ε, δ ∈ (0, 1), suppose C : {0, 1}n ×
{0, 1}dk → {0, 1}n is a randomized chaining circuit such that:

Pr
ρ←{0,1}dk

[H2(Cρ) > t] > 1 − δ.

Then there exists a PRG G : {0, 1}seed → {0, 1}dk with seed = log(k) · log(k ·
2n · 2d/ε) · polylog(d) such that for any s > 0,

Pr
ρ←G(Useed)

[H2(Cρ) > t − s] > 1 − δ′,

where δ′ = 1
2s + (δ + ε) · 2t−s.

5 Batching AI by Direct Composition

In this section, we show how to reduce k size-n instances of AI to a single instance
of the Smooth Entropy Approximation (SEA) problem. Crucially, the length of
inputs and outputs of the circuit in the resulting SEA instance is still only n. The
NISZK protocol for this SEA instance (Lemma 6) then gives a batch protocol
for AI, and thus any problem in NISZK.

Theorem 3. Consider functions k(n), L(n), and δ(n) ≤ 1/L(n), and let ε(n) =
(δ(n)1/2 · k(n) · L(n)1/2). There is a poly(n, k) algorithm that, given k = k(n)
circuits (C1, . . . , Ck), each taking n input bits, outputs a tuple (C, t) such that:

– If all of the Ci’s are YES instances of AIL,δ, then except with probability
O(k(n)3/L(n)), the instance (C, t) is a YES instance of SEAε.

– If some Ci is a NO instance of AIL,δ, then (C, t) is a NO instance of SEAε.

Further, the input and output lengths of C are both n, and the algorithm uses
n · poly(log k, log n) bits of randomness.

Before proceeding to the proof, we restate and prove our main theorem about
batching NISZK proofs.

Theorem 1 (Batch Proofs for NISZK). Suppose Π ∈ NISZK and k =
k(n) ∈ N such that k(n) ≤ 2n0.01

, where n denotes the length of a single instance
of Π. Then, Π⊗k has an NISZK protocol in which the communication com-
plexity and the length of the common random string is poly

(
n, log k

)
. The com-

pleteness, soundness, and zero-knowledge errors are all negligible in n and k,
and the verifier runs in time poly(n, k).

Proof (Proof of Theorem 1). Given k instances of Π of size n, set the parameters
L = max(2log

3(n), klog log k), δ = 1/L4, and ε = (δ1/2 ·k ·L1/2). Note that we still
have L < 2n0.1

and δ > 2−n0.1
as needed for the NISZK-hardness of AIL,δ

(Lemma 5), while also satisfying the conditions required by Theorem 3. Further,
ε and (k3/L) are both negligible in both k and n. The prover and verifier in our
NISZK protocol run as follows:
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1. Using Lemma 5, reduce the k instances of Π respectively to k instances of
AIL,δ of size poly(n, log k) each.10

2. Reduce these k instances of AIL,δ to a single instance of SEAε with input
and output length poly(n, log k), using the reduction promised by Theorem
3. Here, both the prover and verifier will use poly(n, log k) bits from the
common random string as the randomness for the reduction. The probability
that the reduction fails is at most O(k3/L) for YES instances, and 0 for NO
instances.

3. Run the NISZK protocol for SEAε (with input and output lengths poly(n))
promised by Lemma 6. This protocol has all errors bounded by 2−nΩ(1)

, neg-
ligible in k and n.

Completeness, soundness, and zero-knowledge errors are negligible in k and n
following those of the protocol for SEA, and using the fact that the reduc-
tion to SEA only fails with negligible probability. Overall, the length of the
CRS is poly(n, log k) and the communication complexity of the protocol is
poly(n, log k). ��

Fig. 1. Reducing k instances of AI to one instance of SEA

10 The log(k) factor comes from our setting of the parameter L of AIL,δ, see [23,

Lemma 4.3]. It is important to note, however, that given that k(n) ≤ 2n0.01
, it

holds poly(n, log k) = poly(n).
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We now present, in Fig. 1, the reduction that establishes Theorem 3. Then
we state Lemmas 8 and 9 about its properties. These lemmas together imply
Theorem 3, as we show below. We present the proof of Lemma 9 immediately
after, and prove Lemma 8 in Sect. 5.1. For the rest of the section we adopt the
notation N = 2n and L = 2�.

Lemma 8. Let (C, t) be the output of the reduction in Fig. 1 on input circuits
(C1, . . . , Ck). For any L and δ, if all of the Ci’s are YES-instance of AIL,δ, then
for any c > 1:

Pr
[
Hε

2(C) < n − c · log k
]

< O

(
1

kc−3

)
,

where ε = δ1/2 · k1+c/2.

Lemma 9. Let (C, t) be the output of the reduction in Fig. 1 on input circuits
(C1, . . . , Ck). For any L and δ such that δ · L ≤ 1, if at least one of the Ci’s is
a NO-instance of AIL,δ, then:

H0(C) ≤ n − 	 + 1.

Proof (Proof of Lemma 9). Suppose Ci∗ is a NO-instance of AIL,δ. This implies
that:

|Supp(Ci∗)| ≤ (1 − δ) · N · 1
L

+ δ · N · 1 ≤ N ·
(

1
L

+ δ

)
.

So even if all the other Ci’s and the hash functions chosen in the reduction
are injective, the number of possible images of C is at most this (since merely
composing functions cannot increase the support size). So the max entropy of C
can be bounded as:

H0(C) = log(|Supp(C)|) ≤ log N + log
(

1
L

+ δ

)

= log N − log L + log (1 + δL)
≤ n − 	 + 1.

��
Proof (Proof of Theorem 3). Let (C, t) be the output of the reduction in Fig. 1 on
input (C1, . . . , Ck). Note that t = n− 	+2. By Lemma 9, if even one of the Ci’s
is a NO-instance of AIL,δ, then H0(C) ≤ t − 1, and thus (C, t) is a NO-instance
of SEAε for any ε.

Suppose all the Ci’s are YES instances of AIL,δ. Applying Lemma 8 with
c = (	 − 3)/ log k, we get that:

Pr
[
Hε

2(C) ≥ n − 	 + 3
]

> 1 − O

(
k3

L

)
,

where ε < δ1/2 · k · L1/2. Thus, (C, t) is a YES-instance of SEAε for such a value
of ε. The input and output lengths of C and the randomness complexity of the
reduction may be verified in a straightforward manner to be n and poly(n, log k),
respectively. This proves the theorem. ��
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5.1 Proof of Lemma 8

For convenience, we set up the following notation in the context of the reduction
in Fig. 1. For any circuit C, denote by inj(C) the set of inputs on which C is
injective. The input to the reduction are the circuits C1, . . . , Ck : {0, 1}n →
{0, 1}3n, which are all YES instances of AIL,δ. The output is (C, t), where C :
{0, 1}n → {0, 1}n. We will denote the process of sampling the hash functions in
the reduction by (h1, . . . , hk) ← G – this indicates first computing (r1, . . . , rk) ←
G(ρ) for a uniformly random ρ, and setting hi to be hri

. We will denote sampling
k uniformly random hash functions from H by (h1, . . . , hk) ← Hk. For any tuple
of hash functions h = (h1, . . . , hk), we will denote the circuit constructed by
using these for the composition by Ch or Ch1,...,hk

. That is,

Ch1,...,hk
(x) = (hk ◦ Ck ◦ hk−1 ◦ Ck−1 ◦ · · · ◦ h1 ◦ C1)(x).

The reduction samples h = (h1, . . . , hk) ← G and outputs Ch. Our approach
is to show that, with high probability over h, the output distribution of the circuit
Ch is close to that of a different function Ĉh : {0, 1}n → {0, 1}n, which has high
Rényi entropy. We start by defining this function. For each Ci, we define its
injective completion, denoted Ĉi : {0, 1}n → {0, 1}3n, to be the lexicographically
smallest function11 that has the following two properties:

– Ĉi is injective.
– For all x ∈ inj(Ci), we have Ĉi(x) = Ci(x).

Note that Ĉi always exists because the co-domain of Ci is larger than its domain.
For any tuple of hash functions h, the function Ĉh is defined as:

Ĉh1,...,hk
(x) = (hk ◦ Ĉk ◦ hk−1 ◦ Ĉk−1 ◦ · · · ◦ h1 ◦ Ĉ1)(x).

The proof now proceeds by showing the following:

1. For (h1, . . . , hk) ← G, with high probability, Ĉh has high Rényi entropy.
2. For any h for which Ĉh has high Rényi entropy, the distribution of Ch is close

to that of Ĉh.

Together, these imply that with h ← G, with high probability, Ch has high
smooth Rényi entropy, which proves the lemma. We now state these claims
formally, show how to use them to prove the lemma, and then prove the claims.

Proposition 1. For any s ∈ (3, n), we have:

Pr
(h1,...,hk)←G

[
H2(Ĉh1,...,hk

) < n − log k − s
]

< O

(
k2

2s

)
.

11 Any function that satisfies the two stated properties will do for our purpose, and
the injective completion may be defined to be any such function.
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Proposition 2. For any (h1, . . . , hk) for which H2(Ĉh1,...,hk
) ≥ t, we have:

Δ(Ĉh1,...,hk
, Ch1,...,hk

) ≤ k · δ1/2 · 2(n−t)/2.

Proof (Proof of Lemma 8). Setting s = (c − 1) · log k, we get the following from
Proposition 1:

Pr
(h1,...,hk)←G

[
H2(Ĉh1,...,hk

) ≥ n − c · log k
]

> 1 − O

(
1

kc−3

)
.

For any (h1, . . . , hk) for which the above event happens, Proposition 2 implies
that:

Δ(Ĉh1,...,hk
, Ch1,...,hk

) ≤ δ1/2 · k1+c/2,

which proves the lemma. ��

5.2 Proof of Proposition 1

We prove the claim by first showing a similar bound when the hash functions
are sampled completely at random, and then derandomizing this using G.

Claim 1. Pr(h1,...,hk)←HkH2(Ĉh1,...,hk
) < n − log k − 3 < O

(
k3

2n

)
.

Proof (Proof of Proposition 1). Note that Ĉh1,...,hk
is a chaining circuit (as in

Definition 11), and so we can use the derandomization techniques from Sect. 4
to derandomize Claim 1. Specifically, applying Lemma 7 with Ĉh1,...,hk

as the
chaining circuit, with t = n − log k − 3, δ = O(k3/2n), and ε = 2−5n (as in our
reduction), we get the following conclusion:

Pr
(h1,...,hk)←G

[H2(Ĉh1,...,hk
) < n − log k − 3 − (s − 3)]

<
1

2s−3
+

(
O

(
k3

2n

)
+

1
25n

)
· 2n−log k−s

= O

(
k2

2s

)
.

��
Recall that H is a 4-wise independent family of hash functions mapping

{0, 1}3n to {0, 1}n. We prove Claim 1 by showing that most functions from
H nearly preserve the collision probability of their input distribution. Given
any distribution D over {0, 1}3n, denote by h(D) the distribution obtained by
applying the function h to a sample from D. We first show the following claim,
use it to prove Claim 1, and then complete its proof.
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Claim 2. If H2(D) ≥ t and H is a 4-wise independent family of hash functions,
then:

Pr
h←H

[
H2

(
h(D)

)
< t − 2t+2

2n

]
≤ 4

22t−n
.

This claim is only interesting when t > n/2. In our applications of it, we will
be using values of t that are very close to n, and it gives rather strong bounds.

Proof (Proof of Claim 1). For i ∈ [0, k], define distribution Di as the output
distribution of (hi ◦ Ĉi ◦ · · · ◦ h1 ◦ Ĉ1)(x) when x is uniformly random. We will
prove the claim by induction on the Di’s. To start with, note that D0 is the
uniform distribution over {0, 1}n, and so H2(D0) = n.

For any i, since Ĉi is injective, we have H2(Ĉi(Di−1)) = H2(Di−1). Applying
Claim 2 with any t ∈ [n− log k − 3, n− log k − 2], we get that if H2(Ĉi(Di−1)) =
H2(Di−1) > t, then H2(Di) < (t − 1/k) with probability at most 28 · k2/2n.
Starting from D0 and t = (n− log k − 2) and applying this iteratively, and using
a union bound, we get that the probability that H2(Dk) < n − log k − 3 is at
most O(k3/2n), as needed. ��
Proof (Proof of Claim 2). Our approach will be to show that the expected col-
lision probability of h(D) is not much larger than cp(D), and that its variance
is small. We can then bound the probability that cp(h(D)) is much larger than
cp(D) using Chebyshev’s inequality (Lemma 1). Recall that H is a set of 4-wise
independent hash functions whose co-domain is of size N = 2n.

We set up the following notation:

– Denote by c = cp(D) denote the collision probability of D.
– For any h ∈ H, denote by Qh the collision probability of h(D).

The hypothesis of the claim implies that:

c ≤ 2−t. (1)

By the definition of collision probability, we have for any h:

Qh = Pr
x1,x2←D

[h(x1) = h(x2)] .

Its expectation can be calculated as follows:

E
h←H

[Qh] = Pr
h,x1,x2

[h(x1) = h(x2)]

= Pr [x1 = x2] · 1 + Pr [x1 �= x2] · Pr [h(x1) = h(x2) | x1 �= x2]

= c +
1 − c

N
, (2)

where in the last equality we used the fact that H is a pairwise independent
family. Next we calculate its second moment. If Qh is the collision probability of



Strong Batching for Non-interactive Statistical Zero-Knowledge 265

h(D), then Q2
h is the probabilty that when two pairs of samples from h(D) are

picked, both pairs are colliding. Thus, we have:

E
[
Q2

h

]
= Pr

h,x1,x2,x3,x4
[h(x1) = h(x2) ∧ h(x3) = h(x4)]

=
∑

i

Pr [Ei] · Pr [h(x1) = h(x2) ∧ h(x3) = h(x4) | Ei] , (3)

where Ei’s are any set of disjoint events whose union is the entire sample space.
We will employ a set of such events Ei as follows, and in each case we will bound
the following quantities:

pi = Pr [Ei] and qi = Pr [h(x1) = h(x2) ∧ h(x3) = h(x4) | Ei] .

Throughout the following analysis, we use the fact that h is from a family of
4-wise independent hash functions, and cp(D) = c.

– E1 ≡ (
(x1 = x2) ∧ (x3 = x4)

)
: In this case, hashes are always equal. The

probability this event happens is simply the square of the collision probability.
So we have:

p1 = c2;
q1 = 1.

– E2 ≡ (
(x1 = x2)∧ (x3 �= x4): In this case, h(x1) is always equal to h(x2), and

the event h(x3) = h(x4) is independent of this. So we have:

p2 = c · (1 − c);

q2 =
1
N

.

– E3 ≡ (
(x1 �= x2) ∧ (x3 = x4)

)
: The probabilities here are the same as for E2.

– E4 ≡ (x1 �= x2)∧(x3 �= x4)∧({x1, x2} = {x3, x4}): In this case, either x1 = x3

and x2 = x4, or the other way round. Further, the events h(x1) = h(x2) and
h(x3) = h(x4) are the same. We have:

p4 ≤ Pr [x1 = x3 ∧ x2 = x4] + Pr [x1 = x4 ∧ x2 = x3] = 2c2;

q4 =
1
N

.

– E5 ≡ (x1 �= x2) ∧ (x3 �= x4) ∧ ({x1, x2} �= {x3, x4}): In this case, it could be
that all the xi’s are distinct, but it could also be that x1 = x3 and x2 �= x4

(or the other way round, etc.). In any case, the events h(x1) = h(x2) and
h(x3) = h(x4) are always independent due to the 4-wise independence of H.
We have:

p5 ≤ 1;

q5 =
1

N2
.
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With the above analysis and Eq. (3), we can bound the second moment of
Qh as:

E
[
Q2

n

] ≤ c2 +
2c(1 − c)

N
+

2c2

N
+

1
N2

.

The variance of Qh can now be bounded as:

Var
[
Q2

h

]
= E

[
Q2

h

] − E [Qh]2

≤
(

c2 +
2c(1 − c)

N
+

2c2

N
+

1
N2

)
−

(
c +

1 − c

N

)2

= c2 +
2c(1 − c)

N
+

2c2

N
+

1
N2

− c2 −
(

1 − c

N

)2

− 2c(1 − c)
N

=
2c2

N
+

1
N2

−
(

1
N2

+
c2

N2
− 2c

N2

)

≤ 2c2

N
+

2c

N2

≤ 4c2

N
, (4)

where in the last inequality we used the fact that c ≥ 1/N . From Eqs. (1), (2)
and (4), we get:

E [Qh] ≤ 2−t +
1
N

;

Var [Qh] ≤ 2−(2t−2)

N
.

Applying Chebychev’s inequality (Lemma 1),

Pr
h

[
Qh > 2−t +

2
N

]
≤ 2−(2t−2)

N
· N2 =

4
22t−n

.

Using the fact that log2 (1 + x) ≤ 2x, we have:

Pr
[
H2(h(D)) < t − 2t+2

2n

]
≤ Pr

[
H2(h(D)) < t − log

(
1 +

2t+1

N

)]

= Pr
[
Qh > 2−t +

2
N

]

≤ 4
22t−n

,

which proves the claim. ��

5.3 Proof of Proposition 2

Fix some h1, . . . , hk for which H2(Ĉh1,...,hk
) ≥ t. To help with the proof, we

define the following sets of distributions for i ∈ [0, k], with x chosen uniformly
at random:
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Di = (hi ◦ Ci ◦ · · · ◦ h1 ◦ C1)(x).

D̂i = (hi ◦ Ĉi ◦ · · · ◦ h1 ◦ Ĉ1)(x).

Here, D0 and D̂0 are both the uniform distribution over {0, 1}n, and Dk and D̂k

are the distributions whose distance we need to bound to show the claim. The
hypothesis of the claim is that H2(D̂k) ≥ t. We will prove the claim inductively,
with the identity of D0 and D̂0 as the base case, and using the following claims
for the inductive steps.

Claim 3. For any i ∈ [k], we have:

Δ
(
Di, D̂i

)
≤ Δ

(
Ci(Di−1), Ĉi(D̂i−1)

)
.

Proof. Di and D̂i are sampled, respectively, by applying the same function hi

to a sample from Ci(Di−1) and Ĉi(D̂i−1). Thus, the claim follows from the data
processing inequality. ��
Claim 4. For any i ∈ [k], we have:

Δ
(
Ci(Di−1), Ĉi(D̂i−1)

)
≤ Δ

(
Di−1, D̂i−1

)
+ δ

1
2 · 2

n−t
2 .

Proof. We start by observing that the hypothesis of the claim – H2(Ĉh1,...,hk
) ≥ t

– also implies that for all i ∈ [0, k], we have H2(D̂i) ≥ t. This is because all
the hi’s and Ĉi’s are fixed deterministic functions, and applying them can only
decrease the entropy of a distribution.

For any x ∈ inj(Ci), by definition, Ci(x) = Ĉi(x). Thus, we have:

Δ
(
Ci(D̂i−1), Ĉi(D̂i−1)

)
≤ Pr

x←D̂i−1

[x /∈ inj(Ci)] . (5)

Denote the quantity in the right-hand side above by p, which we will now bound.
As Ci is a YES instance of AIL,δ, the number of x’s not in inj(Ci) is at most
δN . The least possible collision probability achievable for D̂i−1 with a probability
mass of p on this set is achieved when the mass is distributed uniformly across
it. Thus, due to the contribution to collision probability from this set alone, we
get:

cp(D̂i−1) ≥
∣
∣
∣inj(Ci)

∣
∣
∣ ·

( p

|inj(Ci)|
)2

≥ p2

δN
.

On the other hand, we know that cp(D̂i−1) ≤ 2−t. This gives us:

p ≤ (2−t · δN)1/2 = δ1/2 · 2(n−t)/2. (6)

Next, by the data processing inequality, we have:

Δ
(
Ci(Di−1), Ci(D̂i−1)

)
≤ Δ

(
Di−1, D̂i−1

)
. (7)

Putting together Eqs. (5) to (7) and using the triangle inequality gives us the
claim. ��
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Proof (Proof of Proposition 2). Starting with the fact that Δ(D0, D̂0) = 0 and
applying Claims 3 and 4 inductively k times proves the claim. ��
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