
M&M’S: Mix and Match Attacks
on Schnorr-Type Blind Signatures

with Repetition

Khue Do1,2(B) , Lucjan Hanzlik1 , and Eugenio Paracucchi1,2

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{khue.do,lucjan.hanzlik,eugenio.paracucchi}@cispa.de

2 Saarland University, Saarbrücken, Germany

Abstract. Blind signatures allow the issuing of signatures on messages
chosen by the user so that they ensure blindness of the message against the
signer. Moreover, a malicious user cannot output � + 1 signatures while
only finishing � signing sessions. This notion, called one-more unforge-
ability, comes in two flavors supporting either sequential or concurrent
sessions. In this paper, we investigate the security of a class of blind
signatures constructed from Sigma-protocols with small challenge space
CΣ (i.e., polynomial in the security parameter), using k repetitions of
the protocol to decrease the chances of a cheating prover. This class of
schemes includes, among others, the Schnorr blind signature scheme with
bit challenges and the recently proposed isogeny-based scheme CSI-Otter
(Crypto’23).

For this class of blind signatures, we show a polynomial-time attack
that breaks one-more unforgeability for any � ≥ k concurrent sessions in
time O(k · |CΣ |). Contrary to the ROS attack, ours is generic and does
not require any particular algebraic structure. We also propose a compu-
tational trade-off, where, for any t ≤ k, our attack works for � = k

t
in

time O(k
t

· |CΣ |t). The consequences of our attack are as follows. Schemes
in the investigated class of blind signatures should not be used concur-
rently without applying specific transformations to boost the security to
support more signing sessions. Moreover, for the parameters proposed for
CSI-Otter (k = 128 and |CΣ | = 2), the scheme becomes forgeable after 128
concurrent signing sessions for the basic attack and with only eight ses-
sions in our optimized attack. We also show that for those parameters, it
is even possible to compute two signatures in around 10 min with just one
signing session using the computation power of the Bitcoin network. Thus,
we show that, for sequential security, the parameter k must be at least dou-
bled in the security parameter for any of the investigated schemes.

Keywords: Blind Signatures · Sigma Protocols · Group Actions ·
Cryptanalysis

c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14656, pp. 363–387, 2024.
https://doi.org/10.1007/978-3-031-58751-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58751-1_13&domain=pdf
http://orcid.org/0009-0007-8472-002X
http://orcid.org/0009-0006-1941-693X
http://orcid.org/0009-0004-5919-226X
https://doi.org/10.1007/978-3-031-58751-1_13

364 K. Do et al.

1 Introduction

Blind signatures allow a signer to sign messages picked by third parties without
actually seeing them. This property, called blindness, enables many privacy-
preserving applications of blind signatures. The authenticity of the signer’s sig-
natures is based on a one-more unforgeability property, which informally states
that one cannot create �+1 valid signatures under different messages while only
finishing the signing process � times with the signer. If one-more unforgeability
holds even if those � signing queries are executed in parallel, we are talking about
a concurrently secure blind signature scheme. Alternatively, we are talking about
sequential unforgeable blind signatures, if the signer processes queries sequen-
tially. Secure blind signatures can be constructed from different assumptions
such as RSA [3,10], discrete logarithm [1,17,21,29], pairings [7], lattices [20,26],
and isogenies [22]. The resulting schemes provide various properties, including
optimal round-complexity (i.e., two-move) and security under stronger security
notions.

One of the most prominent ways to construct blind signatures is to leverage
the existing construction of standard digital signatures from the Sigma protocol
(Σ-protocol) and the Fiat-Shamir transformation. Σ-protocols are three-move
interactive protocols, where the prover creates a commitment and later answers
a challenge from the verifier. If the challenge space is small (e.g., bit challenges),
the prover and verifier repeat the protocol k-times in parallel to decrease the
chances of a cheating prover. For Σ-protocols, one can use the Fiat-Shamir
transformation to turn this protocol into a signature scheme, i.e., compute the
verifier’s challenge using a random oracle query on the prover’s commitment and
a message picked by the prover/signer. The transformation can also be applied
to Σ-protocols with a small challenge space where all k commitments are queried
at once to the random oracle, and the prover’s responses are provided separately
for each of the k protocol instances.

While this transformation works for standard signatures, it fails for blind
signatures since the signer can break blindness by inspecting the commitment
and the challenge value of the final signature. The signer can do it even if the user
is the one querying the random oracle. A folklore approach to get around this
problem is introducing a way to randomize the signer’s commitment and output
of the random oracle that the user can reverse to receive the final signature.
Prominent examples using this approach are the Schnorr blind signature scheme,
the Abe-Okamoto scheme in the discrete logarithm setting, and the recently
proposed CSI-Otter scheme [22] based on isogenies.

Unfortunately, the Schnorr blind signature scheme and many others following
the above recipe are vulnerable to the so-called ROS attack [4]. These schemes
cannot be concurrently unforgeable for � bigger than polylogarithmic in the secu-
rity parameter. In practice, the scheme becomes unusable after approximately
8–10 concurrent signing queries, and the only way out is to either use trans-
formations boosting the security to more signatures [9,24] or use the scheme
sequentially, which limits the number of real-world applications significantly.
The attack requires that there exists an algebraic structure in the space of com-
mitments that the attacker can leverage. Such a structure does not exist, e.g.,

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 365

for the CSI-Otter scheme, making it potentially secure against the ROS attack
and allowing for polynomially many signing queries, an open problem left by the
authors [22].

1.1 Our Contribution

This paper investigates the security of three-move blind signatures built generi-
cally from (parallel repetitions of) Σ-protocols with a small challenge space CΣ

(non-negligible soundness error 1/|CΣ |). For such blind signature schemes, we
show a new polynomial-time attack breaking the unforgeability for � = k, where
k is the number of repetitions of the base protocol. Contrary to the ROS attack,
we do not require any particular algebraic structure and rely solely on the honest
verifier zero-knowledge property of the Σ-protocol and queries to the random
oracle (i.e., computing hash digests).

The Attack. Katsumata et al. introduced in [22] a novel blind signature scheme
based on isogenies called CSI-Otter. Their construction can be interpreted as a
blinded variant of CSI-FiSh [6], itself based on a Σ-protocol with small challenge
space (bit clallenge). However, the demonstrated scheme offers only provable
security for a poly-logarithmic number of concurrent executions. The authors
then conjectured its security for polynomially many executions based on its
apparent immunity to the ROS attack, stemming from the non-algebraic struc-
ture of the protocol. We contend that this argument lacks rigor, as the ROS
attack does not encompass all potential threats to the concurrent security of
blind signatures in general. Thus, motivated by this observation, we elaborate
a concrete attack targeting the concurrent security of this specific class of blind
signatures, while being divergent from the ROS attack methodology. We use the
fact that, from the user’s point of view, the signer is running k instances of the
Σ-protocol with challenges from CΣ . In the case of a honest user, there is no
problem since we assume that the user will “glue” all k instances in the same
random oracle query. However, a malicious user does not need to do it. Assume
that R = (R1, . . . , Rk) is the commitment sent in the first step by the signer
and R′ = (R′

1, . . . , R
′
k) is the blinded commitment. A honest user can compute

the challenge by computing c′ = (c′
1, . . . , c

′
k) = H(R′‖m) and then challenges

the signer with a blinded version of it. Given the signer’s response, the honest
user owns a signature under m.

A malicious user can generate a valid signature differently. Thanks to the
honest verifier zero-knowledge property of the Σ-protocol, the adversary can
simulate one of the k instances of the protocol. As a result of the simulation,
it will receive a valid transcript (e∗, d∗, z∗), where d∗ ∈ CΣ . The adversary can
now compute the challenge c′ = (c′

1, . . . , c
′
k) = H((R′

1, . . . , R
′
k−1, e

∗)‖m∗) for a
random message m∗ and repeat the process for a different message until c′

k = d∗.
On average, a malicious user will only have to repeat this computation |CΣ | times,
e.g. two times for bit challenges.

The key observation, now, is that the adversary only needs the k − 1 first
elements of the signer’s response to receive a valid signature. It works since the

366 K. Do et al.

adversary simulated the last instance and knows a proper answer z∗ for the chal-
lenge c′ it picked. This means that for the protocol instance with commitment
Rk, the adversary can arbitrarily choose a challenge and still be able to receive a
valid signature. In itself, this is not interesting. However, suppose the adversary
executes the same attack over k concurrent sessions. In that case, the malicious
user ends up with k instances of the Σ-protocol for which it can arbitrarily pick
the challenge while simultaneously still being able to compute k valid signatures.
Thus, the adversary can use those instances to create a one-more signature.

To be more explicit, we provide an unblind version of the attack. Suppose
R1, . . . ,Rk are the commitment the signer creates for the k concurrent sessions
the adversary executes, where Ri = (Ri,1, . . . , Ri,k). The adversary uses the
above technique to simulate k instances of the Σ-protocol receiving (ei, di, zi).
It then finds messages m1, . . . , mk such that for every i ∈ {1, . . . , k} we have

H((Ri,1, . . . , Ri,k−1, ei)‖mi) = (ci,1, . . . , ci,k−1, di).

The adversary now picks a random message m∗ and computes the challenge
c∗ = H((R1,k, . . . , Rk,k)‖m∗) ∈ Ck

Σ , where c∗ = (c∗
1, . . . , c

∗
k). Now, for the ith

session, it challenges the signer with (ci,1, . . . , ci,k−1, c
∗
i) and receives k separate

responses for each of the elements of the challenge. It is easy to see now that
by replacing the last entries of the response with the zi values, the adversary
will receive valid signatures for messages m1, . . . , mk. By combining those last
entries, the adversary can construct a valid signature for challenge c∗, which
means a valid forgery for message m∗.

In expectation, the adversary will have to compute the hash function k · |CΣ |
times and execute k concurrent sessions for the attack to be successful. It can also
be performed with fewer sessions at the expense of computation, i.e. k

t concurrent
sessions with adversary’s running time O(k

t · |CΣ |t). In case we want to run the
attack in the sequential settings, the running time will be O(2 · |CΣ |k/2), i.e.,
exponential in k but breaking unforgeability by creating two signatures while
only querying one signature. In the above attack, the adversary requires the
signer to create k (respectively k

t) signatures, where all must be made using
concurrent sessions. We fix this shortcoming by extending the attack so that the
adversary only needs two open sessions at a given time. However, the attack still
requires the signer to create k (respectively k

t) signatures.

Implications. Our results show that for practical and concurrent applications,
one should not use blind signatures constructed from Σ-protocols with a small
challenge space. We summarize those protocols in Table 1. Since the attack is
generic and requires no unique algebraic structure, it works in various settings:
Schnorr blind signature with bit challenges in the discrete logarithm setting,
the Fiat-Shamir blind signatures (as in [19]) in the RSA setting, CSI-Otter [22]
in the isogenies setting. For example, CSI-Otter [22] only guarantees security
for polylogarithmic signatures. We demonstrate a specific attack that compro-
mises security after only 128 signatures. This implies that the signer would need
to replace its secret keys after fewer than 128 signed signatures, rendering the

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 367

scheme impractical. Interestingly, the attack also works in the weaker synchro-
nized parallel attack model from [28], where we assume that the steps of the
protocol for each session are executed in order of opened sessions, i.e., in our
case, this means that the challenge for the first session must be sent before the
challenge for the second session, etc.

While increasing the challenge space and consequently the number of
instances k makes our attack more time-consuming, an efficient way to forge a
signature will always exist if the signer uses the signing keys more than k times.
In practice, to use such blind signatures concurrently, one must use boosting
transformations similar to the case of Schnorr blind signatures and the ROS
attack. Unfortunately, this leads to a significant increase in the communication
complexity and signature size.

One of the main downsides of our results is that the attack targets all known
Σ-protocols for the graph isomorphism problem. This significantly influences
the area of post-quantum blind signatures, where we are still trying to find
more efficient alternatives for schemes based on standard lattice-based problems.
Potential blind signatures from the lattice isomorphism problem [14] and the
CSI-Otter scheme are vulnerable to our attack, leaving us only with relatively
inefficient blind signatures from standard lattice assumptions that suffer from
big signature sizes.

Table 1. Σ-protocols with small challenge space.

Σ-protocol Hardness Assumption Challenge space

[19] Factoring assumption {0,1}
[6,12] Isogeny-based assumption {0,1}
[14] Lattice Isomorphism assumption {0,1}
[25] Lattice assumption {0,1, 2}

Case Study. We introduce our attack, targetting any blind signature scheme built
from a Σ-protocol with small challenge space. To make the attack more explicit,
we show how to apply it against the CSI-Otter isogeny-based blind signature
scheme recently introduced at Crypto’23. With this, we solve an open problem
left by the authors [22]. In particular, we show that CSI-Otter is not concurrently
secure in the polynomial regime, i.e., it does not support polynomially many
concurrent sessions as conjectured by the authors.

368 K. Do et al.

We show that for the parameters proposed by the authors (i.e., n = 128),
CSI-Otter becomes forgeable after issuing only 128 signatures. Sacrificing a bit of
computation, we can make the scheme insecure even with only eight concurrent
sessions. In such a case, the adversary must perform around half a megahash,
which can be done in less than a second on commodity hardware (e.g., the
rate of the M1 Pro processor is 5Mh/s). Moreover, we argue that CSI-Otter is
not even sequentially secure for the proposed parameters. In such a case, our
attack requires around 2 · 264 hash computations, which is in the realms of the
bitcoin difficulty, i.e., can be computed by the bitcoin network in around 10 min.
Thus, the challenge space needs to be increased for CSI-Otter to be practically
secure in the sequential setting. In particular, for n-bit security, we need at least
k = 2 · n. Interestingly, one can use the argument in [19] as long as the number
of repetitions is at least doubled with the security parameter. Hence, we show
that their choice of parameters is tight with our concrete attack.

Summary of Contribution. This paper analyzes the security of a specific class
of blind signature schemes, i.e., schemes constructed by applying a particular
transformation to a Σ-protocol with a challenge space that is polynomial in
the size of the security parameter. This class captures many existing schemes,
including blind Schnorr signatures with bit challenges, the Fiat-Shamir factoring-
based scheme (as in [19]), and the recently proposed CSI-Otter isogeny-based
scheme [22].

– We show that this class of blind signatures is vulnerable to a polynomial-time
attack that breaks the one-more unforgeability for any � > k of concurrent
sessions, where the challenge space is Ck

Σ , e.g., |CΣ | = 2 and k = 128 for CSI-
Otter [22]. The attack is generic and does not require any particular algebraic
structure. It can be improved so that, at a given time, the adversary only needs
to keep two sessions open concurrently while still requiring k signatures to
create a forged one.

– We then show that there exists a tradeoff between the number of ses-
sions/signatures needed and the adversary’s running time. The implications
are that CSI-Otter is forgeable for the above parameters with only eight con-
current sessions in under a second on commodity hardware.

– We show that even if such schemes are only used in the impractical sequen-
tial setting, their parameters must be considered carefully. In particular, the
challenge space must be at least doubled in the security parameter k ≥ 2 · n.
Otherwise, for the parameters proposed in [22], the required computation
needed by an adversary is comparable to the work required by Bitcoin miners
(266 hash operations in expectation), where the network of miners can solve
such a problem in around ten minutes.

2 Background

2.1 Notation

For a set X, |X| denotes the cardinality of X. For convenience, vectors will be
denoted by a bold letter v = (v1, . . . , vk). We will denote the security parameter

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 369

with n, and for positive integers k we define [k] := {1, . . . , k}. We will use ‖ to
denote the concatenation of strings. We use uppercase letters A or A to denote
algorithms. We let y ← A(x) denote the output of A on input x and y ←$ A(x)
for the randomized algorithm. For a set X the notation x ←$ X means that x is
uniformly sampled from X. We use st explicitly to denote the inner state of an
algorithm while omitting it when the context is clear. We say that a function is
negligible and denote it as negl(n) if it vanishes faster than the inverse of any
polynomial. For a prime number p, we denote the finite field with p elements as
Fp. Given an hash function H : {0, 1}∗ → {0, 1}k and a vector R = (R1, . . . , Rn)
we define H(R) := H(R1‖ . . . ‖Rn), where the components of the vector are
encoded as bit strings.

2.2 Sigma Protocols

Definition 1 (Σ-Protocol). A sigma protocol (Σ-protocol) is a three-move
interactive protocol Σ = (G,P,V, C) that consists of the following p.p.t. algo-
rithm:

Key Generation. On input the security parameter 1n, the probabilistic algo-
rithm G outputs a public key pk and a secret key sk.

Prover. The prover P = (P1,P2) consists of two algorithms:
1. (R, st) ←$P1(sk): on input a secret key sk the probabilistic algorithm P1

outputs a commitment R and an internal state st.
2. s ← P2(sk, c, st): on input a challenge c ∈ C, a secret key sk and a state

st, the algorithm P2 outputs a response s.
Verifier. On input a public key pk, a commitment R, a challenge c, and a

response s, the verification algorithm V outputs 1 to indicate the prover is
valid, and 0 otherwise.

Fig. 1. Interaction in a sigma protocol.

We say that a Σ-protocol is correct if for every 1n, for every key pair
(pk, sk) ← G(1n), and for every transcript (R, c, s) output from the interaction
in Fig. 1 between a prover and a verifier, we have V(pk, R, c, s) = 1.

370 K. Do et al.

Security Notions. We briefly capture the security of a Σ-protocol in the fol-
lowing notions: honest verifier zero-knowledge and special soundness.

– We say that a Σ-protocol is honest verifier zero-knowledge (HVZK)
if there exists a p.p.t. simulator Sim such that for every key pair (pk, sk) ←
G(1n), and for every challenge c ∈ C, it outputs a valid transcript (R, c, s) ←
Sim(pk, c) that is indistinguishable from a real transcript.

– We say that a Σ-protocol is (2-)special sound if there exists a deterministic
polynomial time extractor Ext such that, for every key pair (pk, sk) ← G(1n),
recovers the secret sk given two valid transcripts (R, c1, s1) and (R, c2, s2)
sharing the same commitment and different challenges.

We will assume hereafter that any Σ-protocol we encounter satisfies the proper-
ties enunciated in the above security notions. Recall also that we can turn any
Σ-protocols into a signature scheme using the Fiat-Shamir Transform [16,29].

2.3 Blind Signature Schemes

Definition 2 (Three-Moves Blind Signature Scheme). A three-moves
blind signature scheme BS = (G,S,U ,V) consists of the following p.p.t. algo-
rithms:

Key Generation. On input the security parameter 1n, the probabilistic algo-
rithm G outputs a public key pk and a secret key sk.

Signer. The signer S = (S1,S2) consists of two algorithms:
1. (R, stS) ←$S1(sk): on input a secret key sk, the probabilistic algorithm S1

outputs an internal state stS and a commitment R.
2. s ← S2(sk, c, stS): on input a challenge c ∈ C, a secret key sk and an

internal state st, the algorithm S2 outputs a response s.
User. The user U = (U1,U2) consists of two algorithms:

1. (c, stU) ←$ U1(pk,m,R): on input a public key pk, a message m and a
signer commitment R, the probabilistic algorithm U1 outputs a challenge
c ∈ C and an internal state st.

2. σ ← U2(pk, s, stU): on input a public key pk, a signer response s and an
internal state stU, the probabilistic algorithm U2 outputs a signature σ on
a message m.

Verification. On input a public key pk, a message m, and a signature σ, the
verification algorithm V outputs 1 to indicate the prover is valid, and 0 oth-
erwise.

We say that a three-moves blind signature scheme BS is correct if for every
1n, for every key pair (pk, sk) ← G(1n), for every message and signature pair
(m,σ) generated from the interaction in Fig. 2 between an user and a signer, we
have V(pk,m, σ) = 1. We will omit “three-moves” and will say blind signature
for brevity.

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 371

Fig. 2. Interaction in a Three-move Blind Signature Scheme.

Security Notions. We capture the security of a Blind Signature Scheme BS
by two security notions: blindness and one-more unforgeability. For blindness we
will omit its formal definition and refer to [19] since we do not discuss blindness
of the schemes and it is out of this paper’s scope.

Definition 3 (One-More-Unforgeability). Let BS = (G,U ,S,V) be a blind
signature and n be the security parameter. We define the �-one more unforgeabil-
ity game �-OMUFBS with an adversary A (in the role of the user) as follows:

Setup. Sample a pair of keys (pk, sk) ←$ G(1n). Initialize �closed := 0 and run A
on input pk.

Online Phase. A is given access to oracles sign1 and sign2, which behave as
follows.
Oracle sign1: the oracle samples a fresh session identifier sid. It sets

opensid := true and generates (Rsid, stsid) ←$ S1(sk). Then it returns the
response Rsid to A.

Oracle sign2: If �closed < �, the oracle takes as input a challenge c and a
session identifier sid. If opensid = false, it returns ⊥. Otherwise, it sets
�closed := �closed +1 and opensid := false. Then it computes the response
s ←$ S2(sk, stsid, c) and returns s to A.

Output Determination. When A outputs distinct tuples (m1, σ1), . . . ,
(mk, σk), return 1 if k ≥ �closed + 1 and V(pk, σi,mi) = 1 for all 1 ≤ i ≤ k.
Otherwise, return 0.

We define the advantage of A as

Adv�-OMUFBS

A (n) = Pr
[
�-OMUFBS

A = 1
]
,

where the probability goes over the randomness of the game as well as the ran-
domness of the adversary A. We say the scheme BS is �-one-more unforgeable if
for any adversary A that makes at most � queries to sign1, the following holds:

Adv�-OMUFBS

A (n) ≤ negl(n) .

372 K. Do et al.

3 Mix-and-Match Attacks

This section presents three attacks against the one-more-unforgeability of blind
signature schemes based on Σ-protocols. The first two attacks center on con-
current security, and the third focuses on sequential security. We also briefly
demonstrate the first two attacks in Figs. 3 and 4.

3.1 Schnorr-Type Blind Signatures

Many blind signature schemes, such as the Schnorr Blind Signature [11], the
Abe-Okamoto scheme [1] or the more recent CSI-Otter [22], are based on an
underlying sigma protocol. We will call the schemes following this paradigm
Schnorr-type blind signatures.

Definition 4. Let BS = (G,S,U ,V) be a blind signature. We say that BS is of
Schnorr-type if there exists a sigma protocol Σ = (GΣ ,PΣ ,VΣ , CΣ) and an hash
function H : {0, 1}� → CΣ such that:

1. G = GΣ, and VΣ is as in the Fiat-Shamir’s construction.
2. S = PΣ. So, in particular, we have that S1 = P1 and S2 = P2.

We also require the following property on the user U = (U1,U2):
3. there exists algorithms U1 .BlindCom, U1 .BlindChal and U2 .BlindResp such

that:

U1(pk,m,R)

1 : (R′, stU) ←$ U1 .BlindCom(R)

2 : c′ ← H(R′‖m)

3 : c ← U1 .BlindChal(c′, stU)

4 : return (c, stU)

U2(pk, s, stU)

1 : s′ ← U2 .BlindResp(s, stU)

2 : σ ← (R′, s′)

3 : return σ

We will denote such a blind signature as BSΣ.

Like sigma protocols, given a Schnorr-type blind signature BSΣ with chal-
lenge space C, we can construct (by taking parallel repetitions) another blind
signature scheme with challenge space Ck for any k ∈ N. We will denote it as
BSk

Σ .

3.2 Main Attack

In this attack, the adversary initiates k concurrent sessions and obtains k + 1
valid signatures.

Let BS = BSk
Σ = (G,S,U ,V) be a k-parallel repetition of a Schnorr-type

blind signature where k = k(n) is a positive integer depending on n. Let Σ =
(GΣ ,PΣ ,VΣ , CΣ) be the underlying sigma protocol. We have, by construction,
that the challenge space of BS is equal to Ck

Σ and the signer S is equal to Pk
Σ .

The attacker A will proceed as follows.

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 373

Fig. 3. The main attack depicted for the special case k = 4. The rows of the matrix
are the signer’s commitments R1, . . . ,R4 of the four sessions. The row at the bottom
represents the simulated instances of the Σ-protocol used to replace the last instances
in the signer’s commitment, which are used to generate a forgery with commitment
R5.

1. It opens k concurrent sessions BS(1), . . . ,BS(k) with S. Let Ri be the com-
mitment sent by S in the ith session. Since S = Pk

Σ , we can write

Ri = (Ri,1, . . . , Ri,k)

where Ri,j ←$ P1(sk) for any i, j ∈ [k].
2. From that, the attacker constructs a new fake signer commitment as

Rk+1 = (R1,k, . . . , Rk,k).

Let R′
k+1 ← U1.BlindCom(Rk+1), ck+1 ← U1.BlindChal(c′

k+1) be the blinded
commitment and challenge respectively, where c′

k+1 = H(R′
k+1‖mk+1) for a

message mk+1 ∈ {0, 1}� picked at random.
In addition, it computes k valid transcripts1 (ei, di, zi), i ∈ [k], of the under-
lying sigma protocol for random challenges di.

3. To construct a valid response for the challenge c′
k+1, A interacts with S as

follows. For each opened session BS(i), the attacker replaces Ri with R̃i =
(Ri,1, . . . , Ri,k−1, ei) and blinds it as

R′
i = (R′

i,1, . . . , R
′
i,k−1, ei), (1)

where, for j ∈ [k − 1], R′
i,j ← U1.BlindCom(Ri,j). The attacker then finds

a message mi such that the last entry of c′
i = H(R′

i‖mi) is equal to di. For
1 This can be done because of the honest verifier zero-knowledge property of the sigma

protocol.

374 K. Do et al.

random messages mi this happens after O(|CΣ |) queries of the hash function2.
In this way, it will be able to ask the signer the response for the challenge of
the forgery. A then sends to the signer the blinded challenge

ci = (ci,1, . . . , ci,k−1, ck+1,i),

where ci,j ←$ U1.BlindChal(c′
i,j) for j ∈ [k − 1], and receives the response si

from S, where si ← S2(sk, ci). The attacker now blinds the response as

s′
i = (s′

i,1, . . . , s
′
i,k−1, zi), (2)

where s′
i,j ←$ U2.BlindResp(si,j) for j ∈ [k − 1], and closes session BS(i).

4. Finally, the attacker sets the response for c′
k+1 to

s′
k+1 = (s′

1,k, . . . , s′
k,k), (3)

where s′
i,k ←$ U2.BlindResp(si,k) for i ∈ [k]. To conclude, A outputs k + 1

signatures:
(mi, (R′

i, s
′
i)), for i ∈ [k + 1].

Lemma 1. For all i = 1, . . . , k + 1 the pair (R′
i, s

′
i) is a valid signature for the

message mi.

Proof. We distinguish two cases: i ≤ k and i = k + 1.

i ≤ k. From Eq. 1 we have R′
i = (R′

i,1, . . . , R
′
i,k−1, ei) and from 2 that s′

i =
(s′

i,1, . . . , s
′
i,k−1, zi). Let c′

i = H(R′
i‖mi). For j ∈ [k − 1], R′

i,j and s′
i,j are

honestly generated following BSΣ , therefore

VΣ(pk, R′
i,j , c

′
i,j , s

′
i,j) = 1 ∀j ∈ [k − 1]

In addition, by construction, c′
i,k = di and (ei, di, zi) is a valid transcript for

Σ, hence VΣ(pk, ei, di, zi) = 1. Therefore

VBSk
Σ
(pk,mi, (R′

i, s
′
i)) = 1.

i = k + 1. Let R′
k+1 ← U1.BlindCom(Rk+1), c′

k+1 = H(R′
k+1‖mk+1) and also

let ck+1 ← U1.BlindChal(c′
k+1) as in step 2 above. By Eq. 3 we have s′

k+1 =
(s′

1,k, . . . , s′
k,k) where sj,k is the blinded response of the signer for the challenge

ck+1,j and commitment Rj,k. Therefore

VΣ(pk, R′
k+1,1, c

′
k+1,j , s

′
j,k) = 1 ∀j ∈ [k − 1].

and hence VBSk
Σ
(pk,mk+1, (R′

k+1, s
′
k+1)) = 1

We have just proved the following:

2 Define x = |CΣ |, the probability of fail after Q queries is equal to ((x − 1)/x)Q. This
probability is negligible for Q = O(x), with constant 128 log 2.

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 375

Theorem 1. Let BS = BSk
Σ be a parallel repetition of a Schnorr-type blind sig-

nature scheme supporting at most k concurrent sessions. There exists an adver-
sary A against the �-one-more unforgeability game, for � = k, such that

Adv�-OMUFBS

A (n) = 1

and asking O(k · |CΣ |) queries to the hash function, where CΣ is the challenge
space of the base sigma protocol.

As previously mentioned in the introduction, the above attack can be gener-
alized as follows. Instead of brute force one challenge, A will go for t consecutive
challenges for some 1 ≤ t ≤ k. In this way, by opening s =
k/t� concurrent
sessions and making O(|CΣ |t) queries to the hash function for each of them, it
will get s + 1 signatures.

Theorem 2. Let BS = BSk
Σ be a parallel repetition of a Schnorr-type blind

signature scheme supporting at most s =
k/t� concurrent sessions for some
1 ≤ t ≤ k. There exists an adversary A against the �-one-more unforgeability
game, for � = s, such that,

Adv�-OMUFBS

A (n) = 1

and asking O(s · |CΣ |t) queries to the hash function, where CΣ is the challenge
space of the base sigma protocol.

Fig. 4. The 2 out of k attack when k = 3. The vectors R1,R2,R3 are the signer com-
mitments. The attacker will replace them with R′

1,R
′
2,R

′
3 in order to get the forgery.

On the right side, we depict the commitments used for the 3 standard signatures, while
the left side represents the order of the challenges asked to the signer. At the top, we
have the forgery with commitment R4 that in this scenario corresponds to R3.

376 K. Do et al.

3.3 Two Out of k Attack

In this attack, the adversary employs k − 1 pairs of concurrent sessions, totaling
k sessions, to get k+1 signatures. More precisely, we will construct an adversary
A against the k-one-more unforgeability for a Schnorr-type blind signature that
supports at most two concurrent sessions at a given time. Let BS = BSk

Σ be as
in the previous section. For simplicity, we will present the adversary A in the
particular case k = 3. However, the attack generalized easily, and we will prove
its correctness for an arbitrary k. The attacker proceeds as follows.

1. It first opens two concurrent sessions BS(1),BS(2). Let R1 = (R1,1, R1,2, R1,3)
and R2 = (R2,1, R2,2, R2,3) be the commitments sent by the signer in the
first and second session respectively. Also, let R̃1 ← U1.BlindCom(R1) and
R̃2 ← U1.BlindCom(R2) be the blinded commitments.

2. A now computes two valid transcripts (e1, d1, z1) and (e2, d2, z2) of the
underlying sigma protocol for random challenges d1 and d2. Set R′

1 =
(e1, R̃1,2, R̃1,3) and R′

2 = (e2, R̃1,1, R̃2,3). Then, the attacker searches for two
messages m1,m2 such that c′

1 = H(R′
1‖m1) and c′

2 = H(R′
2‖m2) have the

first component equal to d1 and d2 respectively. As before, this can be achieved
with O(|CΣ |) queries to the hash function.

3. The attacker computes c̃1 ← U1.BlindChal(c′
1) and c̃2 ← U1.BlindChal(c′

2),
and sends to the signer, in the first session, the challenge c1 = (c̃2,2, c̃1,2, c̃1,3).
Upon receiving the response s1 from the signer, A blinds it by computing
s̃1 ← U2.BlindResp(s1) and sets

s′
1 = (z1, s̃1,2, s̃1,3).

It outputs (m1, (R′
1, s

′
1)) and closes BS(1).

4. Now A opens the third session BS(3). Note that two concurrent sessions are
open at the moment. Let R3 = (R3,1, R3,2, R3,3) be the commitment sent by
the signer and let R̃3 ← U1.BlindCom(R3) be the blinded commitment. It
creates a valid transcript of the underlying sigma protocol (e3, d3, z3) for a
random challenge d3 and sets R′

3 = (e3, R̃2,1, R̃2,2). As before, searches for a
message m3 such that c′

3 = H(R′
3‖m3) has the first component equal to d3.

5. Similarly to Step 3 above, the attacker computes c̃3 ← U1.BlindChal(c′
3) and

sends to the signer, in the second session, the challenge c2 = (c̃3,2, c̃3,3, c̃2,3).
Upon receiving the response s2 from the signer in session two, A computes
the blinded response as s̃2 ← U2.BlindResp(s2) and sets

s′
2 = (z2, s̃1,1, s̃2,3).

It outputs (m2, (R′
2, s

′
2)) and closes BS(2).

6. Now only one session, BS(3), is open. It sets R′
4 = R̃3 and c′

4 = H(R′
4‖m4). A

will ask the server in BS(3) to respond for this challenge. It hence computes
c̃4 ← U1.BlindChal(c′

4) and sends to S, in the third session, the challenge

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 377

c3 = (c̃4,1, c̃4,2, c̃4,3). Upon receiving the response s3 from the signer, A blinds
it as s̃3 and sets

s′
3 = (z3, s̃2,1, s̃2,2),

and
s′
4 = (s̃3,1, s̃3,2, s̃3,3)

It outputs (m3, (R′
3, s

′
3)), the forgery (m4, (R′

4, s
′
4)), and closes BS(3).

Lemma 2. For all i = 1, . . . , k + 1 the pair (R′
i, s

′
i) is a valid signature for the

message mi.

Proof. We will distinguish two cases like in lemma 1.

i ≤ k. We have by construction

R′
i = (ei, R̃i−1,1, . . . , R̃i−1,i−1︸ ︷︷ ︸

i − 1 terms

, R̃i,i+1, . . . , R̃i,k︸ ︷︷ ︸
k − i terms

),

c′
i = H(R′

i‖mi) = (c′
i,1, . . . , c

′
i,k),

and
s′
i = (zi, s̃i−1,1, . . . , s̃i−1,i−1︸ ︷︷ ︸

i − 1 terms

, s̃i,i+1, . . . , s̃i,k︸ ︷︷ ︸
k − i terms

).

Since c′
i,1 = di by construction, we have VΣ(pk, ei, di, zi) = 1. Moreover,

for all 1 ≤ j ≤ i − 1, we have VΣ(pk, R̃i−1,j , ci,j , s̃i−1,j) = 1. Similarly,
VΣ(pk, R̃i,j , ci,j , s̃i,j) = 1 for all i + 1 ≤ j ≤ k. We therefore have

VBSk
Σ
(pk,mi, (R′

i, s
′
i)) = 1.

i = k + 1. In this case we have

R′
k+1 = (R̃k,1, . . . , R̃k,k),

c′
k+1 = H(R′

i‖mi) = (c′
k,1, . . . , c

′
k,k)

and
s′
k+1 = (s̃k,1, . . . , s̃k,k).

From the description of the attack we have VΣ(pk, R̃k,j , ck,j , s̃k,j) = 1 for any
j ∈ [k] and hence

VBSk
Σ
(pk,mk+1, (R′

k+1, s
′
k+1)) = 1.

We have just proved the following theorem:

Theorem 3. Let BS = BSk
Σ be (a parallel repetition of) a Schnorr-type blind

signature scheme supporting at most two concurrent sessions. There exists an
adversary A against the �-one-more unforgeability game, for � = k, such that

Adv�-OMUFBS

A (n) = 1

and asking O(k · |CΣ |) queries to the hash function, where CΣ is the challenge
space of the base sigma protocol.

378 K. Do et al.

3.4 One Out of One Attack

In this attack, the adversary, by opening only one session with the signer, obtains
two signatures. This, however, comes with a trade-off of exponential computa-
tional cost. More precisely, suppose the attacker cannot open concurrent sessions,
i.e., sequential setting. We will show how the attacker can produce two valid sig-
natures after one session with the signer. Let BS = BSk

Σ be the blind signature
scheme. Suppose, for simplicity, the number of repetition k is an even number
and set t = k/2. We construct A as follows.

1. The attacker opens one session BS with the signer. Let R = (R1, . . . , Rk)
be the signer commitment and let:

R′ = (R′
1, . . . , R

′
k),

be the blinded commitment.
2. For any 1 ≤ i ≤ k, A will generate k valid transcripts (ri, di, zi) for the

underlining Σ-protocol, and define

R′
1 = (r1, . . . , rt, R

′
1, . . . , R

′
t),

and
R′

2 = (rt+1, . . . , rk, R′
t+1, . . . , R

′
k).

It will then search for two messages m1 and m2 such that:

c′
1 = H(R′

1‖m1) = (d1, . . . , dt, c
′
1,t+1, . . . , c

′
1,k)

and
c′
2 = H(R′

2‖m2) = (dt+1, . . . , dk, c′
2,t+1, . . . , c

′
2,k).

This will require O(|CΣ |t) queries to the hash funcion H.
3. The attacker now sets c̃ = (c′

1,t+1, . . . , c
′
1,k, c′

2,t+1, . . . , c
′
2,k), then blinds it

as c ← U1.BlindChal(c̃) and sends this to the signer. Upon receiving the
response s, it blinds it as s̃ ← U2.BlindResp(s) and sets

s′
1 = (z1, . . . , zt, s̃1, . . . , s̃t),

and
s′
2 = (zt+1, . . . , zk, s̃t+1, . . . , s̃k).

4. The attacker will close the session and output (m1, (R′
1, s

′
1)), and

(m2, (R′
2, s

′
2)).

Lemma 3. The pairs (R′
1, s

′
1) and (R′

2, s
′
2) are valid signatures for the messages

m1 and m2 respectively.

Proof. The proof of this theorem is analogous to that of lemma 1, and hence it
will be omitted.

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 379

Theorem 4. Let BS = BSk
Σ be a parallel repetition of a Schnorr-type blind sig-

nature scheme not supporting any concurrent sessions. There exists an adversary
A against the �-one-more unforgeability game, for � = 1, such that

Adv�-OMUFBS

A (n) = 1

and asking O(2 · |CΣ |t) queries to the hash function, where CΣ is the challenge
space of the base sigma protocol and t =
k/2�.

4 Cryptanalysis of CSI-Otter

As a concrete example, we will apply our attack to the isogeny-based blind
signature scheme CSI-Otter [22] as one of the state-of-the-art blind signatures
based on Σ-protocols.

4.1 Cryptographic Group Actions

The scheme we will describe is based on cryptographic group actions with twist
[8,15,27]. We will, therefore, provide some background.

Definition 5 (Group Action). We say that a group (G,+) acts on a set X
if there exists a function � : G × X → X satisfying the following properties.

1. Identity: for any x ∈ X, we have 0 � x = x where 0 is the identity element of
G.

2. Compatibility: for any g, h ∈ G and any x ∈ X, we have (g+h)�x = g�(h�x).
3. Transitivity: for every x1, x2 ∈ X, there exists a group element g ∈ G such

that x2 = g � x1.
4. Free: for each group element g ∈ G, g is the identity element if and only if

there exists some set element x ∈ X such that x = g � x.

We will say, for brevity, that (G,X, �) is a group action.

Let (G,X, �) be a group action and x0 ∈ X a set element. It follows from the
definition that, every x ∈ X can be written as x = g � x0 for a (unique) g ∈ G.
We define the twist of a set element x = g � x0 as x−1 = (−g) � x0.

The specific group action used in CSI-Otter is the CSIDH-512 action defined
in [8]. In particular, X is the set of supersingular elliptic curves3 over Fp with
Fp-rational endomorphism ring isomorphic4 to an order O ⊆ Q(

√−p); the group
G is the ideal class group C�(O) acting on X via isogeny; and x0 = E0 is the
curve5 defined by:

E0 : y2 = x3 + x.

We also remark that, for this specific action, the twist can be efficiently computed
for every x ∈ X [31]. For the cryptographic definitions of security, we refer to
[2].
3 Modulo isomorphism over Fp.
4 We also require that an element π ∈ O maps to the Frobenius endomorphism trough

that isomorphism.
5 This is in fact supersingular for primes p ≡ 3 (mod 4).

380 K. Do et al.

4.2 The Scheme

Let (G,X, �) be a cryptographic group action with twist, and let x0 ∈ X be a
set element. Recall that x−1 represents the twist of x ∈ X. We now describe
the blind signature scheme presented in [22]. In the underlying sigma protocol,
the prover P holds a secret key sk = (δ, aδ) ∈ {0, 1} × G and a public key
pk = (y0, y1) = (a0 � x0, a1 � x0). The interaction is described in Fig. 5. This
Σ-protocol is correct, special sound and honest verifier zero-knowledge [5]. For
the latter property, we can construct a simulator Sim that, given a challenge
c ∈ {−1, 1} and a public key (y0, y1), samples random (c0, c1) ←$ ({−1, 1})2 and
(r0, r1) ←$ G2 conditioned on c0 · c1 = c. It then sets Rb = rb � yc

b for b ∈ {0, 1},
and outputs the simulated transcript ((R0, R1), c, (r0, r1, c0, c1)).

Fig. 5. The interaction between P and V.

The blind signature scheme BSΣ = (G,U ,S,V) is defined as follows:

G(1n) : On input the security parameter 1n, it samples a bit δ ←$ {0, 1}, a pair
(a0, a1) ←$ G2 and outputs a public key pk = (y0, y1) = (a0 � x0, a1 � x0) and
secret key sk = (δ, aδ).

S1(sk) : The signer first samples rδ ←$ G and sets Rδ = rδ � x0. It then samples
(c1−δ, r1−δ) ←$ {−1, 1}×G and sets R1−δ = r1−δ � y

c1−δ

1−δ . It then outputs the
signer state stS = (rδ, c1−δ, r1−δ) and the signer commitment R = (R0, R1).

U1(pk,m,R) : The user parses (R0, R1) ← R, samples (eb, tb) ←$ {−1, 1}×G, and
computes R′

b = tb � (Rb)eb for b ∈ {0, 1}. It then computes c′ = H(R′
0‖R′

1‖m)
and outputs the user state stU = (eb, tb)b∈{0,1} and user message c = c′ ·e0 ·e1.

S2(sk, c, stS) : The signer parses (rδ, c1−δ, r1−δ) ← stS, sets cδ = c·c1−δ ∈ {−1, 1},
and updates rδ ← rδ − aδ · cδ ∈ G. It then outputs the signer response
s = (cb, rb)b∈{0,1}.

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 381

U2(pk, s, stU) : The user parses (eb, tb)b∈{0,1} ← stU, (cb, rb)b∈{0,1} ← s and sets
(c′

b, r
′
b) = (cb · eb, tb + rb · eb) for b ∈ {0, 1}. It then checks if

c′
0 · c′

1 = H(r′
0 � y

c′
0

0 ‖r′
1 � y

c′
1

1 ‖m). (4)

If it holds, it outputs a signature σ = (c′
b, r

′
b)b∈{0,1} ∈ ({−1, 1} × G)2, and

otherwise a ⊥.
V(pk,m, σ) : The verifier outputs 1 if Eq. 4 holds, and otherwise 0.

This is, in fact, a Schnorr-type blind signature. It is clear from the construction
that S1 = P1 and S2 = P2, and we have the following table for the user.

U1(pk,m,R = (R0, R1))

1 : for b ∈ {0, 1}
2 : (eb, tb) ←$ {−1, 1} × G

3 : R′
b ← tb � (Rb)

eb

4 : R′ ← (R′
0, R

′
1)

5 : c′ ← H(R′‖m)

6 : c ← c′ · e0 · e1

7 : stU ← (eb, tb)b∈{0,1}
8 : return (c, stU)

U2(pk, s = (cb, rb)b∈{0,1}, stU)

1 : for b ∈ {0, 1}
2 : (c′

b, r
′
b) ← cb · eb, tb + rb · eb

3 : s′ ← (c′
b, r

′
b)b∈{0,1}

4 : c∗ ← H(r′
0 � y

c′
0

0 ‖r′
1 � y

c′
1

1 ‖m)

5 : if c′
0 · c′

1 = c∗

6 : return ⊥
7 : σ ← s′

8 : return σ

Blue lines represent the function U1.BlindCom; the line yellow represents
U1.BlindChal and the violet U2.BlindResp. It follows, now, that the blind sig-
nature BSk

Σ is vulnerable to our attacks since the base challenge space CΣ has
cardinality 2 and k is linear in the security parameter n.

5 Discussion

This section discusses potential ways of circumventing our attack in the concur-
rent setting, their downsides, and implications on the efficiency and practicality
of the blind signature vulnerable to our attack. We also discuss implications on
sequential security, particularly a concrete treatment of those schemes in the
post-quantum setting.

5.1 Concurrent Security

For our mix-and-match attack to work, the adversary must be able to initiate
and finalize k signing sessions where the signer supports at least two concur-
rent sessions at a time. The parameter k depends on the challenge space CΣ of
the underlying Σ-protocol, e.g., in the case of CSI-Otter, the authors use the
challenge space CΣ = {−1, 1} and set the number of repetitions to k = 128.
This parameter is usually polynomial in the security parameter to ensure that

382 K. Do et al.

the soundness error for the augmented Σ-protocol is negligible while keeping it
small to ensure efficiency. For almost all practical applications, the parameter
k = 128 ensures that the soundness error of the Σ-protocol is negligible for 128-
bit security. Thus, in most cases, any blind signature scheme from Σ-protocol
with small challenge space will be forgeable after just around a hundred signed
messages.

A potential way to circumvent our attack is to increase k since it is allowed to
be polynomial in the security parameter. This way, the number of supported sig-
natures will also be polynomial in the security parameter, where the polynomial
can be freely chosen. Unfortunately, this approach will significantly decrease the
efficiency of the used scheme. Let us discuss this on the CSI-Otter example. Dou-
bling the parameter k to 256 will also double the number of signatures, allowing
for one forgery, i.e., from 128 to 256 (note that we are considering the main attack
here). At the same time, the communication complexity of the exchange and the
signature size will also be doubled. We usually set parameters for a standard
digital signature scheme so that one key pair can be used to sign around 230. To
achieve a similar property while protecting against our main attack, we must set
k = 230, leading to signatures in the gigabytes and inefficient computations.

Increasing the parameter k provides a simple fix that increases the number of
concurrent sessions the blind signature can provide. Asymptotically, the scheme
offers the required security, but it is impractical if we want a genuinely usable
scheme supporting many signatures. Note that a signer can continuously refresh
the key pair, which is not a problem for standard digital signatures but decreases
the anonymity set in the blind signature setting.

An alternative approach would be to employ boosting transformations [9,
24] known and used for the Schnorr blind signature scheme vulnerable to the
ROS attack. Those solutions employ cut-and-choose techniques that allow the
reduction to limit the number of signing queries while providing more questions
to the adversary, i.e., in the case of Schnorr signatures, the adversary is allowed
to do polynomially many queries in the security parameter while at the same
time, the reduction only queries the signing oracle at most a logarithmic number
of times. Similar techniques could be employed for the class of blind signatures
considered in this paper. Contrary to increasing the parameter k, this approach
increases the communication and signature size by a smaller factor than in the
previous solution, making it more efficient. However, it is still impractical and
not comparable to other blind signature schemes, e.g., applying this technique
to CSI-Otter would still make it less efficient than state-of-the-art schemes based
on lattices.

Interestingly, [23] proposes a definition for a new version of the ROS prob-
lem called “parallel ROS” and shows that it applies to the concurrent security of
CSI-Otter [22]. This attack is similar to ours, particularly in terms of efficiency.
However, the only solution to the problem diverges from the fundamental con-
cept of the ROS problem, which involves computing a signature through linear
combinations of queried signatures. For this reason, we prioritized substance over
form, as our generic approach enables broader application.

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 383

5.2 Sequential Security

Using the threshold variant of our attack, an adversary can compute two valid
signatures using only one signing session in O(2k/2) number of hash evaluations.
Thus, launching a practical attack in the sequential setting against CSI-Otter
with the proposed parameters k = 128 requires around 2 · 2 · 264 hash evaluation
in expectation. This amount of computation is less than the work required by
miners to add a new block to the Bitcoin blockchain. In particular, this means
that the Bitcoin mining pool can, with non-negligible probability, forge CSI-
Otter signatures even in the sequential setting in around 10 min for the parameter
proposed by the authors.

Our results show that assuming the underlying Σ-protocol has a negligible
soundness error for a parameter kΣ , e.g., kΣ = n, then, we need to set the
parameter k for the blind signature to k = 2 · kΣ , i.e., in the case of kΣ = n this
will lead to k = 2 · n. In the case of CSI-Otter, this means that to get around
the above sequential attack, the parameter k must be set to 2 · 128 = 256.

The above considerations are only for the classical setting and do not treat
the hash function in the post-quantum scenario. In this setting, we can accelerate
the adversary’s computation using Grover’s algorithm on quantum computers
[18]. In particular, the problem the adversary must solve is to find a message m
for which H(R||m) = ab for fixed commitments R and prefix a. As shown in [30]
the adversary’s work will be reduced to O(2

k
4). Therefore, the parameter k must

be increased four times for the scheme to be secure against a quantum attacker.

5.3 Revisiting CSI-Otter Parameters

We will now discuss concrete parameters for CSI-Otter [22]. The authors in
the original paper propose two variants: one with challenge space {−1, 1} with
k = 128 repetitions and an optimized variant with a challenge space of size 4 with
k = 64 repetitions. In both cases, our main attack can forge a new signature with
128 and 64 concurrent sessions, only evaluating the hash function several hundred
times. By sacrificing a bit of computation (i.e., around one hour on a commodity
M1 Pro processor with a five megahash/s rate), the same concurrent attack can
be executed with just 4 concurrent sessions in total for the basic version and 2
concurrent sessions for the optimized version. For the above considerations, we
still assume a pre-quantum attacker.

It is evident that CSI-Otter is not concurrently secure for the proposed
parameters and design. Increasing the parameter k does not solve the problem
since increasing it x times also increases the communication and signature size
x times, which might blow up the signature’s size to Gigabytes to allow only 220

signatures, making the scheme impractical. In Table 2, we provide an optimistic
estimation for the scheme’s efficiency after applying the proposed treatments.
As argued in the introduction, CSI-Otter and, more generally, blind signatures
from Σ-protocols with small challenge space should not be used concurrently
without applying transformations to boost their security. Therefore, CSI-Otter
can only be used as a blind signature scheme in the sequential setting.

384 K. Do et al.

The authors introduced the optimized variant with a challenge space of size 4
and k = 64 repetitions to reduce the signature size by two at the expense of the
size of the secret key and communication from the signer. Further improvements
with an even bigger space and smaller repetitions should be possible. Unfor-
tunately, our attacks show that this decreases the scheme’s security, allowing
the adversary to forge signatures with fewer concurrent sessions and making a
sequential attack more feasible. In particular, for the above case, an adversary
only needs to compute 2 · 4 · 232 = 235 (in expectation) to forge a fresh sig-
nature with just one signing query. For the basic version of CSI-Otter, this is
2 · 2 · 264 = 266. The provided parameters should ensure 128-bit security, and
they do if the scheme were a standard digital signature scheme. However, our
attack shows that to achieve n-bit security for the blind signature scheme, we
must set k = 2 · n. Thus, the repetitions must be more than 256 for 128-bit
security in both cases, making the optimized variant no longer beneficial. The
number of 256 repetitions must be further increased if we want to consider the
post-quantum setting where we can apply Grover’s algorithm mentioned in the
above section discussing sequential security.

Table 2. An optimistic estimation for the performance of the two versions of CSI-
Otter [22] after applying a potential boosting transformation (e.g., [24] with some
modification) resulting in approximately 128 times larger signature size and commu-
nication bandwidth. The results include our proposed countermeasures against the
post-quantum sequential attack.

Bandwidth.S Bandwidth.U |sk| |pk| |σ|
Basic version 8.19 Mb 8.19 Kb 16 B 128 B 4.1 Mb

(k = 128, |CΣ | = 2)

Optimized version 32.8 Mb 8.19 Kb 16 B 512 B 2.05 Mb

(k = 64, |CΣ | = 4)

6 Conclusion

We described three attacks against a class of three-move blind signature schemes
based on Σ-protocol with small challenge space and parallel repetition. Unlike
the ROS attack, the proposed attacks do not require any particular algebraic
structure. This property is essential, as the lack of algebraic structure provides
ambiguous arguments when assessing the concurrent security of the blind signa-
ture scheme. Moreover, because our attacks are generic and only rely on hash
evaluation, there is a need for more rigorous treatment for the security parame-
ter, especially when considered in the quantum setting.

We described an example case study of the CSI-Otter isogeny-based scheme
and show that our mix-and-match attacks apply to this scheme. However, we
highlighted that the class of aforementioned blind signature schemes is not

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 385

restricted to this scheme and applies to other existing lattice-based or RSA-
based constructions. CSI-Otter requires a more rigorous treatment of parame-
ters to achieve practical sequential security. In contrast, one must apply boost-
ing transformations for concurrent security, significantly worsening the scheme’s
performance, communication, and signature size, making it less attractive than
other post-quantum secure candidates (e.g., scheme from lattice assumptions).

We conclude by observing that, in the isogeny-based setting, Σ-protocols
with exponentially large challenge space exist, e.g., SQISign [13]. It is unclear,
however, whether it is possible to turn those Σ-protocols into a blind signature
or not. We leave this question to potential future work.

References

1. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 17

2. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part
II. LNCS, vol. 12492, pp. 411–439. Springer, Heidelberg (2020). https://doi.org/
10.1007/978-3-030-64834-3 14

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003). https://doi.org/10.1007/s00145-002-0120-1

4. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I.
LNCS, vol. 12696, pp. 33–53. Springer, Heidelberg (2021). https://doi.org/10.1007/
978-3-030-77870-5 2

5. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 464–492. Springer, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-64834-3 16

6. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–247. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-34578-5 9

7. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-36288-6 3

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-030-03332-3 15

9. Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-
cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose
and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol.
13509, pp. 3–31. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-
15982-4 1

https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1

386 K. Do et al.

10. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York
(1982)

11. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

12. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol.
11478, pp. 759–789. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
030-17659-4 26

13. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64–93. Springer, Heidel-
berg (2020). https://doi.org/10.1007/978-3-030-64837-4 3

14. Ducas, L., van Woerden, W.P.J.: On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 643–673. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2 23

15. Duman, J., Hartmann, D., Kiltz, E., Kunzweiler, S., Lehmann, J., Riepel, D.:
Generic models for group actions. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC
2023, Part I. LNCS, vol. 13940, pp. 406–435. Springer, Heidelberg (2023). https://
doi.org/10.1007/978-3-031-31368-4 15

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987).https://doi.org/10.1007/3-540-47721-7 12

17. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 63–95. Springer, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-45724-2 3

18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
ACM STOC, pp. 212–219. ACM Press (1996). https://doi.org/10.1145/237814.
237866

19. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III.
LNCS, vol. 11478, pp. 345–375. Springer, Heidelberg (2019).https://doi.org/10.
1007/978-3-030-17659-4 12

20. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revis-
ited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol.
12171, pp. 500–529. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-
030-56880-1 18

21. Kastner, J., Loss, J., Xu, J.: The Abe-Okamoto partially blind signature scheme
revisited. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part IV. LNCS, vol.
13794, pp. 279–309. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-22972-5 10

22. Katsumata, S., Lai, Y.F., LeGrow, J.T., Qin, L.: Csi-otter: isogeny-based (par-
tially) blind signatures from the class group action with a twist. In: Advances in
Cryptology. CRYPTO 2023. Part III, pp. 729–761. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-38548-3 24

23. Katsumata, S., Lai, Y.F., Reichle, M.: Breaking parallel ROS: implication for
isogeny and lattice-based blind signatures. Cryptology ePrint Archive, Paper
2023/1603 (2023). https://eprint.iacr.org/2023/1603

https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-031-31368-4_15
https://doi.org/10.1007/978-3-031-31368-4_15
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-22972-5_10
https://doi.org/10.1007/978-3-031-38548-3_24
https://eprint.iacr.org/2023/1603

M&M’S: Mix and Match Attacks on Schnorr-Type Blind Signatures 387

24. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol.
13093, pp. 468–492. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-
030-92068-5 16

25. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

26. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Efficient lattice-based blind signa-
tures via gaussian one-time signatures. In: Hanaoka, G., Shikata, J., Watanabe,
Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 498–527. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-030-97131-1 17

27. Orsini, E., Zanotto, R.: Simple two-round OT in the explicit isogeny model. Cryp-
tology ePrint Archive, Paper 2023/269 (2023). https://eprint.iacr.org/2023/269

28. Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054141

29. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

30. Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M., Mateu, V.: Quantum
search for scaled hash function preimages. Quantum Inf. Process. 20(5), 180 (2021).
https://doi.org/10.1007/s11128-021-03118-9

31. Silverman, J.H.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathemat-
ics, vol. 106. Springer, New York (1986)

https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-030-97131-1_17
https://eprint.iacr.org/2023/269
https://doi.org/10.1007/BFb0054141
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s11128-021-03118-9

	M&M'S: Mix and Match Attacks on Schnorr-Type Blind Signatures with Repetition
	1 Introduction
	1.1 Our Contribution

	2 Background
	2.1 Notation
	2.2 Sigma Protocols
	2.3 Blind Signature Schemes

	3 Mix-and-Match Attacks
	3.1 Schnorr-Type Blind Signatures
	3.2 Main Attack
	3.3 Two Out of k Attack
	3.4 One Out of One Attack

	4 Cryptanalysis of CSI-Otter
	4.1 Cryptographic Group Actions
	4.2 The Scheme

	5 Discussion
	5.1 Concurrent Security
	5.2 Sequential Security
	5.3 Revisiting CSI-Otter Parameters

	6 Conclusion
	References

