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Abstract. This paper introduces Lasso, a new family of lookup argu-
ments, which allow an untrusted prover to commit to a vector a ∈ F

m

and prove that all entries of a reside in some predetermined table t ∈ F
n.

Lasso’s performance characteristics unlock the so-called “lookup singular-
ity”. Lasso works with any multilinear polynomial commitment scheme,
and provides the following efficiency properties.

– For m lookups into a table of size n, Lasso’s prover commits to
just m + n field elements. Moreover, the committed field elements
are small, meaning that, no matter how big the field F is, they are
all in the set {0, . . . , m}. When using a multiexponentiation-based
commitment scheme, this results in the prover’s costs dominated by
only O(m+n) group operations (e.g., elliptic curve point additions),
plus the cost to prove an evaluation of a multilinear polynomial
whose evaluations over the Boolean hypercube are the table entries.
This represents a significant improvement in prover costs over prior
lookup arguments (e.g., plookup, Halo2’s lookups, logUp).

– Unlike all prior lookup arguments, if the table t is structured (in
a precise sense that we define), then no party needs to commit to
t, enabling the use of much larger tables than prior works (e.g., of
size 2128 or larger). Moreover, Lasso’s prover only “pays” in runtime
for table entries that are accessed by the lookup operations. This
applies to tables commonly used to implement range checks, bitwise
operations, big-number arithmetic, and even transitions of a full-
fledged CPU such as RISC-V. Specifically, for any integer parameter
c > 1, Lasso’s prover’s dominant cost is committing to 3 · c · m + c ·
n1/c field elements. Furthermore, all these field elements are “small”,
meaning they are in the set {0, . . . , max{m, n1/c, q} − 1}, where q is
the maximum value in any of the sub-tables that collectively capture
t (in a precise manner that we define).

1 Introduction

Suppose that an untrusted prover P claims to know a witness w satisfying some
property. For example, w might be a pre-image of a designated value y of a
cryptographic hash function h, i.e., a w such that h(w) = y. A trivial proof is for
P to send w to the verifier V, who checks that w satisfies the claimed property.
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A zero-knowledge succinct non-interactive argument of knowledge
(zkSNARK) achieves the same, but with better verification costs (and proof
sizes) and privacy properties. Succinct means that verifying a proof is much
faster than checking the witness directly (this also implies that proofs are much
smaller than the size of the statement proven). Zero-knowledge means that the
verifier does not learn anything about the witness beyond the validity of the
statement proven.

Fast Algorithms via Lookup Tables. A common technique in the design of fast
algorithms is to use lookup tables. These are pre-computed tables of values that,
once computed, enable certain operations to be computed quickly. For example,
in tabulation-based universal hashing [25,27], the hashing algorithm is specified
via some small number c of tables T1, . . . , Tc, each of size n1/c. Each cell of each
table is filled with a random q-bit number in a preprocessing step. To hash a
key x of length n, the key is split into c “chunks” x1, . . . , xc ∈ {0, 1}n/c, and the
hash value is defined to be the bitwise XOR of c table lookups i.e., ⊕c

i=1Ti[xi].
Lookup tables are also useful in the context of SNARKs. Recall that to apply

SNARKs to prove the correct execution of computer programs, one must express
the execution of the program in a specific form that is amenable to probabilistic
checking (e.g., as arithmetic circuits or generalizations thereof). Lookup tables
can facilitate the use of substantially smaller circuits.

For example, imagine that a prover wishes to establish that at no point in
a program’s execution did any integer ever exceed 2128, say, because were that
to happen then an uncorrected “overflow error” would occur. A naive approach
to accomplish this inside a circuit-satisfiability instance is to have the circuit
take as part of its “non-deterministic advice inputs” 128 field elements for each
number x arising during the execution. If the prover is honest, these 128 advice
elements will be set to the binary representation of x. The circuit must check
that all of the 128 advice elements are in {0, 1} and that they indeed equal the
binary representation of x, i.e., x =

∑127
i=0 2i · bi, where b0, . . . , b127 denotes the

advice elements. This is very expensive: a simple overflow check turns into at
least 129 constraints and an additional 128 field elements in the prover’s witness
that must be cryptographically committed by the prover.1

Lookup tables offer a better approach. Imagine for a moment that the prover
and the verifier initialize a lookup table containing all integers between 0 and
2128 − 1. Then the overflow check above amounts to simply confirming that x
is in the table, i.e., the overflow check is a single table lookup. Of course, a
table of size 2128 is far too large to be explicitly represented—even by the prover.
This paper describes techniques to enable such a table lookup without requiring

1 As we explain later (Remark 1.2), for certain commitment schemes, the prover’s cost
to commit to vectors consisting of many {0, 1} values can be much cheaper than if the
to vectors contain arbitrary field elements. However, other SNARK prover costs (e.g.,
number of field operations) will grow linearly with the number of advice elements
and constraints in the circuit to which the SNARK is applied, irrespective of whether
the advice elements are {0, 1}-valued.
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a table such as this to be explicitly materialized, by either the prover or the
verifier.

Table lookups are now used pervasively in deployed applications that employ
SNARKs. They are very useful for representing “non-arithmetic” operations
efficiently inside circuits [6,17,18]. The above example is often called a range
check for the range {0, 1, . . . , 2128 − 1}. Other example operations for which
lookups are useful include bitwise operations such as XOR and AND [6], and
any operations that require big-number arithmetic.

Lookup Arguments. To formalize the above discussion regarding the utility of
lookup tables in SNARKs, a (non-interactive) lookup argument is a SNARK for
the following claim made by the prover.

Definition 1 (Statement proven in a lookup argument). Given a com-
mitment cma and a public set T of N field elements, represented as vector
t = (t0, . . . , tN−1) ∈ F

N to which the verifier has (possibly) been provided a
commitment cmt, the prover knows an opening a = (a0, . . . , am−1) ∈ F

m of cma

such that all elements of a are in T . That is, for each i = 0, . . . ,m − 1, there is
a j ∈ {0, . . . , N − 1} such that ai = tj.

The set T in Definition 1 is the contents of a lookup table and the vector a
is the sequence of “lookups” into the table. The prover in the lookup argument
proves to the verifier that every element of a is in T .

A flurry of works (Caulk [37], Caulk+ [26], flookup [16], Baloo [38], and
cq [14]) have sought to give lookup arguments in which the prover’s runtime is
sublinear in the table size N . This is important in applications where the lookup
table itself is much larger than the number of lookups into that table. As a simple
example, if the verifier wishes to confirm that a0, . . . , am−1 are all in a large range
(say, in {0, 1, . . . , 232−1}), then performing a number of cryptographic operations
linear in N will be slow or possibly untenable. For performance reasons, these
papers also express a desire for the commitment scheme used to commit to a and t
to be additively homomorphic. However, these prior works all require generating
a structured reference string of size N as well as an additional pre-processing
work of O(N log N) group exponentiations. This limits the size of the tables to
which they can be applied. For example, the largest structured reference strings
generated today are many gigabytes in size and still only support N < 230.2

Indexed Lookup Arguments. Definition 1 is a standard formulation of lookup
arguments in SNARKs (e.g., see [38]). It treats the table as an unordered list of
values—T is a set and, accordingly, reordering the vector t does not alter the
validity of the prover’s claim. However, for reasons that will become apparent
shortly (§1.3), we consider a variant notion to be equally natural. We refer to
this variant as an indexed lookup argument (and refer to the standard variant in
Definition 1 as an unindexed lookup argument.) In an indexed lookup argument,
in addition to a commitment to a ∈ F

m, the verifier is handed a commitment to
2 See, for example, https://setup.aleo.org/stats.

https://setup.aleo.org/stats
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a second vector b ∈ F
m. The prover claims that for all i = 1, . . . ,m, ai = tbi . We

refer to a as the vector of looked-up values, and b as the vector of indices.

Definition 2 (Statement proven in an indexed lookup argument).
Given commitment cma and cmb, and a public array T of N field elements, repre-
sented as vector t = (t0, . . . , tN−1) ∈ F

N to which the verifier has (possibly) been
provided a commitment cmt, the prover knows an opening a = (a0, . . . , am−1) ∈
F

m of cma and b = (b0, . . . , bm−1) ∈ F
m of cmb such that for each i = 0, . . . ,m−1,

ai = T [bj ], where T [bj ] is short hand for the bj’th entry of t.

Any indexed lookup argument can easily be turned into an unindexed lookup
argument: the unindexed lookup argument prover simply commits to a vector b
such that ai = T [bj ] for all i, and then applies the indexed lookup argument to
prove that indeed this holds. There is also a generic transformation that turns
any unindexed lookup argument into an indexed one, at least in fields of large
enough characteristic (see [32]). However, the protocols we describe in this work
directly yield indexed lookup arguments, without invoking this transformation.
Accordingly, our primary focus in this work is on indexed lookup arguments.

1.1 Lasso: A New Lookup Argument

Lasso’s starting point is a polynomial commitment scheme for sparse multilin-
ear polynomials. In particular, Lasso builds on Spark, an optimal polynomial
commitment scheme for sparse multilinear polynomials from Spartan [28].

Lasso can be instantiated with any multilinear polynomial commitment
scheme. Furthermore, Lasso can be used with any SNARK, including those
that prove R1CS or Plonkish satisfiability. This is particularly seamless for
SNARKs that have the prover commit to the witness using a multilinear polyno-
mial commitment scheme. This includes many known prover-efficient SNARKs
[10,20,28,31,36]. If a SNARK does not natively use multilinear polynomial com-
mitments (e.g., Marlin [11], Plonk [19]), then one would need an auxiliary argu-
ment that the commitment cma used in Lasso is a commitment to the multilinear
extension of the vector of all lookups performed in the SNARK.

Below, we provide an overview of Lasso’s technical components.

(1) A stronger analysis of Spark, an optimal commitment scheme for sparse
polynomials. A sparse polynomial commitment allows an untrusted prover to
cryptographically commit to a sparse multilinear polynomial g and later pro-
vide a requested evaluation g(r) along with a proof that the provided value
is indeed equal to the committed polynomial’s evaluation at r. Crucially, we
require that the the prover’s runtime depends only on the sparsity of the poly-
nomial.3 Spartan [28] provides such a commitment scheme, which it calls Spark.
3 For multilinear polynomials, m-sparse refers to polynomials g : F� → F in � variables

such that g(x) �= 0 for at most m values of x ∈ {0, 1}�. That is, g has at most m
non-zero coefficients in the so-called multilinear Lagrange basis. There are n := 2�

Lagrange basis polynomials, so if m � 2�, then only a tiny fraction of the possible
coefficients are non-zero. In contrast, if m = Θ(2�), then g is a dense polynomial.
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Spartan assumed that certain metadata associated with the sparse polynomial
is committed honestly, which was sufficient for its purposes. But, as we see later,
Lasso requires an untrusted prover to commit to sparse polynomials (and the
associated metadata).

A naive extension Spark to handle a maliciously committed metadata incurs
concrete and asymptotic overheads, which is undesirable. Nevertheless, we prove
that Spark in fact satisfies a stronger security property without any modifications
(i.e., it is secure even if the metadata is committed by a potentially malicious
party). This provides the first “standard” sparse polynomial commitment scheme
with optimal prover costs, a result of independent interest. Furthermore, we
specialize Spark for Lasso’s use to obtain concrete efficiency benefits.

(2) Surge: A generalization of Spark. We reinterpret Spark sparse polynomial com-
mitment scheme as a technique for computing the inner product of an m-sparse
committed vector of length N with a dense—but highly structured—lookup table
of size N (the table is represented as a vector of size N). Specifically, in the
sparse polynomial commitment scheme, the table consists of all (log N)-variate
Lagrange basis polynomials evaluated at a specific point r ∈ F

log N . Furthermore,
this table is a tensor product of c ≥ 2 smaller tables, each of size N1/c (here,
c can be set to any desired integer in {1, . . . , log N}). We further observe that
many other lookup tables can similarly be decomposed has product-like expres-
sions of O(c) tables of size N1/c, and that Spark extends to support all such
tables.

Exploiting this perspective, we describe Surge, a generalization of Spark that
allows an untrusted prover to commit to any sparse vector and establish the
sparse vector’s inner product with any dense, structured vector. We refer to
the structure required for this to work as Spark-only structure (SOS). We also
refer to this property as decomposability. In more detail, an SOS table T is one
that can be decomposed into α = O(c) “sub-tables” {T1, . . . , Tα} of size N1/c

satisfying the following properties. First, any entry T [j] of T can be expressed as
a simple expression of a corresponding entry into each of T1, . . . , Tα. Second, the
so-called multilinear extension polynomial of each Ti can be evaluated quickly
(for any such table, we call Ti MLE-structured, where MLE stands for multilinear
extension). For example, as noted above, the table T arising in Spark itself is
simply the tensor product of MLE-structured sub-tables {T1, . . . , Tα}, where
α = c.

(3) Lasso: A lookup argument for SOS tables and small/unstructured tables. We
observe that Surge directly provides a lookup argument for tables with SOS
structure. We call the resulting lookup argument Lasso. Lasso has the important
property that all field elements committed by the prover are “small”, mean-
ing they are in the set {0, 1, . . . ,max{m,N1/c, q} − 1}, where q is such that
{T1, . . . , Tα} all have entries in the set {0, 1, . . . , q − 1}. As elaborated upon
shortly (Sect. 1.2), this property of Lasso has substantial implications for prover
efficiency.

Lasso has new and attractive costs when applied to small and unstructured
tables in addition to large SOS ones. Specifically, by setting c = 1, the Lasso
prover commits to only about m + N field elements, and all of the committed
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elements are {0, 1, . . . ,max{m,N, q}} where q is the size of the largest value
in the table.4,5 Lasso is the first lookup argument with this property, which
substantially speeds up commitment computation when m, N , and q are all
much smaller than the size of the field over which the commitment scheme is
defined. For c > 1, the number of field elements that the Lasso prover commits
to is 3cm + α · N1/c.

(4) GeneralizedLasso: Beyond SOS and small/unstructured tables. Finally, we
describe a lookup argument that we call GeneralizedLasso, which applies to any
MLE-structured table, not only decomposable ones.6 The main disadvantage of
GeneralizedLasso relative to Lasso is that cm out of the 3cm+cN1/c field elements
committed by the GeneralizedLasso prover are random rather than small. The
proofs are also somewhat larger, as GeneralizedLasso involves one extra invocation
of the sum-check protocol compared to Lasso.

GeneralizedLasso is reminiscent of a sum-check based SNARK (e.g., Spar-
tan [28]) and is similarly built from a combination of the sum-check protocol
and the Spark sparse polynomial commitment scheme. There are two key differ-
ences: (1) In GeneralizedLasso, the (potentially adversarial) prover commits to
a sparse polynomial, rather than an honest “setup algorithm” committing to
a sparse polynomial in a preprocessing step in the context of Spartan (where
the sparse polynomial encodes the circuit or constraint system of interest); and
(2) invoking the standard linear-time sum-check protocol [13,24,33] makes the
prover incur costs linear in the table size rather than the number of lookups. To
address (1), we invoke our stronger security analysis of Spark. To address (2),
we introduce a new variant of the sum-check protocol tailored for our setting,
which we refer to as the sparse-dense sum-check protocol. Conceptually, General-
izedLasso can be viewed as using the sparse-dense sum-check protocol to reduce
lookups into any MLE-structured table into lookups into a decomposable table
(namely, a certain lookup table arising within the Spark polynomial commitment
scheme).

Additional discussion of the benefits and costs of GeneralizedLasso relative to
Lasso can be found in the full version of this paper [32].

1.2 Additional Discussion of Lasso’s Costs

Polynomial Commitments and MSMs. As indicated above, a central component
of most SNARKs is a cryptographic protocol called a polynomial commitment
4 Lasso makes blackbox use of any so-called grand product argument. If using the

grand product argument from [30, Section 6], a low-order number, say at most
O(m/ log3 m), of large field elements need to be committed (see the full version
of this paper [32] for discussion).

5 If Lasso is used as an indexed lookup argument, the prover commits to m + N
field elements. If used as an unindexed lookup argument, the number can increase
to 2m + N because in the unindexed setting one must “charge” for the prover to
commit to the index vector b ∈ F

m.
6 In fact, GeneralizedLasso applies to any table with some low-degree extension, not

necessarily its multilinear one, that is evaluable in logarithmic time.
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scheme. Such a scheme allows an untrusted prover to succinctly commit to a
polynomial p and later reveal an evaluation p(r) for a point r chosen by the
verifier (the prover will also return a proof that the claimed evaluation is indeed
equal to the committed polynomial’s evaluation at r). In Lasso, the bottleneck
for the prover is the polynomial commitment scheme.

Many popular polynomial commitments are based on multiexponentiations
(also known as multi-scalar multiplications, or MSMs). This means that the com-
mitment to a polynomial p (with n coefficients c0, . . . , cn−1 over an appropriate
basis) is

∏n−1
i=0 gci

i , for some public generators g1, . . . , gn of a multiplicative group
G. Examples include KZG [21], IPA [5,8], Hyrax [35], and Dory [23].7

The naive MSM algorithm performs n group exponentiations and n group
multiplications (note that each group exponentiation is about 400× slower than
a group multiplication). But Pippenger’s MSM algorithm saves a factor of about
log(n) relative to the naive algorithm. This factor can be well over 10× in prac-
tice.

Working Over Large Fields, But Committing to Small Elements. If all exponents
appearing in the multiexponentiation are “small”, one can save another factor
of 10 relative to applying Pippenger’s algorithm to an MSM involving random
exponents. This is analogous to how computing g2

16

i is 10× faster than computing
g2

160

i : the first requires 16 squaring operations, while the second requires 160
such operations. In other words, if one is promised that all field elements (i.e.,
exponents) to be committed via an MSM are in {0, 1, . . . ,K} ⊂ F, the number
of group operations required to compute the MSM depends only on K and not
on the size of F.8

Quantitatively, if all exponents are upper bounded by some value K, with
K � n, then Pippenger’s algorithm only needs (about) one group operation per
term in the multiexponentiation.9 More generally, with any MSM-based com-
mitment scheme, Pippenger’s algorithm allows the prover to commit to roughly
k · log(n)-bit field elements (meaning field elements in {0, 1, . . . , n}) with only k
group operations per committed field element.

Polynomial Evaluation Proofs. In any SNARK or lookup argument, the prover
not only has to commit to one or more polynomials, but also reveal to the
verifier an evaluation of the committed polynomials at a point of the veri-
fier’s choosing. This requires the prover to compute a so-called evaluation proof,
which establishes that the returned evaluation is indeed consistent with the com-
mitted polynomial. For some polynomial commitment schemes, such as Bullet-
proofs/IPA [5,8], producing evaluation proofs is quite slow and this cost can

7 In Hyrax and Dory, the prover does
√

n MSMs each of size
√

n.
8 Of course, the cost of each group operation depends on the size of the group’s base

field, which is closely related to that of the scalar field F. However, the number of
group operations to compute the MSM depends only on K, not on F.

9 To be very precise, if K ≤ n, then Pippenger’s algorithm performs only (1 + o(1))n
group operations.
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bottleneck the prover. However, for others, evaluation proof computation is a
low-order cost [2,35].

Moreover, evaluation proofs exhibit excellent batching properties (whereby
the prover can commit to many polynomials and only produce a single evaluation
proof across all of them) [4,7,22]. So in many contexts, computing opening proofs
is not a bottleneck even when using a scheme such as Bulletproofs/IPA.

For all of the above reasons, our accounting of prover cost in this work gen-
erally ignores the cost of polynomial evaluation proofs.

Summarizing Lasso’s Prover Costs. Based on the above accounting, Lasso’s
prover costs when applied to a lookup table T can be summarized as follows.

– Setting the parameter c = 1, the Lasso prover commits to just m + N field
elements (using any multilinear polynomial commitment scheme), all of which
are in {0, . . . , m}.10 Using an MSM-based commitment scheme, this translates
to very close to m + N group operations.

– For c > 1, the Lasso prover applied to any decomposable table com-
mits to 3cm + αN1/c field elements, all of which are in the set
{0, . . . ,max{m,N1/c, q} − 1}, where q is the largest value in any of the α
sub-tables T1, . . . , Tα. This cost accounting does not “charge” the prover for
committing a of lookup results. We do so because the natural formulation
of lookup arguments as a self-contained problem (Definition 2) considers the
commitment to a to be part of the problem statement

– The GeneralizedLasso prover applies to any MLE-structured table, and com-
mits to the same number of field elements as the Lasso prover, but cm of
them are random field elements, instead of small ones.

In all cases above, no party needs to cryptographically commit to the table
T or subtables T1, . . . , Tα, so long as they are MLE-structured. The full version
of this paper [32] compares these costs with those of existing lookup arguments.

1.3 A Companion Work: Jolt, and the Lookup Singularity

In the context of SNARKs, a front-end is a transformation or compiler that
turns any computer program into an intermediate representation—typically a
variant of circuit-satisfiability—so that a back-end (i.e., a SNARK for circuit-
satisfiability) can be applied to establish that the prover correctly ran the com-
puter program on a witness. A companion paper called Jolt [1] (for “Just One
Lookup Table”) shows that Lasso’s ability to handle gigantic tables without
either prover or verifier ever materializing the whole table (so long as the table
is modestly “structured”) enables substantial improvements in the front-end
design. Jolt shows that for each of the RISC-V instructions, the resulting table
has the structure that we require to apply Lasso. This leads to a front-end for
VMs such as RISC-V that outputs much smaller circuits than prior front-ends,
and has additional benefits such as easier auditability.

10 In fact, for any k ≥ 1, at most m/k of these field elements are larger than k.
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2 Technical Overview

Suppose that the verifier has a commitment to a table t ∈ F
n as well as a

commitment to another vector a ∈ F
m. Suppose that a prover wishes to prove

that all entries in a are in the table t. A simple observation in prior works [37,38]
is that the prover can prove that it knows a sparse matrix M ∈ F

m×n such that
for each row of M , only one cell has a value of 1 and the rest are zeros and that
M · t = a, where · is the matrix-vector multiplication.11 This turns out to be
equivalent, up to negligible soundness error, to confirming that

∑

y∈{0,1}log N

M̃(r, y) · t̃(y) = ã(r), (1)

for an r ∈ F
log m chosen at random by the verifier. Here, M̃ , ã and t̃ are the so-

called multilinear extension polynomials (MLEs) of M , t, and a (see Thaler [34]).
Lasso proves Eq. (1) by having the prover commit to the sparse polynomial M̃

using Spark and then prove the equation directly with a generalization of Spark
called Surge. This provides the most efficient lookup argument when either the
table t is “decomposable” (we discuss details of this below), or when t is unstruc-
tured but small. It turns out most tables that occur in practice (e.g., the ones
that arise in Jolt are decomposable). When t is not decomposable, but still struc-
tured, a generalization of Lasso, which we refer to as GeneralizedLasso, proves
Eq. (1) using a combination of a new form of the sum-check protocol (which we
refer to as the sparse-dense sum-check protocol) and the Spark polynomial com-
mitment scheme. We defer further details of GeneralizedLasso to the full version
of this paper [32].

2.1 Starting Point: Spark Sparse Polynomial Commitment Scheme

Lasso’s starting point is Spark, an optimal sparse polynomial commitment scheme
from Spartan [28]. It allows an untrusted prover to prove evaluations of a sparse
multilinear polynomial with costs proportional to the size of the dense repre-
sentation of the sparse multilinear polynomial. Spartan established security of
Spark under the assumption that certain metadata associated with a sparse poly-
nomial is committed honestly, which sufficed for its application in the context of
Spartan. In this paper, perhaps surprisingly, we prove that Spark remains secure
even if that metadata is committed by an untrusted party (e.g., the prover),
providing a standard commitment scheme for sparse polynomials.

The Spark sparse polynomial commitment scheme works as follows. The
prover commits to a unique dense representation of the sparse polynomial g,
11 Lasso’s approach to prove M · t = a deviates significantly from the approaches

in Baloo [38] and Caulk [37] despite Lasso starting with the same observation. In
particular, Lasso’s approach originates in Spartan [28], a work that predates Baloo
and Caulk. Moreover, if one only demands a quasilinear prover time rather than
linear, one can prove that M · t = a via “Spark-naive” [28, §7.1], even when M is
committed by an untrusted prover.
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using any polynomial commitment scheme for “dense” (multilinear) polynomi-
als. The dense representation of g is effectively a list of all of the monomials of
g with a non-zero coefficient (and the corresponding coefficient). More precisely,
the list specifies all multilinear Lagrange basis polynomials with non-zero coeffi-
cient. Details as to what are the multilinear Lagrange basis polynomials are not
relevant to this overview (but can be found elsewhere [32,34]).

When the verifier requests an evaluation g(r) of the committed polynomial g,
the prover returns the claimed evaluation v and needs to prove that v is indeed
equal to the committed polynomial evaluated at r. Let c be such that N = mc.
As explained below, there is a simple and natural algorithm that takes as input
the dense representation of g, and outputs g(r) in O(c · m) time. Spark amounts
to the bespoke SNARK establishing that the prover correctly ran this sparse-
polynomial-evaluation algorithm on the committed description of g. Note that
this perspective on Spark is somewhat novel, though it is partially implicit in
the scheme itself and in an exposition of [34, Section 16.2].

A Time-Optimal Algorithm for Evaluating a Multilinear Polynomial of Sparsity
m. We first describe a naive solution and then describe an optimal solution in
Spark. Note that Spark provides a time-optimal algorithm when c is a constant.

A Naive Solution. Consider an algorithm that iterates over each Lagrange
basis polynomials specified in the dense representation, evaluates that basis poly-
nomial at r, multiplies by the corresponding coefficient, and adds the result to the
evaluation. Unfortunately, a naive evaluation of a (log N)-variate Lagrange basis
polynomial at r takes O(log N) time, resulting in a total runtime of O(m · log N).

Eliminating the Logarithmic Factor. The key to achieving time O(c · m) is
to ensure that each Lagrange basis polynomial can be evaluated in O(c) time.
This is done as follows. This procedure is reminiscent of Pippenger’s algorithm
for multiexponentiation, with m being the size of the multiexponentiation, and
Lagrange basis polynomials with non-zero coefficients corresponding to expo-
nents.

Decompose the log N = c·log m variables of r into c blocks, each of size log m,
writing r = (r1, . . . , rc) ∈ (

F
log m

)c. Then any (log N)-variate Lagrange basis
polynomial evaluated at r can be expressed as a product of c “smaller” Lagrange
basis polynomials, each defined over only log m variables, with the i’th such
polynomial evaluated at ri. There are only 2log m = m multilinear Lagrange basis
polynomials over log m variables. Moreover, there are now-standard algorithms
that, for any input ri ∈ F

log m, run in time m and evaluate all m of the (log m)-
variate Lagrange basis polynomials at ri. Hence, in O(c · m) total time, one can
evaluate all m of these basis polynomials at each ri, storing the results in a
(write-once) memory M .

Given M , the time-optimal algorithm can evaluate any given log(N)-variate
Lagrange basis polynomial at r by performing c lookups into memory, one for
each block ri, and multiplying together the results.12 Note that we chose to
decompose the log N variables into c blocks of length log m (rather than more,
12 This is also closely analogous to the behavior of tabulation hashing discussed earlier

in §1, which is why we chose to highlight this example from algorithm design.
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smaller blocks, or fewer, bigger blocks) to balance the runtime of the two phases
of the algorithm, namely:

– The time required to “write to memory” the evaluations of all (log m)-variate
Lagrange basis polynomials at r1, . . . , rc.

– The time required to evaluate g(r) given the contents of memory.

In general, if we break the variables into c blocks of size � = log(N)/c =
log(m), the first phase requires time c · 2� = cm, and the second requires time
O(m · c).

How the Spark Prover Proves it Correctly Ran the Above Time-Optimal Algo-
rithm. To enable an untrusted prover to efficiently prove that it correctly ran the
above algorithm to compute an evaluation of a sparse polynomial g at r, Spark
uses offline memory checking [3] to prove read-write consistency. Furthermore,
the contents of the memory is determined succinctly by r, so the verifier does not
need any commitments to the contents of the memory. Spark effectively forces
the prover to commit to the “execution trace” of the algorithm (which has size
O(c · m), because the algorithm runs in time O(c) for each of the m Lagrange
basis polynomials with non-zero coefficient) plus c · N1/c = O(c · m). The latter
term arises because at the end of m operations, the offline memory-checking tech-
nique requires the prover to supply certain access counts indicating the number
of times a particular memory location was read during the course of the protocol.
Moreover, note that this memory has size c · N1/c if the algorithm breaks the
log N variables into c blocks of size log(N)/c. As we will see later, this is why
Lasso’s prover cryptographically commits to 3 · c · m + c · N1/c field elements.

Remark 1 The cost incurred by Spark’s prover to “replay” to provide access
counts at the very end of the algorithm’s execution can be amortized over multi-
ple sparse polynomial evaluations. In particular, if the prover proves an evalua-
tion of k sparse polynomials in the same number of variables, the aforementioned
cost in the offline memory checking is reused across all k sparse polynomials.

2.2 Surge: A Generalization of Spark

Re-imagining Spark. A sparse polynomial commitment scheme can be viewed as
having the prover commit to an m-sparse vector u of length N , where m is the
number of non-zero coefficients of the polynomial, and N is the number of ele-
ments in a suitable basis. For univariate polynomials in the standard monomial
basis, N is the degree, m is the number of non-zero coefficients, and u is the vec-
tor of coefficients. For an �-variate multilinear polynomial g over the Lagrange
basis, N = 2�, m is the number of evaluation points over the Boolean hypercube
x ∈ {0, 1}� such that g(x) �= 0, and u is the vector of evaluations of g at all
evaluation points over the hypercube {0, 1}�.

An evaluation query to g at input r returns the inner product of the sparse
vector u with the dense vector t consisting of the evaluations of all basis poly-
nomials at r. In the multilinear case, for each S ∈ {0, 1}�, the S’th entry of t
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is χS(r). In this sense, any sparse polynomial commitment scheme achieves the
following: it allows the prover to establish the value of the inner product 〈u, t〉
of a sparse (committed) vector u with a dense, structured vector t.

Spark → Surge. To obtain Surge from Spark, we critically examine the type of
structure in t that is exploited by Spark, and introduce Surge as a natural general-
ization of Spark that supports any table t with this structure. More importantly,
we observe that many lookup tables critically important in practice (e.g., those
that arise in Jolt) exhibit this structure.

In more detail, the Surge prover establishes that it correctly ran a natural
O(c · m)-time algorithm for computing 〈u, t〉. This algorithm is a natural analog
of the sparse polynomial evaluation algorithm described in Sect. 2.1: it iterates
over every non-zero entry ui of u, quickly computes ti = T [i] by performing one
lookup into each of O(c) “sub-tables” of size N1/c, and quickly “combines” the
result of each lookup to obtain ti and hence ui · ti. In this way, this algorithm
takes just O(c · m) time to compute the desired inner product

∑
i : ui �=0 ui · ti.

Details of the Structure Needed to Apply Surge. In the case of Spark itself, the
dense vector t is simply the tensor product of smaller vectors, t1, . . . , tc, each
of size N1/c. Specifically, Spark breaks r into c “chunks” r = (r1, . . . , rc) ∈(
F
(log N)/c

)c
, where r is the point at which the Spark verifier wants to evaluate the

committed polynomial. Then ti contains the evaluations of all ((log N)/c)-variate
Lagrange basis polynomials evaluated at ri. And for each S = (S1, . . . , Sc) ∈({0, 1}(log N)/c

)c
, the S’th entry of t is:

∏c
i=1 ti(ri).

In general, Spark applies to any table vector t that is “decomposable” in a
manner similar to the above. Specifically, suppose that k ≥ 1 is an integer and
there are α = k · c tables T1, . . . , Tα of size N1/c and an α-variate multilinear
polynomial g such that the following holds. For any r ∈ {0, 1}log N , write r =
(r1, . . . , rc) ∈ ({0, 1}log(N)/c

)c
, i.e., break r into c pieces of equal size. Suppose

that ∀r ∈ {0, 1}log N ,

T [r] = g (T1[r1], . . . , Tk[r1], Tk+1[r2], . . . , T2k[r2], . . . , Tα−k+1[rc], . . . , Tα[rc]) .
(2)

Simplifying slightly, Surge allows the prover to commit to a m-sparse vector
u ∈ F

N and prove that the inner product of u and the table T (or more precisely
the associated vector t) equals some claimed value. And the cost for the prover
is dominated by the following operations.

– Committing to 3 · α · m + α · N1/c field elements, where 2 · α · m + α · N1/c of
the committed elements are in the set {0, 1, . . . ,max{m,N1/c} − 1}, and the
remaining α · m of them are elements of the sub-tables T1, . . . , Tα. For many
lookup tables T , these elements are themselves in the set {0, 1, . . . , N1/c − 1}.

– Let b be the number of monomials in g. Then the Surge prover performs
O(k · αN1/c) = O(b · c · N1/c) field operations. In many cases, the factor of b
in the number of prover field operations can be removed.

We refer to tables that can be decomposed into sub-tables of size N1/c as
per Eq. (2) as having Spark-only structure (SOS), or being decomposable.
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3 A Stronger Analysis of Spark

We prove a substantial strengthening of a result from Spartan [28, Lemma 7.6].
In particular, we prove that in Spartan’s sparse polynomial commitment scheme,
which is called Spark, one does not need to assume that certain metadata associ-
ated with a sparse polynomial is committed honestly (in the case of Spartan, the
metadata is committed by the setup algorithm, so it was sufficient for its pur-
poses). We thereby obtain the first “standard” polynomial commitment scheme
with prover costs linear in the number of non-zero coefficients. We prove this
result without any substantive changes to Spark.

For simplicity, we make a minor change that does not affect costs nor analysis:
we have the prover commit to metadata associated with the sparse polynomial
at the time of proving an evaluation rather than when the prover commits to the
sparse polynomial (the metadata depends only on the sparse polynomial, and
in particular, it is independent of the point at which the sparse polynomial is
evaluation, so the metadata can be committed either in the commit phase or
when proving an evaluation). Our text below is adapted from an exposition of
Spartan’s result by Golovnev et al. [20]. It is natural for the reader to conceptual-
ize the Spark sparse polynomial commitment scheme as a bespoke SNARK for a
prover to prove it correctly ran the sparse (log N)-variate multilinear polynomial
evaluation algorithm described in Sect. 2.1 using c memories of size N1/c.

3.1 A (slightly) Simpler Result: c = 2

We first prove a special case of the final result, the proof of which exhibits all
of the ideas and techniques. This special case (Theorem 1) describes a transfor-
mation from any commitment scheme for dense polynomials defined over log m
variables to one for sparse multilinear polynomials defined over log N = 2 log m
variables. It is the bespoke SNARK mentioned above for c = 2 memories of size
N1/2.

The dominant costs for the prover in Spark is committing to 7 dense multi-
linear polynomials over log(m)-many variables, and 2 dense multilinear polyno-
mials over log(N1/c)-many variables. In dense �-variate multilinear polynomial
commitment schemes, the prover time is roughly linear in 2�. Hence, so long as
m ≥ N1/c, the prover time is dominated by the commitments to the 7 dense
polynomials over log(m)-many variables. This ensures that the prover time is
linear in the sparsity of the committed polynomial as desired (rather than linear
in 22 log m = m2, which would be the runtime of applying a dense polynomial
commitment scheme directly to the sparse polynomial over 2 log m variables).

The Full Result. If we wish to commit to a sparse multilinear polynomial over �
variables, let N := 2� denote the dimensionality of the space of �-variate multilin-
ear polynomials. For any desired integer c ≥ 2, our final, general, result replaces
these two memories (each of size equal to N1/2) with c memories of size equal
to N1/c. Ultimately, the prover commits to (3c + 1) many dense (log m)-variate
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multilinear polynomials, and c many dense (log(N1/c))-variate polynomials. We
begin with c = 2 before stating and proving the full result.

Theorem 1 (Special case of Theorem 2 with c = 2). Let M = N1/2.
Given a polynomial commitment scheme for (logM)-variate multilinear polyno-
mials with the following parameters (where M > 0 and WLOG a power of 2):
(1) the size of the commitment is c(M); (2) the running time of the commit
algorithm is tc(M); (3) the running time of the prover to prove a polynomial
evaluation is tp(M); (4) the running time of the verifier to verify a polyno-
mial evaluation is tv(M); and (5) the proof size is p(M), there exists a poly-
nomial commitment scheme for multilinear polynomials over 2 logM = log N
variables that evaluate to a non-zero value at at most m locations over the
Boolean hypercube {0, 1}2 logM, with the following parameters: (1) the size of
the commitment is 7c(m) + 2c(M); (2) the running time of the commit algo-
rithm is O(tc(m) + tc(M)); (3) the running time of the prover to prove a poly-
nomial evaluation is O(tp(m) + tc(M)); (4) the running time of the verifier to
verify a polynomial evaluation is O(tv(m) + tv(M)); and (5) the proof size is
O(p(m) + p(M)).

Representing Sparse Polynomials with Dense Polynomials. Let D denote a
(2 logM)-variate multilinear polynomial that evaluates to a non-zero value at
at most m locations over {0, 1}2 logM. For any r ∈ F

2 logM, we can express the
evaluation of D(r) as follows. Interpret r ∈ F

2 logM as a tuple (rx, ry) in a natural
manner, where rx, ry ∈ F

logM. Then by multilinear Lagrange interpolation, we
can write

D(rx, ry) =
∑

(i,j)∈{0,1}log M×{0,1}log M : D(i,j) �=0

D(i, j) · ẽq(i, rx) · ẽq(j, ry). (3)

Lemma 1. Let to−field be the canonical injection from {0, 1}logM to F and
to−bits be its inverse. Given a 2 logM-variate multilinear polynomial D that
evaluates to a non-zero value at at most m locations over {0, 1}2 logM, there exist
three (log m)-variate multilinear polynomials row, col, val such that the following
holds for all rx, ry ∈ F

logM.

D(rx, ry) =
∑

k∈{0,1}log m

val(k) · ẽq(to−bits(row(k)), rx) · ẽq(to−bits(col(k)), ry).

(4)

Moreover, the polynomials’ coefficients in the Lagrange basis can be computed in
O(m) time.

Proof. Since D evaluates to a non-zero value at at most m locations over
{0, 1}2 logM, D can be represented uniquely with m tuples of the form
(i, j,D(i, j)) ∈ ({0, 1}logM, {0, 1}logM,F). By using the natural injection to−field
from {0, 1}logM to F, we can view the first two entries in each of these tuples
as elements of F (let to−bits denote its inverse). Furthermore, these tuples can
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be represented with three m-sized vectors R,C, V ∈ F
m, where tuple k (for

all k ∈ [m]) is stored across the three vectors at the kth location in the vec-
tor, i.e., the first entry in the tuple is stored in R, the second entry in C, and
the third entry in V . Take row as the unique MLE of R viewed as a function
{0, 1}log m → F. Similarly, col is the unique MLE of C, and val is the unique
MLE of V . The lemma holds by inspection since Eqs. (3) and (4) are both
multilinear polynomials in rx and ry and agree with each other at every pair
rx, ry ∈ {0, 1}logM.

Conceptually, the sum in Eq. (4) is exactly what the sparse polynomial
evaluation algorithm described in Sect. 2.1 computes term-by-term. Specifically,
that algorithm (using c = 2 memories) filled up one memory with the quanti-
ties ẽq(i, rx) as i ranges over {0, 1}logM (see Eq. (3)), and the other memory
with the quantities ẽq(j, rx), and then computed each term of Eq. (4) via one
lookup into each memory, to the respective memory cells with (binary) indices
to−bits(row(k)) and to−bits(col(k)), followed by two field multiplications.

Commit Phase. To commit to D, the committer can send commitments to the
three (log m)-variate multilinear polynomials row, col, val from Lemma 1. Using
the provided polynomial commitment scheme, this costs O(m) finite field oper-
ations, and the size of the commitment to D is Oλ(c(m)).

Intuitively, the commit phase commits to a “dense” representation of the
sparse polynomial, which simply lists all the Lagrange basis polynomial with
non-zero coefficients (each specified as an element in {0, . . . ,M − 1}2), along
with the associated coefficient. This is exactly the input to the sparse polynomial
evaluation algorithm described in Sect. 2.1.

In the evaluation phase described below, the prover proves that it correctly
ran the sparse polynomial evaluation algorithm (§2.1) on the committed polyno-
mial in order to evaluate it at the requested evaluation point (rx, ry) ∈ F

2 logM.

A First Attempt at the Evaluation Phase. Given rx, ry ∈ F
logM, to prove an

evaluation of a committed polynomial, i.e., to prove that D(rx, ry) = v for
a purported evaluation v ∈ F, consider the polynomial IOP in Fig. 1, where
the verifier has oracle access to the three (log m)-variate multilinear polynomial
oracles that encode D (namely row, col, val). Here, the oracles Erx and Ery should
be thought of as the (purported) multilinear extensions of the values returned
by each memory reads that the algorithm of Sect. 2.1 performed into each of its
two memories, step-by-step over the course of its execution.

If the prover is honest, it is easy to see that it can convince the verifier about
the correct of evaluations of D. Unfortunately, the two oracles that the prover
sends in the first step of the depicted polynomial IOP can be completely arbitrary.
To fix this, V must additionally check that the following two conditions hold.
(1) ∀k ∈ {0, 1}log m, Erx(k) = ẽq(to−bits(row(k)), rx); and (2) ∀k ∈ {0, 1}log m,
Ery(k) = ẽq(to−bits(col(k)), ry).

A core insight of Spartan [28] is to check these two conditions using memory-
checking techniques [3]. These techniques amount to an efficient randomized
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Fig. 1. A first attempt at a polynomial IOP for revealing a requested evaluation of a
(2 log(M))-variate multilinear polynomial p over F such that p(x) �= 0 for at most m
values of x ∈ {0, 1}2 log(M).

procedure to confirm that every memory read over the course of an algorithm’s
execution returns the value last written to that location. We take a detour to
introduce new results that we rely on here.

Detour: Offline Memory Checking. Recall that in the offline memory checking
algorithm of [3], a trusted checker issues operations to an untrusted memory.
For our purposes, it suffices to consider only operation sequences in which each
memory address is initialized to a certain value, and all subsequent operations
are read operations. To enable efficient checking using multiset-fingerprinting
techniques, the memory is modified so that in addition to storing a value at
each address, the memory also stores a timestamp with each address. Moreover,
each read operation is followed by a write operation that updates the timestamp
associated with that address (but not the value stored there).

In prior descriptions of offline memory checking [3,12,29], the trusted checker
maintains a single timestamp counter and uses it to compute write timestamps,
whereas in Spark and our description below, the trusted checker does not use
any local timestamp counter; rather, each memory cell maintains its own counter,
which is incremented by the checker every time the cell is read.13 For this reason,

13 The same timestamp update procedure was used in Spartan’s use of Spark [28, §7.2.3].
The purpose was to achieve a concrete efficiency benefit. In particular, Spartan
used a separate timestamp counter for each cell and considered the case where all
read timestamps were guaranteed to be computed honestly. In this case, the write
timestamp is the result of incrementing an honestly returned read timestamp, which
allows Spartan to not explicitly materialize write timestamps. Here, we are interested
in the case where read timestamps themselves are not computed honestly.
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we depart from the standard terminology in the memory-checking literature and
henceforth refer to these quantities as counters rather than timestamps.

The memory-checking procedure is captured in the codebox below.

Local State of the Checker: Two sets: RS and WS, which are initialized as fol-
lows.14 RS = {}, and for an M-sized memory, WS is initialized to the following
set of tuples: for all i ∈ [N1/c], the tuple (i, vi, 0) is included in WS, where vi is
the value stored at address i, and the third entry in the tuple, 0, is an “initial
count” associated with the value (intuitively capturing the notion that when vi

was written to address i, it was the first time that address was accessed). Here,
[M] denotes the set {0, 1, . . . ,M − 1}.

Read Operations and An Invariant. For a read operation at address a, suppose
that the untrusted memory responds with a value-count pair (v, t). Then the
checker updates its local state as follows:

1. RS ← RS ∪ {(a, v, t)};
2. store (v, t + 1) at address a in the untrusted memory; and
3. WS ← WS ∪ {(a, v, t + 1)}.

The following lemma captures the invariant maintained on the sets of the
checker:

Lemma 2. Let F be a prime order field. Assuming that the domain of counts is
F and that m (the number of reads issued) is smaller than the field characteristic
|F|. Let WS and RS denote the multisets maintained by the checker in the above
algorithm at the conclusion of m read operations. If for every read operation,
the untrusted memory returns the tuple last written to that location, then there
exists a set S with cardinality M consisting of tuples of the form (k, vk, tk) for
all k ∈ [M] such that WS = RS∪ S. Moreover, S is computable in time linear in
M.

Conversely, if the untrusted memory ever returns a value v for a memory
call k ∈ [M] such v does not equal the value initially written to cell k, then there
does not exist any set S such that WS = RS ∪ S.

Proof. If for every read operation, the untrusted memory returns the tuple last
written to that location, then it is easy to see the existence of the desired set
S. It is simply the current state of the untrusted memory viewed as the set of
address-value-count tuples.

We now prove the other direction in the lemma. For notational convenience,
let WSi and RSi (0 ≤ i ≤ m) denote the multisets maintained by the trusted

14 The checker in [3] maintains a fingerprint of these sets, but for our exposition, we
let the checker maintain full sets.
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checker at the conclusion of the ith read operation (i.e., WS0 and RS0 denote
the multisets before any read operation is issued). Suppose that there is some
read operation i that reads from address k, and the untrusted memory responds
with a tuple (v, t) such that v differs from the value initially written to address k.
This ensures that (k, v, t) ∈ RSj for all j ≥ i, and in particular that (k, v, t) ∈ RS,
where recall that RS is the read set at the conclusion of the m read operations.
Hence, to ensure that there exists a set S such that RS∪S = WS at the conclusion
of the procedure (i.e., to ensure that RS ⊆ WS), there must be some other read
operation during which address k is read, and the untrusted memory returns
tuple (k, v, t − 1).15 This is because we have assumed that the value v was not
written in the initialization phase, and outside of the initialization phase, the
only way that the checker writes (k, v, t) to memory is if a read to address k
returns tuple (v, t − 1).

Accordingly, the same reasoning as above applies to tuple (k, v, t − 1). That
is, to ensure that RS = WS at the conclusion of the procedure, there must be
some other read operation at which address k is read, and the untrusted memory
returns tuple (k, v, t − 2). And so on. We conclude that for every field element
in F of the form t − i for i = 1, 2, . . . , char(F), there is some read operation that
returns (k, v, t′). Since there are m many read operations and the characteristic
of field is greater than m, we obtain a contradiction.

Remark 2. The proof of Lemma 2 implies that, if the checker ever performs
a read to an “invalid” memory cell k, meaning a cell indexed by k �∈ [M],
then regardless of the value and timestamp returned by the untrusted prover
in response to that read, there does not exist any set S such that WS = RS ∪ S.

Counter Polynomials. To aid the polynomial evaluation proof of the sparse poly-
nomial the prover commits to additional multilinear polynomials beyond Erx and
Ery. We now describe how these additional polynomials are constructed.

Observe that given the size M of memory and a list of m addresses involved
in read operations, one can compute two vectors Cr ∈ F

m, Cf ∈ F
M defined as

follows. For k ∈ [m], Cr[k] stores the count that would have been returned by
the untrusted memory if it were honest during the kth read operation. Similarly,
for j ∈ [M], let Cf [j] store the final count stored at memory location j of the
untrusted memory (if the untrusted memory were honest) at the termination
of the m read operations. Computing these two vectors requires computation
comparable to O(m) operations over F.

Let read cts = C̃r,write cts = C̃r +1, final cts = C̃f . We refer to these polyno-
mials as counter polynomials, which are unique for a given memory size M and
a list of m addresses involved in read operations.

The Actual Evaluation Proof. To prove the evaluation of a given (2 logM)-
variate multilinear polynomial D that evaluates to a non-zero value at at

15 Recall here that counter arithmetic is done over F, i.e., t and t − 1 are in F.
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most m locations over {0, 1}2 logM, the prover sends the following poly-
nomials in addition to Erx and Ery: two (log m)-variate multilinear poly-
nomials as oracles (read ctsrow, read ctscol), and two (logM)-variate multilin-
ear polynomials (final ctsrow, final ctscol), where (read ctsrow, final ctsrow) and
(read ctscol, final ctscol) are respectively the counter polynomials for the m
addresses specified by row and col over a memory of size M. After that, in addi-
tion to performing the polynomial IOP depicted earlier in the proof (Fig. 1), the
core idea is to check if the two oracles sent by the prover satisfy the conditions
identified earlier using Lemma 2.

Lemma 3. Given a (2 logM)-variate multilinear polynomial, suppose that (row,
col, val) denote multilinear polynomials committed by the commit algorithm.
Furthermore, (Erx, Ery, read ctsrow, final ctsrow, read ctscol, final ctscol) denotes the
additional polynomials sent by the prover at the beginning of the evaluation proof.

For any rx ∈ F
logM, suppose that

∀k ∈ {0, 1}log m, Erx(k) = ẽq(to−bits(row(k)), rx). (5)

Then the following holds: WS = RS ∪ S, where

– WS= {(to−field(i), ẽq(i, rx), 0) : i∈{0, 1}log(M)}∪{(row(k), Erx(k),write ctsrow
(k) = read ctsrow(k) + 1): k ∈ {0, 1}log m};

– RS = {(row(k), Erx(k), read ctsrow(k)) : k ∈ {0, 1}log m}; and
– S = {(to−field(i), ẽq(i, rx), final ctsrow(i)) : i ∈ {0, 1}log(M)}.
Meanwhile, if Eq. (5) does not hold, then there is no set S such that WS = RS∪S,
where WS and RS are defined as above.

Similarly, for any ry ∈ F
logM, checking that ∀k ∈ {0, 1}log m, Ery(k) =

ẽq(to−bits(col(k)), ry) is equivalent (in the sense above) to checking that WS′ =
RS′ ∪ S′, where

– WS′ = {(to−field(j), ẽq(j, ry), 0) : j ∈{0, 1}log(M)}∪{(col(k), Ery(k),write ctscol
(k) = read ctscol(k) + 1): k ∈ {0, 1}log m};

– RS′ = {(col(k), Ery(k), read ctscol(k)) : k ∈ {0, 1}log m}; and
– S′ = {(to−field(j), ẽq(j, ry), final ctscol(j)) : j ∈ {0, 1}log(M)}.

Proof. The result follows from an application of the invariant in Lemma 2.
Here, we clarify the following subtlety. The expression to−bits(row(k))

appearing in Eq. (5) is not defined if row(k) is outside of [M] for any k ∈
{0, 1}log m. But in this event, Remark 2 nonetheless implies the conclusion of
the theorem, namely that there is no set S such that WS = RS ∪ S. The anal-
ogous conclusion holds by the same reasoning if col(k) is outside of [M] for any
k ∈ {0, 1}log m.

There is no direct way to prove that the checks on sets in Lemma 3 hold. Instead,
we rely on public-coin, multiset hash functions to compress RS, WS, and S into
a single element of F each. Specifically:
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Fig. 2. Evaluation procedure of the Spark sparse polynomial commitment scheme.
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Lemma 4 ( [28]). Given two multisets A,B where each element is from F
3,

checking that A = B is equivalent to checking the following, except for a sound-
ness error of O((|A| + |B|)/|F|) over the choice of γ, τ : Hτ,γ(A) = Hτ,γ(B),
where Hτ,γ(A) =

∏
(a,v,t)∈A (hγ(a, v, t) − τ), and hγ(a, v, t) = a · γ2 + v · γ + t.

That is, if A = B, Hτ,γ(A) = Hτ,γ(B) with probability 1 over randomly chosen
values τ and γ in F, while if A �= B, then Hτ,γ(A) = Hτ,γ(B) with probability
at most O(|A| + |B|)/|F|).

Intuitively, Lemma 4 gives an efficient randomized procedure for checking
whether two sequences of tuples are permutations of each other. First, the pro-
cedure Reed-Solomon fingerprints each tuple (see [34, §2.1] for an exposition).
This is captured by the function hγ and intuitively replaces each tuple with
a single field element, such that distinct tuples are unlikely to collide. Second,
the procedure applies a permutation-independent fingerprinting procedure Hr,γ

to confirm the resulting two sequences of fingerprints are permutations of each
other.

We are now ready to depict a polynomial IOP for proving evaluations of a
committed sparse multilinear polynomial. Given rx, ry ∈ F

logM, to prove that
D(rx, ry) = v for a purported evaluation v ∈ F, consider the polynomial IOP
given in Fig. 2, which assumes that the verifier has an oracle access to multilinear
polynomial oracles that encode D (namely, row, col, val)

Completeness. Perfect completeness follows from perfect completeness of the
sum-check protocol and the fact that the multiset equality checks using their
fingerprints hold with probability 1 over the choice of τ, γ if the prover is honest.

Soundness. Applying a standard union bound to the soundness error introduced
by probabilistic multiset equality checks with the soundness error of the sum-
check protocol [24], we conclude that the soundness error for the depicted poly-
nomial IOP as at most O(m)/|F|.

Round and Communication Complexity. There are three invocations of the sum-
check protocol. First, the sum-check protocol is applied on a polynomial with
log m variables where the degree is at most 3 in each variable, so the round
complexity is O(log m) and the communication cost is O(log m) field elements.
Second, four sum-check-based “grand product” protocols are computed in par-
allel. Two of the grand products are over vectors of size M and the remaining
two are over vectors of size m. Third, the depicted IOP runs four additional
“grand products”, which incurs the same costs as above. In total, with the pro-
tocol of [30, Section 6] for grand products, the round complexity of the depicted
IOP is Õ(log m + log(N)) and the communication cost is Õ(log m + log N) field
elements, where the Õ notation hides doubly-logarithmic factors. The prover
commits to an extra O(m/ log3 m) field elements.

Verifier Time. The verifier’s runtime is dominated by its runtime in the grand
product sum-check reductions, which is Õ(log m) field operations.



Unlocking the Lookup Singularity with Lasso 201

Prover Time. Using linear-time sum-checks [33] in all three sum-check reductions
(and using the linear-time prover in the grand product protocol [30,33]), the
prover’s time is O(N) finite field operations for unstructured tables.

Finally, to prove Theorem 1, applying the compiler of [9] to the depicted poly-
nomial IOP with the given dense polynomial commitment primitive, followed by
the Fiat-Shamir transformation [15], provides the desired non-interactive argu-
ment of knowledge for proving evaluations of committed sparse multilinear poly-
nomials, with efficiency claimed in the theorem statement.

The full version of this paper [32] provides details of the grand product argu-
ment.

Additional Discussion and Intuition. As previously discussed, the protocol in
Fig. 2 allows the prover to prove that it correctly ran the sparse polynomial
evaluation algorithm described in Sect. 2.1 on the committed representation of
the sparse polynomial. The core of the protocol lies in the memory-checking
procedure, which enables the untrusted prover to establish that it produced the
correct value upon every one of the algorithm’s reads into the c = 2 memories of
size M = N1/2. Intuitively, the values that the prover cryptographically commits
to in the protocol are simply the values and counters returned by the aforemen-
tioned read operations (including a final “read pass” over both memories, which
is required by the offline memory-checking procedure).

A key and subtle aspect of the above is that the prover does not have to cryp-
tographically commit to the values written to memory in the algorithm’s first
phase, when it initializes the two memories (aka lookup tables, albeit dynam-
ically determined by the evaluation point (rx, ry)), of size M = N1/2. This is
because these lookup tables are MLE-structured, meaning that the verifier can
evaluate the multilinear extension of these tables on its own. The whole point of
cryptographically committing to these values is to let the verifier evaluate the
multilinear extension thereof at a randomly chosen point in the grand product
argument. Since the verifier can perform this evaluation quickly on its own, there
is no need for the prover in the protocol of Fig. 2 to commit to these values.

3.2 The General Result

Theorem 1 gives a commitment scheme for m-sparse multilinear polynomials
over log N = 2 log(M) many variables, in which the prover commits to 7 dense
multilinear polynomials over log m many variables, and 2 dense polynomials over
log(M) many variables.

Suppose we want to support sparse polynomials over c log(M) variables for
constant c > 2, while ensuring that the prover still only commits to 3c + 1
many dense multilinear polynomials over log m many variables, and c many over
log(N1/c) many variables. We can proceed as follows.

The Function eq and its Tensor Structure. Recall that eqs : {0, 1}s × {0, 1}s →
{0, 1} takes as input two vectors of length s and outputs 1 if and only
if the vectors are equal. (In this section, we find it convenient to make
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explicit the number of variables over which eq is defined by including a sub-
script s.) Recall from the definition of ẽq polynomial [32,34] that ẽqs(x, e) =∏s

i=1 (xiei + (1 − xi)(1 − ei)) .

Equation (3) expressed the evaluation D̃(rx, ry) of a sparse 2 log(M)-variate
multilinear polynomial D̃ as

D̃(rx, ry) =
∑

(i,j)∈{0,1}log(M)×{0,1}log(M)

D(i, j) · ẽqlog(M)(i, rx) · ẽqlog(M)(j, ry). (6)

The last two factors on the right hand side above have effectively factored
ẽq2 log(M) ((i, j), (rx, ry)) as the product of two terms that each test equality
over log(M) many variables, namely: ẽq2 log(M) ((i, j), (rx, ry)) = ẽqlog(M)(i, rx) ·
ẽqlog(M)(j, ry).

Within the sparse polynomial commitment scheme, this ultimately led to
checking two different memories, each of size M, one of which we referred to as
the “row” memory, and one as the “column” memory. For each memory checked,
the prover had to commit to three (log m)-variate polynomials, e.g., Erx, row,
read ctsrow, and one log(M)-variate polynomial, e.g., final ctsrow.

Supporting log N = c logM variables rather than 2 logM. If we want to support
polynomials over c log(M) variables for c > 2, we simply factor ẽqc log(M) into a
product of c terms that test equality over log(M) variables each. For example,
if c = 3, then we can write: ẽq3 log(M) ((i, j, k), (rx, ry, rz)) = ẽqlog(M)(i, rx) ·
ẽqlog(M)(j, ry) · ẽqlog(M)(k, rz).

Hence, if D is a (3 logM)-variate polynomial, we obtain the following analog
of Eq. (6):

˜D(rx, ry, rz) =
∑

(i,j,k)∈{0,1}log(M)×{0,1}log(M)×{0,1}log(M)

D(i, j, k)·ẽqlog(M)(i, rx)·ẽqlog(M)(j, ry)·ẽqlog(M)(k, rz).

(7)
Based on the above equation, straightforward modifications to the sparse

polynomial commitment scheme lead to checking c different untrusted memories,
each of size M, rather than two. For example, when c = 3, the first memory stores
all evaluations of ẽqlog(M)(i, rx) as i ranges over {0, 1}log m, the second stores
ẽqlog(M)(j, ry) as j ranges over {0, 1}log m, and the third stores ẽqlog(M)(k, rz)
as k ranges over {0, 1}log m. These are exactly the contents of the three lookup
tables of size N1/c used by the sparse polynomial evaluation algorithm of Sect. 2.1
when c = 3.

For each memory checked, the prover has to commit to three multilinear
polynomials defined over log(m)-many variables, and one defined over log(M) =
log(N)/c variables. We obtain the following theorem.

Theorem 2. Given a polynomial commitment scheme for (logM)-variate mul-
tilinear polynomials with the following parameters (where M is a positive integer
and WLOG a power of 2): (1) the size of the commitment is c(M); (2) the run-
ning time of the commit algorithm is tc(M); (3) the running time of the prover
to prove a polynomial evaluation is tp(M); (4) the running time of the verifier
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to verify a polynomial evaluation is tv(M); and (5) the proof size is p(M), there
exists a polynomial commitment scheme for (c logM)-variate multilinear polyno-
mials that evaluate to a non-zero value at at most m locations over the Boolean
hypercube {0, 1}c logM, with the following parameters: (1) the size of the commit-
ment is (3c + 1)c(m) + c · c(M); (2) the running time of the commit algorithm
is O (c · (tc(m) + tc(M))); (3) the running time of the prover to prove a polyno-
mial evaluation is O (c (tp(m) + tc(M))); (4) the running time of the verifier to
verify a polynomial evaluation is O (c (tv(m) + tv(M))); and (5) the proof size is
O (c (p(m) + p(M))).

3.3 Specializing the Spark Sparse Commitment Scheme to Lasso

In Lasso, if the prover is honest then the sparse polynomial commitment scheme
is applied to the multilinear extension of a matrix M with m rows and N columns,
where m is the number of lookups and N is the size of the table. If the prover is
honest then each row of M is a unit vector.

In fact, we require the commitment scheme to enforce these properties even
when the prover is potentially malicious. Achieving this simplifies the commit-
ment scheme and provides concrete efficiency benefits. It also keeps Lasso’s poly-
nomial IOP simple as it does not need additional invocations of the sum-check
protocol to prove that M satisfies these properties.

First, the multilinear polynomial val(k) is fixed to 1, and it is not committed
by the prover. Recall from Lemma 1 that val(k) extends the function that maps
a bit-vector k ∈ {0, 1}log m to the value of the k’th non-zero evaluation of the
sparse function. Since M is a {0, 1}-valued matrix, val(k) is just the constant
polynomial that evaluates to 1 at all inputs.

Second, for any k = (k1, . . . , klog m) ∈ {0, 1}log m, the k’th non-zero entry
of M is in row to−field(k) =

∑log m
j=1 2j−1 · kj . Hence, in Eq. (4) of Lemma 1,

to−bits(row(k)) is simply k.16 This means that Erx(k) = ẽq(k, rx), which the
verifier can evaluate on its own in logarithmic time. With this fact in hand, the
prover does not commit to Erx nor prove that it is well-formed.

In terms of costs, these effectively remove the contribution of the first log m
variables of M̃ to the costs. Hence, the costs are that of applying the commitment
scheme to an m-sparse log(N)-variate polynomial (with val fixed to 1). This
means that, setting c = 2 for illustration, the prover commits to 6 multilinear
polynomials with log(m) variables each and to two multilinear polynomials with
(1/2) log N variables each.

[32, Figure 3] describes Spark specialized for Lasso to commit to M̃ . The
prover commits to 3c dense (log(m))-variate multilinear polynomials, called
dim1, . . . ,dimc (the analogs of the row and col polynomials of Sect. 3.1),
E1, . . . , Ec, and read cts1, . . . , read ctsc, as well as c dense multilinear polyno-
mials in log(N1/c) = log(N)/c variables, called final cts1, . . . , final ctsc. Each
dimi is purported to be the memory cell from the i’th memory that the sparse
16 More precisely, this holds if we define rx to be in F

log m and ry to be in F
log N , rather

than defining them both to be in F
log M = F

(1/2)(log m+log n).
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polynomial evaluation algorithm (Sect. 2.1) reads at each of its m time steps,
E1, . . . , Ec the values returned by those reads, and read cts1, . . . , read ctsc the
associated counts. final cts1, . . . , final ctsc are purported to be to counts returned
by the memory checking procedure’s final pass over each of the c memories.

If the prover is honest, then dim1, . . . ,dimc each map {0, 1}log m to
{0, . . . , N1/c−1}, and read cts1, . . . , read ctsc each map {0, 1}log m to {0, . . . , m−
1}; final cts1, . . . , final ctsc each map {0, 1}log m to {0, . . . , m−1}. In fact, for any
integer j > 0, at most m/j out of the m evaluations of each counter polynomial
read ctsi and final ctsi can be larger than j.

4 Surge: A Generalization of Spark, Providing Lasso

The technical core of the Lasso lookup argument is Surge, a generalization of
Spark. In particular, Lasso is simply a straightforward use of Surge.

Recall from Sect. 3 that Spark allows the untrusted Lasso prover to commit
to M̃ , purported to be the multilinear extension of an m × N matrix M , with
each row equal to a unit vector, such that M · t = a. The commitment phase of
Surge is same as that of Spark. Surge generalizes Spark in that the Surge prover
proves a larger class of statements about the committed polynomial M̃ (Spark
focused only on proving evaluations of the sparse polynomial M̃).

Overview of Lasso. In Lasso, after committing to M̃ , the Lasso verifier picks a
random r ∈ F

log m and seeks to confirm that
∑

j∈{0,1}log N

M̃(r, j) · t(j) = ã(r). (8)

Indeed, if M · t and a are the same vector, then Eq. (8) holds for every choice
of r, while if Mt �= a, then by the Schwartz-Zippel lemma, Eq. (8) holds with
probability at most log m

|F| . So up to soundness error log m
|F| , checking that Mt = a

is equivalent to checking that Eq. (8) holds.
In Lasso, the verifier obtains ã(r) via the polynomial commitment to ã. Then,

the prover establishes Eq. (8) using Surge. Specifically, Surge generalizes Spark’s
procedure for generating evaluation proofs, to directly produce a proof as to the
value of the left hand side of Eq. (8). Essentially, the proof proves that the prover
correctly ran a (very efficient) algorithm for evaluating the left hand side of Eq.
(8).

A Roughly O(αm)-time Algorithm for Computing the LHS of Eq. (8). From Eq.
(3), M̃(r, y) =

∑
(i,j)∈{0,1}log m+log N Mi,j · ẽq(i, r) · ẽq(j, y).

Hence, letting nz(i) denote the unique column in row i of M that contains a
non-zero value (namely, the value 1), the left hand side of Eq. (8) equals

∑

i∈{0,1}log m

ẽq(i, r) · T [nz(i)]. (9)
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Suppose that T is a SOS table. This means that there is an integer k ≥ 1
and α = k · c tables T1, . . . , Tα of size N1/c, as well as an α-variate mul-
tilinear polynomial g such that the following holds. Suppose that for every
r = (r1, . . . , rc) ∈ ({0, 1}log(N)/c

)c
,

T [r] = g (T1[r1], . . . , Tk[r1], Tk+1[r2], . . . , T2k[r2], . . . , Tα−k+1[rc], . . . , Tα[rc]) .
(10)

For each i ∈ {0, 1}log m, decompose nz(i) and (nz1(i), . . . , nzc(i)) ∈ [N1/c]c.
Then Expression (9) equals

∑

i∈{0,1}log m

ẽq(i, r) · g (T1[nz1(i)], . . . , Tk[nz1(i)], Tk+1[nz2(i)], . . . ,

T2k[nz2(i)], . . . , Tα−k+1[nzc(i)], . . . , Tα[nzc(i)]) . (11)

The algorithm to compute Expression (11) simply initializes all tables
T1, . . . , Tα, then iterates over every i ∈ {0, 1}m and computes the i’th term
of the sum with a single lookup into each table (of course, the algorithm evalu-
ates g at the results of the lookups into T1, . . . , Tα, and multiplies the result by
ẽq(i, r)).

Description of Surge. The commitment to M̃ in Surge consists of commitments
to c multilinear polynomials dim1, . . . ,dimc, each over log m variables. dimi is
purported to be the multilinear extension of nzi.

The verifier chooses r ∈ {0, 1}log m at random and requests that the Surge

prover prove that the committed polynomial M̃ satisfy Eq. (9). The prover does
so by proving it ran the aforementioned algorithm for evaluating Expression (11).
Following the memory-checking procedure in Sect. 3, with each table Ti : i =
1, . . . , α viewed as a memory of size N1/c, this entails committing for each i to
log(m)-variate multilinear polynomials Ei and read ctsi (purported to capture
the value and count returned by each of the m lookups into Ti) and a log(N1/c)-
variate multilinear polynomial final ctsi (purported to capture the final count for
each memory cell of Ti.)

Let t̃i be the mutlilinear extension of the vector ti whose j’th entry is Ti[j].
The sum-check protocol is applied to compute

∑

j∈{0,1}log m

ẽq(r, j) · g (E1(j), . . . , Eα(j)) . (12)

At the end of the sum-check protocol, the verifier needs to evaluate ẽq(r, r′) ·
g(E1(r′), . . . , Eα(r′)) at a random point r′ ∈ F

log m, which it can do with one
evaluation query to each Ei (the verifier can compute ẽq(r, r′) on its own in
O(log m) time).

The verifier must still check that each Ei is well-formed i.e., that Ei(j) equals
Ti[dimi(j)] for all j ∈ {0, 1}log m. This is done exactly as in Spark to confirm that
for each of the α memories, WS = RS∪S (see Lemmas 3 and 4, and [32, Figure 3]).
At the end of this procedure, for each i = 1, . . . , α, the verifier needs to evaluate
each of dimi, read ctsi, final ctsi at a random point, which it can do with one
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query to each. The verifier also needs to evaluate the multilinear extension t̃i of
each sub-table Ti for each i = 1, . . . , α at a single point. T being SOS guarantees
that the verifier can compute each of these evaluations in O(log(N)/c) time.

Prover Time. Besides committing to the polynomials dimi, Ei, read ctsi,
final ctsi for each of the α memories and producing one evaluation proof for
each (in practice, these would be batched), the prover must compute its mes-
sages in the sum-check protocol used to compute Expression (12) and the grand
product arguments (which can be batched). Using the linear-time sum-check pro-
tocol [13,28,33], the prover can compute its messages in the sum-check protocol
used to compute Expression (12) with O(b · k · α · m) field operations, where
recall that α = k · c and b is the number of monomials in g. If k = O(1), then
this is O(b · c · m) time. For many tables of practical interest, the factor b can
be eliminated (e.g., if the total degree of g is a constant independent of b, such
as 1 or 2). The costs for the prover in the memory checking argument is similar
to Spark: O(α · m + α · N1/c) field operations, plus committing to a low-order
number of field elements.

Verification Costs. The sum-check protocol used to compute Expression (12)
consists of log m rounds in which the prover sends a univariate polynomial of
degree at most 1 + α in each round. Hence, the prover sends O(c · k · log m) field
elements, and the verifier performs O(k · log m) field operations. The costs of the
memory checking argument for the verifier are identical to Spark.

Completeness and Knowledge Soundness of the Polynomial IOP. Completeness
holds by design and by the completeness of the sum-check protocol, and of the
memory checking argument.

By the soundness of the sum-check protocol and the memory checking argu-
ment, if the prover passes the verifier’s checks in the polynomial IOP with prob-
ability more than an appropriately chosen threshold γ = O(m+N1/c/|F|), then
∑

y∈{0,1}log N M̃(r, y)T [y] = v, where M̃ is the multilinear extension of the fol-
lowing matrix M . For i ∈ {0, 1}log m, row i of M consists of all zeros except for
entry Mi,j = 1, where j = (j1, . . . , jc) ∈ {0, 1, . . . , N1/c}c is the unique column
index such that j1 = dim1(i), . . . , jc = dimc(i).

Theorem 3. Figure 3 is a complete and knowledge-sound polynomial IOP for
establishing that the prover knows an m×N matrix M ∈ {0, 1}m×N with exactly
one entry equal to 1 in each row, such that

∑

y∈{0,1}log N

M̃(r, y)T [y] = v. (13)

The discussion surrounding Eq. (8) explained that checking that Mt = a is
equivalent, up to soundness error log(m)/|F|, to Eq. (13) holding for a random
r ∈ F

log m. Combining this with Theorem 3 implies that the protocol in [32,
Figure 5] i.e., Lasso, is a lookup argument.
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Fig. 3. Surge’s polynomial IOP for proving that
∑

y∈{0,1}log N M̃(r, y)T [y] = v.
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