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Abstract. Zero-knowledge proofs are a cryptographic cornerstone
of privacy-preserving technologies such as “Confidential Transac-
tions” (CT), which aims at hiding monetary amounts in cryptocur-
rency transactions. Due to its asymptotically logarithmic proof size and
transparent setup, most state-of-the-art CT protocols use the Bullet-
proofs (BP) [8] zero-knowledge proof system for set membership proofs
such as range proofs. However, even taking into account recent efficiency
improvements, BP comes with a serious overhead in terms of concrete
proof size as well as verifier running time and thus puts a large burden
on practical deployments of CT and its extensions.

In this work, we introduce Bulletproofs++ (BP++), a drop-in replace-
ment for BP that improves its concrete efficiency and compactness sig-
nificantly. As for BP, the security of BP++ relies only on the hard-
ness of the discrete logarithm problem in the random oracle model, and
BP++ retains all features of Bulletproofs including transparent setup
and support for proof aggregation, multi-party proving and batch ver-
ification. Asymptotically, BP++ range proofs require only O(n/ log n)
group scalar multiplications compared to O(n) for BP and BP+.

At the heart of our construction are novel techniques for permuta-
tion and set membership, enabling highly efficient proofs of statements
encoded as arithmetic circuits. Concretely, a single BP++ range proof
to establish that a committed value is in a 64-bit range (as commonly
required by CT) is just 416 bytes over a 256-bit elliptic curve, 38% smaller
than an equivalent BP and 27% smaller than BP+. When instantiated
on the secp256k1 curve as used in Bitcoin, our benchmarks show that
proving is about 5 times faster than BP and verification is about 3 times
faster than BP+. When aggregating 32 range proofs, proving and verifi-
cation are about 9.5 times and 5.5 times faster, respectively.

1 Introduction

Cryptocurrencies like Bitcoin [40] enable decentralized, peer-to-peer payments
by maintaining a distributed public ledger called the blockchain. While this
innovation has permitted an unprecedented degree of financial autonomy on
the Internet, the fact that every transaction leaves a permanent record in the
c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14655, pp. 249–279, 2024.
https://doi.org/10.1007/978-3-031-58740-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58740-5_9&domain=pdf
http://orcid.org/0000-0001-6237-5228
https://doi.org/10.1007/978-3-031-58740-5_9


250 L. Eagen et al.

blockchain poses a substantial threat to the financial privacy of users. Even
though cryptocurrency transactions are not typically associated with real-world
identities, a surprisingly large amount of information can be extracted from the
information in the blockchain [24,38,48].

Among the most glaring pieces of data that an observer can extract are
the amounts of funds that transactions move from sender to recipient. These
monetary amounts are stored as plain integers in many popular cryptocurrencies,
including Bitcoin, which makes it easy for blockchain nodes to verify that a
transaction is balanced, i.e., that the sum of all its input amounts equals the
sum of all its output amounts (except for a small fee given to the miners).

Confidential Transactions. A common countermeasure to this leak of informa-
tion, e.g., as suggested first in the “Confidential Transactions” proposal [26,
37] (CT), is to hide the monetary amounts in homomorphic commitments such
as Pedersen commitments. The additive homomorphism ensures that blockchain
nodes can verify the amounts in a confidential transaction without learning the
plain amounts, by performing the necessary additions for checking the balance
equation on the homomorphic commitments instead of the plain amounts. How-
ever, this approach is only sound if the amounts do not overflow during the
homomorphic addition, because this would allow an attacker to violate balance
and thus create money out of thin air. To exclude overflow, transactions are
required to carry a non-interactive zero-knowledge (NIZK) range proof that
demonstrates that committed amounts are in a range [0, 2b) of non-negative
integers much smaller than the message space of the commitment space.

Bulletproofs. Motivated by this application, the seminal Bulletproofs (BP) by
Bünz et al. [8] was the first to achieve range proofs with an asymptotic size
logarithmic in the number of bits in the range as well as concrete sizes less than
1 kB. Moreover, BP supports aggregate proving, i.e., a single range proof can
cover multiple commitments at once, and this proof is significantly more compact
than proving each commitment separately. This efficiency makes it feasible to use
BP in cryptocurrencies, and BP range proofs have been successfully deployed in
Grin [27] and Monero [39] in conjunction with other privacy-preserving features.

However, even though Monero has subsequently upgraded [47] to Chung et
al. [15]’s recent improvement Bulletproofs+ (BP+), which reduces the size of a
single 64-bit range proof to 576 bytes, range proofs still account for 29% to 42% of
the size of a typical Monero transaction.1 These concrete storage costs as well as
the concrete verification efficiency still leave much to be desired, considering that
all nodes in a cryptocurrency are required to download and verify the entirety
of all range proofs created within the system.

1 A transaction with one input and two outputs has a size of about 1530 bytes, and
a transaction with two inputs and two outputs has a size of about 2220 bytes after
the v15 hardfork [47]. In either case, the aggregated range proof covering the two
output amounts has a size of 640 bytes on a 256-bit elliptic curve (see also Table 1).
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Multi-asset Confidential Transactions (MACT). While the initial CT pro-
posal [37] supports only a single asset (e.g., only Bitcoin), the protocol by Poel-
stra et al. [43] (as deployed for instance in the Liquid sidechain [41]) extends the
idea to multi-asset confidential transactions (MACT), i.e., a single transaction
can transfer multiple assets simultaneously, and no observer can learn the trans-
acted amounts or the involved assets. Moreover, the range proof construction
used in this protocol supports multi-party proving for transactions created by
multiple senders. This is a prerequisite to using coin mixing protocols [36] on
top of MACT, which further enhance privacy.

However, it is thus far unclear how to fully leverage the potential of BP in
MACT protocols. While it is possible to implement the range proofs in MACT
using BP, the protocol by Poelstra et al. [43] requires additional zero-knowledge
surjection proofs to show that the assets on the output side of the transaction
are a permutation of the assets on the input side of the transactions. These addi-
tional proofs are large and since they are constructed using techniques different
from BP, it is not possible to aggregate them together with BP range proofs.
The approach taken by the Cloak [50] MACT protocol overcomes this problem
by using BP to encode a permutation argument as an arithmetic circuit. This
avoids surjection proofs, but the way the circuit is constructed makes it incom-
patible with known multi-party proving techniques for BP. In summary, there is
currently no solution to MACT that is practical and compatible with BP.

1.1 Contributions

The main contribution of this work is Bulletproofs++ (BP++), a zero-knowledge
argument of knowledge for arithmetic circuits in the discrete logarithm setting.

Reciprocal Argument. At the core of BP++ is the reciprocal argument, a novel
interactive argument protocol that generalizes permutation arguments and set
membership arguments. This approach builds on the work by Bayer, Groth [3],
who encode a multiset as the roots of a polynomial, and whose basic technique
has been extended to show richer permutation arguments in plookup [21] and
plays a critical role in protocols based on Plonk [22]. These protocols use a “grand
product”, i.e., the product of numerous committed values, to show that a par-
ticular permutation, which encodes the structure of an arithmetic circuit, was
applied correctly. The reciprocal argument of BP++ is essentially the logarith-
mic derivative of the polynomials used by Bayer-Groth permutation arguments.
The logarithmic derivative transforms a product of linear factors into a sum,
thereby linearizing the representation of the multiset.

Since the initial publication of a preprint of our work, the reciprocal argument
has already been used in several other works: Haböck [31] modifies the “grand
product” of Hyperplonk [13] to use a variant of the reciprocal argument, which
he rederives via the logarithmic derivative. Eagen, Fiore, Gabizon [18] develop
a more asymptotically and concretely performant lookup argument, improving
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Table 1. Range proof sizes compared to previous work. The range column of the
table (m × n) indicates the number of aggregated proofs (m) and bits of range proven
(n) by each proof. We express the resulting proof size in terms of the number of
group elements g and scalars s. Values denoted by dash (—) are not provided in the
Flashproofs paper [51].

Range BP++ BP+ BP SwiftRange Flashproofs

1 × 64 10g + 3s 15g + 3s 16g + 5s 16g + 9s 17g + 10s

2 × 64 10g + 5s 17g + 3s 18g + 5s 20g + 9s 27g + 17s

8 × 64 14g + 5s 21g + 3s 22g + 5s 28g + 9s 65g + 28s

16 × 64 15g + 4s 23g + 3s 24g + 5s 32g + 9s 103g + 48s

64 × 64 19g + 4s 27g + 3s 28g + 5s 40g + 9s —

upon the sequence of works beginning with Caulk [45,54].2 As evident from these
works, the reciprocal argument is clearly of independent interest.

Compactness and Efficiency. BP++’s novel techniques improve the compactness
and efficiency of BP(+) significantly. Table 1 compares the size of BP++ range
proofs with SwiftRange [52], Flashproofs [51], BP [8] and BP+ [15] range proofs.
As demonstrated by the table, BP++ has a clear advantage in terms of proof
size compared to the alternatives.

The time needed for proving and verification is dominated in practice by
multiplications of group elements with scalars. In BP and BP+ range proofs,
the count of these multiplications scales linearly with n. However, BP++ offers
an asymptotic improvement, reducing the count to O(n/ log n). The benchmarks
in Sect. 7 demonstrate that BP++’s improvements do in fact translate to actual
implementations. A 64-bit range proof takes roughly 4ms for proving and 0.9
ms for verifying, making it 5× quicker than BP in proving and 3× quicker in
verification.

Modularity Without Sacrificing Performance. Since BP++ is capable of prov-
ing arbitrary statements encoded in arithmetic circuits, it is possible to con-
struct range proofs and MACT simply by an arithmetic circuit that encodes
the relation. As opposed to BP(+), we adopted this methodology because our
techniques allow for the creation of a range proof that is nearly as efficient as
a direct construction of such a proof. Our approach simplifies the security anal-
ysis of range proofs and MACT, as they inherit the security properties of the
arithmetic circuit protocol, providing the circuit accurately encodes the relation.

2 After a per-table setup procedure, these arguments allow the prover to construct
an argument for correctness of table look ups in time independent of the table size.
This case is particularly interesting, as it is not currently known how to construct
an analogous product check that depends only on the number of non-identity values
being multiplied.



Bulletproofs++: Next Generation Confidential Transactions 253

This demonstrates the potential of reusing the BP++ arithmetic circuit protocol
with the reciprocal argument in other applications.

MACT. On the MACT side, we introduce a BP++ MACT protocol (again by
specifying an arithmetic circuit) that relies on the same asset representation as
Cloak but uses an instance of the reciprocal argument, substantially simplify-
ing the permutation argument. The marginal cost of a BP++ MACT over an
aggregated range proof is negligible in prover and verifier time, and proof size.

Compatibility with BP. Since BP++ maintains the same interface and security
assumptions established by BP(+), BP++ is a drop-in replacement for existing
uses of BP(+). For example, BP range proofs in existing protocols like Grin [27],
Monero [39], and Liquid [41] can be replaced without any change in security
assumptions and with only minimal modification to existing protocols. This is
also true for statements encoded as general arithmetic circuits. Moreover, the
MACT protocol uses the same asset representation as Cloak, and so can be
directly substituted for Cloak for smaller proof sizes and faster prover and veri-
fier. These replacements retain all benefits of BP:

Aggregate proving. A prover who would like to prove multiple statements
simultaneously can create a single aggregated proof, which is more compact
than simply giving multiple independent proofs. For example, in the com-
mon case that a cryptocurrency transaction creates m ≥ 1 commitments, an
aggregate range proof can prove that m committed values are in range in just
O(log n + log m) bits, instead of m · O(log n) bits in the case of m separate
range proofs.

Multi-party aggregate proving. For the case that multiple provers want to
create a single aggregated proof, BP++ offers a natural MPC protocol. Multi-
party proving yields large space savings when CT is combined with coin
mixing protocols [46].

Batch verification. Multiple (possibly aggregated) proofs can be verified in a
batch computation, improving efficiency further.

Conservative cryptographic assumptions. BP++ is provably secure assum-
ing only the hardness of the discrete logarithm problem and can be made
non-interactive in the random oracle model, thus ensuring compatibility with
assumptions widely accepted by engineers and users in the cryptocurrency
ecosystem. Concretely, BP++ neither requires pairings nor cycles of curves
and can be instantiated on the secp256k1 elliptic curve which used in Bitcoin,
for which a wide range of implementations exist.

Transparent setup. Since the public setup parameters only consist of random
group elements, the setup is trustless assuming a common random string or
the random oracle model.

1.2 Related Work

Range Proofs. An alternative to digit decomposition range proofs are those based
on Lagrange’s four square theorem. This theorem states that any positive integer
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can be written as a sum of four squares, as originally proposed by Lipmaa [35]. In
practice, this is often transformed to an instance of the three square theorem as
was originally observed by Groth [28]. To show that a value v < B one can find a
four, or three, square decomposition of the value B − v, which is positive only if
the initial condition is met. These protocols require integer commitments, which
require either RSA groups, and hence a trusted setup, or ideal class groups.

More recently, Couteau et al. [16] developed a bounded integer commitment
protocol that requires only the discrete logarithm assumption in a group of
known order. This allows them to construct three-square range proofs using
elliptic curves, which are highly performant and smaller than BP and BP+
range proofs. However, BP++ range proofs remain smaller as compared to their
approach. Moreover, since their bounded integer commitment scheme requires
the committed values to remain in a bounded interval, their approach requires
a curve with order somewhat larger than 256 bits at the 128-bit security level.
This lower bound on the group size or, equivalently, on the security of their
approach is inherent and applies even if one ignores the non-tightness of the
security analysis when setting parameters, as often done in practice. This limits
their applicability to existing blockchains.

MACT. As explained above, the original Confidential Assets protocol [43] uses
surjection proofs to hide the asset type of each output from a set of possible
assets. In general, the size of this set is equal to the number m of inputs to the
transaction. Thus, for n outputs, the prover will do O(n · m) work as compared
to only O(n + m) for BP++. Since it is not known how to aggregate surjection
proofs, the proof size is in O(n · m).

Cloak [50] uses a more complex construction to encode a permutation over the
assets into a BP circuit. This approach is a large constant factor more expensive
than BP++ in terms of prover work.

Generalizations of BP. There are a number of other works building on BP,
including BP+ [15] which uses a weighted inner product argument to reduce
proving time and uses several other improvements to reduce proof size, and
Flashproofs [51] which combine the BP inner product argument with Groth
polynomial commitments [29] to reduce verifier complexity and attempt to min-
imize Ethereum gas costs. There has also been work to unify BP with the large,
existing body of work on Sigma protocols [1], and to further generalize this to
other related contexts like groups of unknown order [10] to support homomor-
phic commitments of arbitrary order. BP have also been generalized to inner
product arguments in other contexts, including by Lee [33], who propose a gen-
eral purpose SNARK protocol over a pairing friendly curve that uses an inner
product to avoid trusted setup requirements. BP are also core to the structure
of Halo [6] and Halo2 [49], which are now implemented in Zcash [7] and have
inspired the development of accumulation schemes [9]. These allow a prover to
efficiently aggregate multiple proofs in such a way that verification time depends
only on the time to verify a single proof.
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2 Preliminaries

Notation. Hereafter, we denote the set of polynomially-bounded functions in the
security parameter λ by poly = {f : ∃a ∈ N, f(λ) ∈ O(λa)}, the set of negligible
functions in the security parameter λ by negl = {f : f(λ)−1 �∈ poly}. A function
f is overwhelming if 1 − f is negligible.

A probabilistic interactive Turing machine A is probabilistic polynomial-
time (PPT) if its runtime is in poly; it is probabilistic expected polynomial-time
(expected-PPT) if its expected runtime is in poly; it is deterministic polynomial-
time (DPT) if it is PPT and does not read from its randomness tape.

We denote by G a cyclic group of prime order p written additively, which is
in practice typically a subgroup of an elliptic curve. We write group elements in
G with capital letters and scalars in F := Fp with lower case letters. We write
F[X] for the ring of polynomials over F in indeterminate X; when we treat it a
vector space, then as vector space over the field F.

Vectors. Vectors are written with bold letters, and matrices with capital letters.
These can be distinguished from G elements from context. We write the diagonal
matrix of powers of μ starting with μ0 as diag(μ). Vectors are zero indexed and
implicitly padded with zeros on the right as necessary for various operations to
be well-defined, i.e. addition and inner products. We denote the vector of all zeros
by 0 and the vector of all ones by 1. We use |v| to denote the length of v. We
use “slice” notation vi:j to denote the subvector of v consisting of components
i to j − 1; we may omit i if i = 0, and j if j = |v| − 1. To access a component
of a slice, we write (vi:)k = vi+k.

We write the inner product of two vectors using angle brackets and an
optional subscript to denote weighting by powers of the subscript. If the sub-
script is not present, it is implicitly 1. Inner products are defined for any vectors
of quantities that can be multiplied, i.e. scalars and scalars or scalars and group
elements. The norm of a vector refers to its self inner product and uses the same
subscripting convention for weights. For example, the weighted inner product of
x and G and the weighted norm of x are written

〈x,G〉μ =
∑

i=0
xiGiμ

i+1 and |x|2μ = 〈x,x〉μ .

We write concatenation of vectors using ||, the component-wise product of
vectors (Hadamard product) using ◦ and tensor product of vectors using ⊗. An
iterated tensor product is evaluated from left to right and obeys the convention

⊗n

i=0
(1, xi) =

(
1, x0, x1, x0x1, x2, . . . ,

∏n

i=0
xi

)
.

This is convenient for describing, e.g., the vector of challenges used by the verifier
for the norm linear argument.

We denote the vector of powers from μ0 to μn−1 by en(μ). It obeys the tensor
product equation

eab(μ) = ea(μ) ⊗ eb(μa) = (1, μ, . . . , μab−1).
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We decompose vectors into subvectors of even (indices 0, 2, . . .) and odd
(indices 1, 3, . . .) components, instead of left and right halves as in BP, written
as written as [a]0 and [a]1 respectively. This transformation simplifies certain
parts of the protocol, and may help with locality in implementations. BP and
BP+ can easily be modified to use even and odd halves, as can BP++ to use
left and right halves.

Discrete Logarithm Relation Problem. BP++ is provably secure assuming the
expected-PPT hardness of the discrete logarithm relation (DLR) problem, which
is well-known to be tightly equivalent to the standard discrete logarithm prob-
lem [32, Lemma 3].

Definition 1 (Discrete Logarithm Relation (DLR) Problem). The dis-
crete logarithm relation (DLR) problem in G is hard if for all n ≥ 1 and for all
expected-PPT adversaries A,

Pr[〈a,G〉 = 0G ∧ a �= 0 | G ← Setup(1λ);G ←$G
n;a ← A(G)] ≤ negl(λ).

2.1 Zero-Knowledge Arguments of Knowledge

A zero-knowledge argument of knowledge consists of a non-interactive PPT
Turing machine K which outputs a common random string σ, and two inter-
active PPT Turing machines P (prover) and V (verifier). Critically, the ran-
domness used by K is public and σ can be reproduced transparently (no
trusted setup). The prover and verifier interacting will produce a transcript
π and output a bit b indicating whether the verifier accepts, which we write
π ← 〈P(σ, u, w),V(σ, u)〉 = b. Here, for any σ, a value w is a witness for a
statement u if it satisfies the polynomial time relation (σ, u, w) ∈ R.

A zero-knowledge argument of knowledge must satisfy completeness, sound-
ness, and zero-knowledge.

Definition 2 (Completeness). The protocol (K,P,V) satisfies perfect com-
pleteness if for all PPT A,

Pr
[ 〈P(σ, u, w),V(σ, u)〉 = 1

∨ (σ, u, w) �∈ R
∣∣∣∣

σ ← K(1λ);
(u,w) ← A(σ)

]
= 1.

The soundness notion we consider in this work is computational witness-
extended emulation [30,34].

Definition 3 (Computational Witness-Extended Emulation). The pro-
tocol (K,P,V) has witness-extended emulation (WEE) if for all DPT provers
P∗, there exists an expected-PPT emulator EO with access to rewinding oracle
O = 〈P∗(σ, u, s),V(σ, u)〉 such that for all pairs of adversaries (A1,A2),

∣∣∣∣∣∣∣∣

Pr
[A2(σ, π) = 1 | σ ← K(1λ); (u, s) ← A1(σ);π ← O

]

−Pr

⎡

⎣
(π is accepting ⇒

(σ, u, w) ∈ R)
∧ A2(σ, π) = 1

∣∣∣∣∣∣

σ ← K(1λ);
(u, s) ← A1(σ);

(π,w) ← EO(σ, u)

⎤

⎦

∣∣∣∣∣∣∣∣
≤ negl(λ).
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The protocol has computational witness-extended emulation (CWEE) when
adversaries A1 and A2 are restricted to non-uniform polynomial time.

In the zero-knowledge notion used in this work, the simulator has access to ran-
domness used by the verifier; this is commonly called “special” zero-knowledge
in the literature and requires the protocol to be public coin.

Definition 4 (Public Coin). The protocol (K,P,V) is public coin if the i-th
message sent by V(σ, u; ρ) is the i-th component of its randomness argument ρ.

Definition 5 (Perfect Special Honest Verifier Zero-Knowledge). The
protocol (K,P,V) has perfect Special Honest Verifier Zero-Knowledge (SHVZK)
if there exists a PPT simulator S such that for all pairs of adversaries (A1,A2),

Pr
[

(σ, u, w) ∈ R
∧ A2(σ, π) = 1

∣∣∣∣
σ ← K(1λ); (u,w, ρ) ← A1(σ);

π ← 〈P(σ, u, w),V(σ, u; ρ)〉
]

= Pr
[

(σ, u, w) ∈ R
∧ A2(σ, π) = 1

∣∣∣∣
σ ← K(1λ); (u,w, ρ) ← A1(σ);

π ← S(u, ρ)

]
.

General Forking Lemma. To show CWEE, we will use the generalized forking
lemma by Bootle et al. [5]. It allows handling extractors for multi-round zero-
knowledge argument of knowledge generically.

Trustless Common Setup. As a convention, all zero-knowledge arguments in this
work use the same setup algorithm K, which outputs σ = (G,H,G), where G
and the components of the two vectors H,G (of sufficient size, which will be
clear from the context) are random generators in G. Since K is transparent, it
is possible to use make the setup trustless in the random oracle model.

Non-interactive Proofs from Fiat-Shamir. All zero-knowledge arguments pre-
sented in this paper are public coin, interactive protocols between a prover
and honest verifier. This means that they can be made non-interactive via the
Fiat-Shamir transform [4], and honest-verifier zero-knowledge of the interactive
protocols immediately implies that the Fiat-Shamir transformed variants are
non-interactive zero-knowledge in the random oracle model. Recent work has
shown that also soundness is retained, even for multi-round protocols [2,25,53].
Concretely, we establish that our protocols achieve special soundness, which
implies that their Fiat-Shamir version achieves knowledge soundness as shown
by Attema, Fehr, Klooß [2, Theorem 4] and further elaborated on by Ganesh et
al. [23, Section 2.8].

Commitments as Inputs. Our zero-knowledge arguments accept witness inputs
in Pedersen vector commitments. For convenience later, given generators σ =
(G,H, . . . ) from the zero-knowledge setup, we define a commitment to message v
with randomness s to be Com(v; s) = v0G+sH0+〈v1:,H8:〉 . Generators H1:8 =
(H1, . . . , H7) are intentionally not used for commitments; this will simplify the
notation in later sections.
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Pedersen commitments are homomorphic, perfectly hiding, and computation-
ally binding up to the hardness of the discrete logarithm relation problem. We
omit a formal treatment of these properties because the security analysis of our
protocols uses the underlying group directly and does not invoke these abstract
properties.

3 Technical Overview

BP++ consists of four primary improvements over earlier, transparent discrete
logarithm-based range proof protocols. First, we substitute the BP+ inner prod-
uct argument by a norm argument, which reduces verifier time by approximately
half in many common cases. Second, we introduce a novel set membership and
permutation argumentcalled the reciprocal argument, which has already found
significant applications beyond BP++. Third, we modify the BP arithmetic cir-
cuit protocol to accomplish “blinding” in one round of communication of a single
group element, which can be easily adapted to other similarly constructed pro-
tocols. These modified circuits are extended to support first order use of the
reciprocal argument, similarly to integration of plookup [21] into Halo2 [49].
Finally, we use these techniques to construct the shortest, and most verifier
performant transparent range proof and MACT protocols.

3.1 Recap: Bulletproofs and Bulletproofs+

BP, at its core, uses a recursive argument to show the inner product relation

Rip =
{(

G,H ∈ G
n, G ∈ G;

C ∈ G;x,y ∈ Z
n
p

)
: C = 〈x,y〉 G + 〈x,G〉 + 〈y,H〉

}
. (1)

The recursive structure of the argument is itself derived from the recursive struc-
ture in Bootle et al. [5]. In each round, a commitment to a scalar v and vectors x
and y of length n is reduced to a commitment to vectors x′ and y′ of length n/2.
If this commitment satisfies the relation, then the original commitment satisfies
the relation with overwhelming probability.

In our notation, given a commitment C, the prover sends the verifier commit-
ments (L,R), and the verifier chooses a challenge γ. The reduced commitment
is defined as

C ′ = C + γ−2L + γ2R = v′G + 〈x′,G′〉 + 〈y′,H ′〉 . (2)

Each round of the protocol forms essentially a vector valued polynomial commit-
ment. The key to ensuring that the reduced vectors are of length n/2 comes from
the folding relation. The reduced vectors are defined, in terms of the challenge

x′ = γ[x]0 + γ−1[x]1 y′ = γ−1[y]0 + γ[y]1. (3)

Computing the inner product of these vectors as polynomials in γ, we find that
the original inner product 〈x,y〉 from the inner product relation occurs as the
γ0 term

〈x′,y′〉 = 〈x,y〉 + γ2 〈[x]0, [y]1〉 + γ−2 〈[x]1, [y]0〉 . (4)
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BP applies this same relation to the inner products between the basis points G
and H and the witness vectors. That is, the reduced basis points are defined in
terms of γ to be

G′ = γ−1[G]0 + γ[G]1 H ′ = γ[H]0 + γ−1[H]1. (5)

This means when the inner products 〈x′,G′〉 and 〈y′,H ′〉 are evaluated, the
original inner products will appear on the γ0 term. The γ−2 coefficients from
all three reduced inner products are then collected into L and likewise the γ2

coefficients into R. This reduction is applied until the reduced vectors are of
length 2, at which point the reduced vectors are sent to the verifier.

BP+ uses a very similar recursive structure that also incorporates weights
to show a weighted inner product relation, with the inner product replaced by
a weighted inner product.

3.2 Reciprocal Argument

The primary technique that makes BP++ range proofs and MACT possible is a
simple interactive protocol called the reciprocal argument. It operates on collec-
tions that are finite sets A of pairs (m, s) consisting of symbols s ∈ F with associ-
ated multiplicities m ∈ F. In more details, the reciprocal argument lets a prover
convince a verifier that the total multiplicity m̂s =

∑
(m′,s′)∈A : s′=s m′ of each

symbol s ∈ F vanishes (i.e., equals zero). In that case, we also say that A itself
vanishes. (For example, A = {(−3, 42), (5, 17), (7, 42), (−4, 42), (−5, 17), (0, 1)}
vanishes.) In the protocols we will construct, some or all of the m and s may be
private to the prover and thus appear only in committed form.

Vanishing is powerful enough to express many relations commonly used
to construct zero-knowledge arguments: For example, assuming that no wrap-
around occurs when summing up multiplicities, which is guaranteed if |A| � |F|,
some (committed) sequence U is a permutation of another (committed) sequence
T if and only if A = {(−1, u) : u ∈ U} ∪ {(1, t) : t ∈ T} vanishes. As a second
example, consider a “lookup argument”: the components of U form a subset of a
some public set T (called “table”) if, for each t ∈ T , there exists a multiplicity mt

(only known to the prover) such that A = {(−1, u) : u ∈ U} ∪ {(mt, t) : t ∈ T}
vanishes.

The underlying idea of the protocol is that we can associate to A a rational
function fA(X) defined as a sum of reciprocals such that for all (m, s) ∈ A,
fA(X) has a pole −s of multiplicity m:

fA(X) =
∑

(m,s)∈A

m

X + s
. (6)

Function fA vanishes (i.e., is zero everywhere) if and only if the total multiplicity
m̂s for each symbol s vanishes. To show that this function vanishes, it suffices to
evaluate it at a uniformly random input X. In the reciprocal argument protocol,
this input is a challenge chosen by verifier after the prover has committed to A.
We note that the function fA has the structure of a logarithmic derivative, see
the full version [20] for more background.
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Application to Range Proofs. Consider the problem of constructing a range
proof. We want to prove that some (committed) integer value v is in a range
[0, bk) A natural solution is to consider the k base-b digits di of v and use a
lookup argument (as described above) that shows that all digits di occur in the
“table” T = {0, . . . , b − 1}. In that case, the rational function fA(X) is

fA(X) =
∑

i

−1
X + di

+
∑b−1

j=0

mj

X + j
. (7)

In contrast, both BP and BP+ construct a range proof by proving the validity
of each digit individually, then showing that the linear combination of these
digits equals the committed value. Binary digits (i.e., b = 2) are used since their
validity can be checked with just one multiplication per digit: d ∈ {0, 1} if and
only if d(d − 1) = 0.

However, Camenisch, Chaabouni, shelat [11] suggest to select b such that
bb ≈ B − A. This base uses only O(n/ log n) digits, where n = �log2(B − A)�,
which is optimal in the sense that the witness length is a function of the base b
and the number n of digits and is minimized when they are equal. Unfortunately,
the natural generalization of the binary digit check di(di −1) to bases b > 2 does
not result in a more efficient proof in BP. In the binary case, each digit requires
a single multiplication, but the number of multiplications increases linearly in
the size of the base.

In BP++, we sidestep this performance trade-off via the reciprocal argument,
which we use as an efficient lookup argument. Rather than checking each digit
is the root of some polynomial separately as in BP, we can use Eq. (7) to check
membership of each digit in the set of valid digits. This enables us to construct
range proofs with “optimal” bases b > 2 while retaining efficiency.

Application to MACT. For MACT, we face a related problem when prov-
ing multi-asset conservation of money. In this case, we have two collections of
amounts and types of tokens I and O corresponding to the inputs and out-
puts of a transaction. We want to show that the total amount of each token
in I is equal to the total amount of each token in O and that each amount
in I and O is a positive integer. The latter claim can be shown using a range
proof and the former using a new invocation of the reciprocal argument. Let
A = {(v, t) : (v, t) ∈ I} ∪ {(−v, t) : (v, t) ∈ O}. If A vanishes then the sum of all
the amounts in I equals the sum of all the amounts in O for each token t. If the
amounts are all positive integers much smaller than p, it follows that no tokens
were created or destroyed in the transaction. In this case fA(X) is

fA(X) =
∑

(v,t)∈I

v

X + t
−

∑
(v,t)∈O

v

X + t
. (8)

3.3 Norm Linear Argument

As described in Sect. 3.1, BP and BP+ show a (weighted) inner product relation
involving two vectors x and y by letting the prover send commitments to both
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x and y. This introduces undesirable redundancy in some cases. Consider the
example of a binary range proof: A prover wants to show di(di − 1) = 0 for each
digit di in the vector d that encodes the binary representation of some value v.
In a BP range proof, this requires committing to both x = d and y = −(1− d),
even though y is entirely determined by x up to the addition of a constant.

To avoid this redundancy in BP++, we can rewrite di(di − 1) = 0 into
the equivalent constraint (2di − 1)2 = 1. This allows us to substitute the inner
product relation by a BP++ norm relation, which is a relation involving the inner
product of a single vector with itself, and thus requires only a commitment to
that single vector. As a result, we not only save data to be committed and hence
communication, but also roughly half the prover and verifier cost.

However, while this motivating example provides an intuition for why a norm
relation can be preferable over an inner product relation, it turns out that in
practice, it is almost always more efficient to use a BP++ reciprocal range proof
instead of a BP++ binary range proof. As a consequence, we defer the details of
BP++ binary range proofs to the full version [20], and now turn our attention
towards arithmetic circuits instead.

In the case of arithmetic circuits, similarly as for binary range proofs, using a
norm argument allows reducing the verifier time by half, provided we can commit
to only a single vector per commitment instead of two. Unfortunately, the inner
product relation of BP and the weighted inner product relation of BP+ cannot
work for this purpose, since even if the initial x = y the reduction is asymmetric
so x′ �= y′. To show a norm relation, we need a new reduction technique that
is symmetric in the way it reduces x and y. Unlike BP, the reduced vectors are
now defined to be

x′ = [x]0 + γ[x]1 y′ = [y]0 + γ[y]1. (9)

The reduction can be derived by computing the coefficients of the three poly-
nomials 1, γ, γ2 − 1 ∈ F[γ] where in BP we computed the coefficients of the
polynomials γ−2, 1, γ2 ∈ F[γ]. Since these polynomials are linearly independent
in F[γ], the reduction is sound. Setting x = y = n we can show a norm relation,
and with some modifications can show a weighted norm relation.

A norm by itself is not sufficient; we want to be able to show that the witness
satisfies linear constraints without introducing extraneous terms. We can apply
this reduction relation to an inner product of an additional vector l and a public
constraint vector c. This will be especially relevant when handling the blinding
procedure for arithmetic circuits and also helps in the MPC proving setting.
Thus, BP++ will show the weighted norm linear relation for a witness (v, l,n)
and public (μ, c) satisfy v = 〈c, l〉 + |n|2μ.

3.4 Arithmetic Circuits

In BP and BP+, arithmetic circuits are given as a separate protocol
from range proofs. The circuit is encoded as four matrices and a vector
(WL,WR,WO,WV , c). A witness (wL,wR,wO,v) satisfies the circuit if
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WLwL + WRwR + WOwO = WV v + c wL ◦ wR = wO. (10)

While one could use an arithmetic circuit to prove a range proof in BP, it
would be less efficient than the specialized range proof protocol. In the BP
protocol for circuits, the prover constructs a vector valued polynomial com-
mitment to some (v(X),x(X),y(X)) and wants to show that when we apply
the inner product equation to this witness, the X2 term of the polynomial
t(X) = v(X)−〈x(X),y(X)〉 vanishes. To show this, the prover commits to all the
other “error” terms of t(X) in Pedersen scalar commitments in T1, T3, T4, T5, T6.

BP++ arithmetic circuits avoids these extra commitments, as well as the
two final commitments necessary to blind in both BP and BP+. Rather than
committing to these other terms in scalar commitments, we commit to them as a
vector in the final blinding commitment. This comes at no cost, and conveniently
generalizes to larger polynomials without increasing proof size. The norm linear
argument naturally allows us to evaluate the committed t(X) at a random X by
placing the coefficients in l and changing the c vector to be powers of X. We are
then able to use the other commitments in the proof to blind these error terms
at no additional cost in terms of proof size. This procedure is responsible for the
much of the reduction in proof size.

BP++ also modifies the circuit protocol so that instead of the constraint
wL ◦ wR = wO, the arithmetic circuit checks that wL ◦ wR equals a linear
combination of the entire witness.

This makes it efficient to formulate reciprocal constraints, where the denom-
inators occur in wL, the reciprocals in wR, and the numerators can be any
linear combination on the right hand side. This new arithmetic circuit protocol
allows encoding reciprocal range proofs and MACT more efficiently than existing
protocols without the use of specialized protocols.

4 Norm Linear Argument

Unlike BP and BP+ which show inner product relations, BP++ is an argument
of knowledge for the weighted norm linear relation

Rnl =

⎧
⎨

⎩

⎛

⎝
H ∈ G

l,G ∈ G
n, G ∈ G;

C ∈ G, c ∈ F
l, μ ∈ F;

l ∈ F
l,n ∈ F

n

⎞

⎠ : v = 〈c, l〉 + |n|2μ
C = vG + 〈l,H〉 + 〈n,G〉

⎫
⎬

⎭ . (11)

4.1 Reducing the Vectors

We note that the norm linear relation Rnl is equivalent in expressiveness to
the weighted inner product relation Rip , in the sense that both are capable
of proving arithmetic circuit satisfiability and more narrowly in the sense that
one could, in principle, write the norm linear relation as an inner product and
thus construct a norm linear argument by reducing directly to an inner product
argument. However, the latter approach requires committing to the vector n
twice, in as both x and y from the inner product relation (see Sect. 3.1). While
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it is possible to simplify the initial commitment by computing 〈n,G + H〉 in the
inner product commitment, the vectors x and y will be reduced asymmetrically
following such an approach. This means that even if x = y, it will not be the
case that x′ = y′.

This makes clear what we want from a norm linear argument: given a commit-
ment C to vectors as defined in the relation, we want to reduce this commitment
to a new commitment to vectors l′ and n′ of half the length of the original vec-
tors. To this end, we need a folding relation for a pair of vectors that treats
both vectors symmetrically. That is, instead of scaling the halves of x and y by
complementary γ and γ−1, we would like to use reduced vectors that are folded
in the same way, such as

x′ = ρ−1[x]0 + γ[x]1 y′ = ρ−1[y]0 + γ[y]1. (12)

Now if x = y then x′ = y′. Here the value is defined as ρ2 = μ for weight μ.
Taking the weighted inner product of these vectors by μ we can work out a rela-
tion that includes the original weighted inner product 〈x,y〉μ as one coefficient
of a polynomial in γ

vx = ρ−1(〈[x]0, [y]1〉μ2 + 〈[x]1, [y]0〉μ2) vr = 〈[x]1, [y]1〉μ2

〈x′,y′〉μ2 = 〈x,y〉μ + vxγ + vr(γ2 − 1).
(13)

Note that this reduction is sound because the polynomials 1, γ, γ2 − 1 ∈ F[γ] are
linearly independent. As in BP(+), the protocol follows straightforwardly from
this relation by applying it to all the inner products in the commitment and
grouping alike terms. The prover can commit to the γ and γ2 − 1 coefficients
(X,R) and then the verifier can select a random γ to evaluate the relation.
Because this relation is symmetric, the prover can apply it to the x = y = n
case and reduce n to a single n′.

4.2 Norm Linear Argument

In the norm linear relation, there are 4 inner products that the prover needs to
reduce: |n|2μ, 〈n,G〉, 〈c, l〉, and 〈l,H〉. Since n participates in a weighted inner
product (norm), we need to modify the relation for G slightly, and since l, c,
and H only participate in unweighted relations, there are no weights present.
The reduced vectors are thus

v′ = |n′|2μ2 + 〈c′, l′〉 c′ = [c]0 + γ[c]1

l′ = [l]0 + γ[l]1 n′ = ρ−1[n]0 + γ[n]1
G′ = ρ[G]0 + γ[G]1 H ′ = [H]0 + γ[H]1.

(14)
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The commitments X and R follow directly from expanding all the reduced
inner products and gathering γ and γ2 − 1 coefficients. Explicitly

vx = 2ρ−1 〈[n]0, [n]1〉μ2 + 〈c, ([l]1, [l]0)〉 (15)

vr = |[n]1|2μ2 + 〈[c]1, [l]1〉 (16)

X = vxG + 〈([l]1, [l]0),H〉 +
〈
(ρ[n]1, ρ−1[n]0),G

〉
(17)

R = vrG + 〈[l]1, [H]1〉 + 〈[n]1, [G]1〉 . (18)

Evaluating the polynomial commitment at γ yields a commitment on the reduced
basis to the reduced witness, i.e., we have

C + γX + (γ2 − 1)R = v′G + 〈l′,H ′〉 + 〈n′,G′〉 . (19)

The full protocol applies this reduction recursively until doing so does not reduce
the overall proof size. This occurs when |l| + |n| ≤ 6, at which point the prover
sends the reduced l and n to the verifier. If these vectors satisfy the norm linear
relation for the reduced c and μ, then it follows by induction that the original
commitment satisfies the relation.

Completeness follows directly from this equation holding and soundness from
the linear independence of the polynomials 1, γ, γ2 − 1 ∈ F[γ]. Linear indepen-
dence can be used to construct a round extractor, which as in BP can be used
to construct an extractor for the entire protocol.

Theorem 1. The weighted norm linear argument has perfect completeness.
Assuming the expected-PPT hardness of the discrete logarithm relation prob-
lem, the argument has CWEE and is therefore an argument of knowledge for the
weighted norm linear relation.

See the full version [20] for the proof.

4.3 Full Protocol Description

The setup protocol for the norm linear argument K simply chooses all group
elements G,H,G uniformly at random.

Weighted Norm Linear Argument 〈Pnl, Vnl〉
Common input: G, G, H , c, C, ρ and μ = ρ2

P’s input: (l, n) and v = 〈c, l〉 + |n|2µ such that C = vG + 〈l, H〉 + 〈n, G〉
1. If |l| + |n| < 6:

1.1 P → V : l, n
1.2 V computes v := 〈c, l〉 + |n|2µ
1.3 V accepts if C

?
= vG + 〈l, H〉 + 〈n, G〉, otherwise rejects

2. Else:
2.1 P → V : X, R
2.2 V → P : γ ←$F

2.3 P computes l′, n′

2.4 P, V compute G′, H ′, c′ and ρ′ := μ, μ′ := μ2, C′ := C + γX + (γ2 − 1)R
2.5 Run 〈Pnl, Vnl〉 with (G, G′, H ′, c′, C′, ρ′, μ′; l′, n′).
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As in BP, it is not necessary for the verifier to actually compute the interme-
diate (G,H, c, C) values and the final verification check can be replaced with
a single linear combination of public curve points. Letting k be the number of
rounds before stopping and the vectors γl and γn be defined as

γl =
⊗k−1

i=0
(1, γi) γn =

⊗k−1

i=0
(ρ2

i

, γi), (20)

the (G,H, c, C) in the final verification equation can be rewritten in terms of
the original (G,H, c, C) as

v = 〈c,γl ⊗ l〉 + |n|2μ (21)

vG + 〈γl ⊗ l,H〉 + 〈γn ⊗ n,G〉 ?= C +
∑k−1

i=0
γiXi + (γ2

i − 1)Ri. (22)

Also as in BP, when verifying multiple proofs simultaneously, the verifier can
take a random linear combination of the equations and combine the γl ⊗ l and
γn⊗n from different proofs if the G and H are the same. Thus the marginal cost
of verifying an additional proof is only O(log n) additional scalar multiplications
and O(n) field operations. There are additional optimizations that help reduce
prover work, as we discuss in the full version [20].

5 Arithmetic Circuits

In BP, arithmetic circuits are represented using four public matrices and one
public vector (WL,WR,WO,WV , c) and four witness vectors (wL,wR,wO,v),
which must satisfy Eq. (10). For each multiplication in a BP arithmetic circuit,
the prover commits to the left input in wL,i, the right input in wR,i and the
output in wO,i. In some cases, this leads to the prover committing to redundant
information. Specifically, if an output of a multiplication is immediately subject
to a linear constraint, the prover could avoid committing to it by instead showing

wL ◦ wR = Wm,LwL + Wm,RwR + Wm,OwO. (23)

This motivates the BP++ circuit encoding, where we make exactly this
change. It turns out that effectively every multiplication gate in reciprocal range
proofs (Sect. 6.2) and MACTs is of this form. This change makes it more efficient
to represent these protocols as arithmetic circuits, rather than using bespoke
range proof protocols like other Bulletproof based constructions. We also mod-
ify the circuits to accept input vectors from Pedersen vector commitments, rather
than just scalars, which removes the matrix WV .

Concretely, an arithmetic circuit C will be encoded into two matri-
ces (Wl,Wm) and two vectors (al,am) which constrain a witness w =
(wL,wR,wO). The vectors wL and wR are the left and right inputs to each
multiplication, as in BP. The input vector is the concatenation of vectors
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wV = (vi)k
i=0, each of which comes from a Pedersen vector commitment Vi.

The circuit is satisfied if both

0 = Wlw + wV + al wL ◦ wR = Wmw + am. (24)

The arithmetic circuit protocol is therefore a proof of knowledge for the relation

C =
(
Wl ∈ F

Nl×Nw ,al ∈ F
Nl ,Wm ∈ F

Nm×Nw ,am ∈ F
Nm

)
(25)

Rac =

⎧
⎨

⎩

⎛

⎝
G ∈ G,H ∈ G

Nv+7,G ∈ G
Nm ;

C,V ∈ G
k;vi ∈ F

Nv : i = [0, k),
sV ∈ F

k,wO ∈ F
NOwL,wR ∈ F

Nm

⎞

⎠ :
Vi = Com(vi; sV,i)

Eq. (24)

⎫
⎬

⎭ (26)

This new arithmetic circuit format can encode satisfiability of BP circuits and
is therefore capable of representing any arithmetic circuit, see the full version [20]
for details.

5.1 Protocol Overview

We defer the explicit details of how the arithmetic circuit protocol encodes
the statement into the norm linear argument to the full version [20] and limit
ourselves to a high-level description here. First, the prover will commit to
(wL,wR,wO) in (CL, CR, CO) and send these to the verifier. There is some
freedom in how the prover can organize the witness into these three norm linear
commitments. Specifically, in some cases it may be more efficient to commit to
some of wO in the linear portion of CL and CR.

Then, the verifier will choose two challenges λ and μ to combine the linear
and multiplicative constraints respectively using the vectors of powers eNl

(λ)
and eNm

(μ). The verifier will also choose challenges β and δ, which will be
necessary for blinding. These allow us to transform equations Eq. (24) into a
single scalar equation

0 = eNl
(λ)� (Wlw + wV + al) + 〈wL,wR〉μ − eNm

(μ)� (Wmw + am) . (27)

We want to construct a triple of polynomials (v̂(T ), l̂(T ), n̂(T )) so that when
we apply the norm linear relation and get f̂(T ) = v̂(T ) − 〈c(T ), l(T )〉 − |n̂(T )|2μ
exactly one term of f̂(T ) encodes these randomized constraints. We call this
term the value term and the other terms the error terms. To show that the
constraints are satisfied, it suffices to show that the value term vanishes, and
prove knowledge of the error terms.

To construct this polynomial, we first assign a unique T term to each com-
mitment. The product of the T terms for CL and CR will be the value term.
Each constraint will be placed on the unique T term so that when multiplied
with the T term of the commitment to the witness it acts on, the result will be
the value term. So, if T multiplies CL and T 2 CR, then the value term is T 3 and
eNl

(λ)�WL should be multiplied by T 2. The challenge δ will be used to prevent
the norm portion of the wV commitments from interfering with f(X).
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Then, the prover sends CS to blind. For the portions of the commitments that
commit to w, CS will consist of uniformly random values. We need to choose
a T term for CS so that none of these random values can interfere with the
value term. Our goal now is to introduce some additional elements to the linear
portion of CS to subtract off the non-value terms from f̂(T ) and the additional
terms that arise from the blinding. If the result of this is zero, then the value
term must be zero.

This can have two problems: it might allow interference with the value term
and it will not be zero knowledge as it may reveal information about the error
terms. The second problem is fixed by allowing the commitments CL, CR, CO

to blind the error terms in CS . The first is fixed by using the challenge δ to
prevent interference. Showing that the result is zero knowledge is somewhat
more involved than other protocols, and is ultimately reducible to showing that
by manipulating the error term blinding in CL, CR, CO can produce any valid
opening. Equivalently that a certain matrix is full rank.

Finally, the verifier will send a challenge T = τ . Because of how the blind-
ing was constructed, the prover and verifier can take a linear combination of
CL, CR, CS , CO and public information to produce a valid norm linear instance.
Without the blinding protocol, the protocol would need an additional round of
interaction. At this point, since the witness is blinded the prover and verifier can
run the norm linear argument and complete the protocol.

Arithmetic Circuit Protocol 〈Pac, Vac〉
1. P → V : CL, CR, CO // Choose blinding rL, rR, rO and commit to w
2. V → P : ρ, λ, β, δ ←$F

3. P → V : CS // CS is chosen s.t. all error terms cancel and w is blinded
4. V → P : τ ←$F

5. P computes v(τ), l(τ), n(τ) // Compute opening of C(τ).
(Since all error terms cancel, norm linear relation is satisfied.)

6. P, V run the weighted norm linear argument 〈Pnl, Vnl〉 = b with common
input (c(τ), C(τ), μ = ρ2) and prover input (l(τ), n(τ), v(τ)).

Theorem 2 (Arithmetic Circuits). The arithmetic circuit protocol (whose
pseudocode can be found in the full version [20]) has perfect completeness and
perfect honest verifier zero-knowledge. Assuming the expected-PPT hardness of
the discrete logarithm relation problem, the protocol has computational witness-
extended emulation.

See the full version [20] for the proof.

6 Reciprocal Argument

Initially, zero knowledge proof arithmetizations, including that of the original
Bulletproof AC protocol, supported only additions and multiplications. This was
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sufficient to encode all arithmetic circuits, but more modern proof systems like
Halo2 [49] incorporate so called “custom gates” directly into the arithmetization.
These custom gates allow circuit designers to “factor out” certain features into
the arithmetization, which has a number of benefits for circuit designers. For
example, a custom gate to compute x5 avoids adding the values x2 and x4 to
the witness.

Another more powerful type of custom gate is the so called “lookup gate”,
which is implemented using a variant of plookup [21] in Halo2 [49]. This allows
circuit designer to incorporate lookup arguments into their circuits. Unlike rais-
ing to the fifth power, this gate cannot be conveniently implemented as a low
degree expression since it requires an additional round of prover, verifier interac-
tion. In particularly, this means it is not possible to efficiently perform plookup,
or the reciprocal argument, inside simpler arithmetizations like BP++ AC. This
motivates adding the reciprocal argument directly to BP++ AC, which we call
reciprocal form circuits. By formalizing this modification of the protocol, we are
also able to provide a single knowledge soundness proof.

To demonstrate the power of this approach, we use the new reciprocal form
circuit protocol to define a range proof and a MACT protocol. Since these proto-
col are simply reciprocal from arithmetic circuits, zero-knowledge and knowledge
soundness will follow without the need for additional security proofs.

6.1 Warmup: Reciprocal Argument Protocol

Recall from Sect. 3.2 that the reciprocal argument is an interactive protocol by
which the prover can convince a verifier that a collection A vanishes.

Definition 6. Let A be a set of pairs (mi, si) of multiplicities mi ∈ F and
symbols si ∈ F. Let the total multiplicity of a symbol s ∈ F in A be

m̂s =
∑

i: si=s
mi.

We call A a collection, and we say that A vanishes if ∀s ∈ F : m̂s = 0.

Let S = {si : ∃m : (m, si) ∈ A} be the set of symbols in A, and further recall
that the reciprocal argument encodes A as a rational function fA defined as

fA(X) :=
∑|A|−1

i=0

mi

X + si
=

∑
s∈S

m̂v

X + s
. (28)

To demonstrate the core idea of the reciprocal argument, we present an infor-
mal protocol in which the prover sends the verifier the witness explicitly. This
protocol is not used in a blackbox manner by BP++; we will instead embed it
into an arithmetic circuit and make additional modifications, e.g., some of s or
m may be known to the verifier.

The (informal) protocol works as follows: First, the prover sends multiplicities
m and symbols s in A. Next the verifier selects a random challenge α, and the
prover responds by sending the “reciprocals” ri = mi/(α + si). Finally, the
verifier checks that each reciprocal is properly formed and that the sum of all
the reciprocals vanish, i.e., if (α + si)ri = mi and

∑
i ri = 0.
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Reciprocal Argument Protocol 〈Pra, Vra〉
1. P → V : m, s
2. V → P : α ←$F

3. P → V : r s.t. ri = mi/(α + si)
4. V accepts if (α + si)ri = mi for i = 0 . . |r| − 1 and

∑
i ri = 0

This protocol lacks perfect completeness because if α = −si for any si then
ri is not well-defined. However, this only occurs with negligible probability since
α ←$F. Informally, soundness follows from the structure of the sum of the recip-
rocals. If (α + si)ri = mi, then either α = −si and mi = 0, or ri = mi/(α + si).
So, with overwhelming probability, if

∑
i ri = 0 we have that fA(α) = 0.

We can show that if fA(αj) = 0 for 2|S| distinct challenges αj then m̂s must
be zero for all s ∈ S.

Lemma 1 (Reciprocal Argument Vanishing). Let A be a collection of
pairs of multiplicities and symbols. If there exist 2|A| accepting transcripts of the
reciprocal argument protocol for A with pairwise distinct challenges αj, then A
vanishes (Definition 6).

Proof. There are at most |S| values α such that there exists si ∈ S for which
α = −si. Let α′ be a vector of |S| challenges αj from the transcripts such that
α′

j �= −si for any i, j. Let s be the vector of elements in S, and note that the
components of vector −s are pairwise distinct and the components in α′ are
pairwise distinct. This means the |S| × |S| Cauchy matrix C formed from −s
and α′ is well-defined and therefore invertible. Let fj = fA(α′

j) for fA as defined
in Eq. (28) and note that f = Cm̂s = 0. Since C is invertible, m̂s = 0 and
therefore A vanishes.

6.2 Reciprocal Form Circuits

Reciprocal form circuits extend the BP++ AC protocol to support the reciprocal
argument. As in the protocol outlined above, this requires an additional round of
interaction, where the verifier chooses α, and will require the prover to commit
to the witness in several stages. Once we have α and the entire witness, we can
use a BP++ AC to verify step 4 of the reciprocal argument protocol.

Suppose we have an arithmetic circuit C and the arithmetic circuit witness
(wL,wR,wO,wV ). To integrate the reciprocal argument, we want to show that
this circuit is satisfied and that some set of rational functions f(X) vanishes,
where each rational function encodes a reciprocal argument instance. In general,
we want the symbols and multiplicities to be able to depend on the arithmetic
circuit witness w and ultimately would like to be able to compile the f(X)
vanishing check into an arithmetic circuit for a particular X = α.

Let wD be the vector of private denominators for all the reciprocal argument
instances, and let wP (X) be the vector of all the reciprocals associated to each
wD,i. Define the “initial witness” wI = wO || wL || wD and the “entire witness”
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to be w(X) = wD || wL || wP (X) || wR || wO. We can specify all the reciprocal
argument instances using three matrices (Wn,Wd,Wp(X))

wP,i(X) =
(WnwI + an)i

X + wD,i
(29)

WdwI + wV + ad = 0 (30)
f(X) = Wp(X)w(X) + ap(X). (31)

The intuition here is as follows. First, we take all the reciprocals that occur
in all the f(X) instances and partition them into two groups. The first are the
reciprocals with public denominators, and the second are those with denomina-
tors that depend on the witness. Those with public denominators do not require
multiplicative constraints and can be encoded via Wp(X). The second set are
organized into a vector, and wD is their denominators. We allow the prover
to constrain these values via Eq. (30). The numerators of these reciprocals are
encoded via WnwI + an, and the reciprocals themselves will be committed via
wP (α). Finally, we map each reciprocal to its reciprocal argument instance via
Wp(X) and add any that consist of entirely public information via ap(X).

Following commitment to wI , the verifier chooses α, and the prover commits
to wR and wP (α). We can now define the new arithmetic circuit C′ for α. First,
prepend the vector wD onto wL and the vector wP (α) onto wR to produce w′

L

and w′
R for C′. We keep w′

O = wO, and can let w′ = w′
L || w′

R || w′
O. To verify

that the committed vector w′
P is correctly constructed as wP (α), we can clear

the denominator of Eq. (29) and check

wD,iw
′
P,i = (WnwI + an)i − αw′

P,i. (32)

This is satisfied if w′
P,i = wP,i(α) or if wD,i = −α and the numerator is zero.

The latter occurs with negligible probability, so this is sufficient to check w′
P is

correctly constructed. The rest of the constraints can be appended onto the Wl

and Wm matrices to construct the W ′
l and W ′

m matrices for C′ as

W ′
l w

′ = (WdwI) || (Wp(α)w(X)) || (Wlw) (33)
W ′

mw′ = (WnwI − αwP (α)) || (Wmw). (34)

Formally, the reciprocal form arithmetic circuit protocol shows that the recipro-
cal form arithmetic circuit relation is satisfied for the circuit RC. In the relation,
Ai refers to the collection for the ith instance of the reciprocal argument. That
is, the collection Ai is encoded as in Eq. (28) by fi(X) in Eq. (31).

RC =

⎛

⎝
C,Wn ∈ F

Np×NI ,Wd ∈ F
Nd×NI ,

Wp(X) ∈ F(X)Np×N ′
w

an ∈ F
Np ,ad ∈ F

Nd ,ap(X) ∈ F(X)Np

⎞

⎠ (35)

Rrf =
{
(σ;x,RC;w,wD ∈ F

Np) : Ai vanishes,Eq. (30), (σ;x;w) ∈ Rac

}
(36)

Given that we can compile reciprocal form circuits to arithmetic circuits for
a particular α, the security proofs are able to inherit most of the structure of
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those of arithmetic circuits. Zero-knowledge follows immediately, and soundness
requires one additional level in the transcript tree for α to extract the vanishing
of f(α).

Theorem 3 (Reciprocal Form Arithmetic Circuits). The arithmetic cir-
cuit protocol for circuits in reciprocal form (whose pseudocode can be found in
the full version [20]) has completeness and perfect honest verifier zero-knowledge.
Assuming the expected-PPT hardness of the discrete logarithm relation problem,
the protocol has computational witness-extended emulation.

See the full version [20] for the proof.

6.3 Reciprocal Range Proofs

Given the reciprocal argument and reciprocal form arithmetic circuits, we can
now construct a range proof as an argument of knowledge for

Rrp =

⎧
⎨

⎩

⎛

⎝
G,H ∈ G;

V ∈ G
k,A,B ∈ Z

k, Bi − Ai ∈ [1, p);
v, s ∈ F

k

⎞

⎠ :
∀i : vi ∈ [Ai, Bi),
Vi = Com(vi; si)

⎫
⎬

⎭ . (37)

For simplicity, assume each range [Ai, Bi) uses the same base b. To show that
each value lies in the range the prover can break down vi into digits di, show
that each digit is a valid base b digit, and show that for some vector of public
constants bi, the following linear relation is satisfied 〈bi,di〉 = vi − Ai. To show
each di is a valid digit we can use the reciprocal argument and let wD consist
of all the digits for all the range proofs.

We will also assume for simplicity of presentation that the size of the range is
a power of b. That is B−A = bk for some integer k. This simplifies the range proof
description, and is typically sufficient in practice. Especially in cryptocurrencies
range proofs are typically used to enforce that a value is not “negative” rather
than that it lies in a specific range. It is straightforward to adapt the protocol
to support arbitrary ranges using the work of Chaabouni, Lipmaa, shelat [12]
and we defer a detailed description to the full version [20].

BP++ arithmetic circuits, as mentioned before, allow placing the vector wO

of witness elements that participate only linear constraints either in the lX por-
tion of the witness, or in the nO portion of the witness. For reciprocal range
proofs, it makes sense to either place them in nO, which we will call “inline”
multiplicity range proofs, or in lL, which we will call “shared” multiplicity range
proofs. The terminology refers to the fact that in the multiparty setting when
multiplicities are placed in the linear portion of the witness multiple provers
can reuse the same basis points in their separate proofs. Inline range proofs are
so called because in the multiparty setting, multiplicities must be represented
over the basis elements used by each prover to commit to their digits, so the
multiplicities are inline with the digits.
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Arithmetic Circuit. In both the inline and reciprocal cases, the vector wD

consists of the concatenation of the digit vectors for all the ranges. The numerator
for each digit reciprocal is always 1, so the numerator matrix is simply zero and
an = 1. The vector of reciprocals wP (X) is the concatenation of the values
ri,j = 1/(α + di,j) so they align with wD per value that verifies the range using

〈Wd,i,wD〉 = 〈bi,di〉 ad,i = Ai (38)

Now all that remains is to describe the matrix Wp(X) in terms of the mul-
tiplicities. In both the inline and shared cases, the prover shows that the set
membership check is satisfied for all the digits of each base. Let the vector mi

be the number of times each value in [1, bi) occurs in di. Note this does not
include a multiplicity for zero, as this multiplicity is equal to the number of
digits minus the sum of the other multiplicities. Let the total multiplicity be
m̂ =

∑
i mi and the total number of digits be n̂ =

∑
i |di|. In both the inline

and the shared cases, the prover uses the vectors of reciprocals to prove each
digit is a valid base b digit

∑
i
〈1, ri〉 =

n̂ − 〈1, m̂〉
X

+
∑b−2

j=0

m̂j

X + j + 1
. (39)

The difference arises in how the prover commits to the multiplicities in the
inline case, the prover commits to the vector m in wO padded so that they align
with di. The partition function F in the inline case maps all of wO to nO. Since
the m̂ are a linear function of the mi, the matrix Wp(X) is defined to compute
this function and then the right hand side of Eq. (39).

In the shared case, the prover commits to the all the m̂ directly in wO and
the partition function maps these values to lL. In this case, since neither lO or
nO are used, the commitment can be safely dropped from the protocol. The
matrix Wp(X) once again encodes Eq. (39) but now uses the committed total
multiplicities.

Theorem 4 (Reciprocal Range Proofs). Both the inline and shared multi-
plicity reciprocal range proofs and zero knowledge arguments of knowledge for the
reciprocal range proof relation Rrp Eq. (37) assuming the expected-PPT hardness
of the discrete logarithm relation problem.

Proof. The reciprocal range proof protocols are both instances of the reciprocal
form arithmetic circuit protocol, so they have SHVZK, CWEE, and complete-
ness. To show they are arguments for Eq. (37), we must establish that the circuit
is satisfiable only if the inputs v satisfy the relation. The protocol applies the
reciprocal form circuit protocol to A = {(−1, di) : i} ∪ {(mj , tj) : j}. By the
soundness of the reciprocal form circuit protocol, A vanishes. So long as the
number of digits is less than F, which is the case by assumption, this implies all
di are valid base b digits. Therefore vi = 〈bi,di〉 + Ai implies that vi ∈ [Ai, Bi).
Thus, the reciprocal range proof protocol is a zero knowledge argument of knowl-
edge for Eq. (37).
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6.4 Multi-asset Confidential Transactions

In a MACT, the prover wants to prove a closely related relation to that of an
aggregated range proof. Given a transaction with a set of inputs I (oi = 0) and
outputs O (oi = 1), each with a type and amount, the prover wants to show that
the amount of input tokens of each type equals the amount of tokens output of
each type and that all the output token amounts are “positive.” This is because
if one of the outputs were negative it would be possible to secretly create new
tokens, by adding more tokens to one of the other outputs to be larger. It is
typically not necessary to check that the inputs are positive since they are the
outputs of some other transaction.

In a finite field, the positivity condition is checked by bounding each output
(oi = 1) by a range much smaller than the field characteristic. More precisely, it
must be the case that any negligible amount of inputs and outputs cannot wrap
around in the field to create a “negative” value. For simplicity, we can assume
that all transaction outputs use the same range in the range proof [0, B), and in
practice we can assume that B = 264. The MACT relation is thus

Rct =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

G,H0,H1 ∈ G;o ∈ {0, 1}k,
V ∈ G

k, B ∈ Z, kB < p,
∀i : oi = 0 ⇒ vi ∈ [0, B);

v, t, s ∈ F
k

⎞

⎟⎟⎠ :
∀i : Vi = viG + tiH0 + siH1

∀i : oi = 1 ⇒ vi ∈ [0, B)
∀t :

∑
i:ti=t(−1)oivi = 0

⎫
⎪⎪⎬

⎪⎪⎭
.

(40)
To check the range proof part of the relation, we can use any reciprocal range

proof over all the transaction outputs, i.e. oi = 1, for the optimal base b and
range [0, B). Checking that all the amounts of each type net to zero in F is
essentially a multiset permutation check with large multiplicities, and can be
stated in the form of the reciprocal argument as

f(X) =
∑k

i=1

(−1)oivi

X + ti
= 0. (41)

From Lemma 1 it follows that if f(α) = 0 for a uniformly random α then
with overwhelming probability the total multiplicity associated to each ti must
be zero in F. From the structure of the function, this total multiplicity is the
sum of all the inputs of that type minus the sum of all the outputs of that type,
and so the total multiplicity is zero in F if and only if the amounts net to zero
in F.

Taking these together, we can show that the total amount (i.e., multiplicity)
of each type of asset nets to zero in Z. We know by assumption that each
transaction input amount lies in [0, B), and we know from the range proof that
each transaction output amount lies in [0, B). Therefore, the total multiplicity
v̂t of any type of asset lies in (−kB, kB), which occurs in a transaction with k
inputs or k outputs all of the same type and maximum amount. Since kB < p,
this value cannot wrap around the field, so if v̂t = 0 in F and v̂t ∈ (−kB, kB),
then the amounts net to zero in Z.
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Arithmetic Circuit. Each input and each output commit to two values, so
Nv = 2. As in the reciprocal range proofs, all multiplicative constraints are
reciprocal constraints and the matrices WL,WR have zero rows. The protocol
can use any reciprocal range proof, and for the purposes of this protocol assume
one is fixed by a reciprocal form circuit RC for either a shared or inline digit
range proof for all vi with oi = 1 for the range [0, B).

We will append the vector t of types to wD from the range proof, and we
will add copy constraints to check that these are the same values from the input
commitments. Note these copy constraints should be interleaved with the range
proof linear constraints to line up with t in wV . Each reciprocal in Eq. (41) has
vi(−1)oi as its numerator and X + ti as its denominator. We will define wP,i(X)
to be the unsigned reciprocals wP,i(X) = vi/(X + ti). Since multiplicative con-
straints cannot directly access inputs, we also need to add constraints to copy
vi into wI and modify Wn such that This lets us simplify (WnwI + an)i = vi.
We can insert dummy constraints that check ti = ti in the linear constraints so
that the inputs align with the constraint matrix. To check that Eq. (41) holds,
we can then append a row Wp(X) so that

〈Wp(X)0,w〉 =
∑k

i=1
(−1)oiwP,i(X).

This completes the MACT arithmetic circuit. In total, each input adds only
one element to wD and wP (X), one copy constraint to Wd and one, trivial, row
to Wn. There is also one constraint in Wp(X) to check Eq. (41).

The marginal cost of a MACT over an aggregated range proof is negligible
in prover time, verifier time, and proof size. This is in stark contrast to existing
protocols which either require large proofs, complex circuits, and require trading
off multi-party proving for the full relation.

Theorem 5 (Multi-Asset Confidential Transactions). The confidential
transaction protocol, instantiated with any of the reciprocal range proofs is a
zero-knowledge argument of knowledge for the MACT relation Eq. (40) assuming
the expected-PPT hardness of the discrete logarithm relation problem.

Proof. Since the MACT protocol is an instantiation of the reciprocal form arith-
metic circuit protocol, it has completeness and perfect SHVZK and CWEE.
Therefore, it is sufficient to show that this circuit is satisfied if and only if the
protocol inputs v and t satisfy the relation. By Theorem 4, we know that all
the transaction output commitments commit to values in [0, B) if they satisfy
the circuit, and we know by assumption that all inputs lie in this range. Since
kB < p, the magnitude of the total multiplicity of any type of asset cannot
exceed p. The circuit invokes the reciprocal argument on the collection A formed
as {(v, t) : (v, t) ∈ I} ∪ {(−v, t) : (v, t) ∈ O}. By the soundness of the reciprocal
form circuits, A vanishes, so total multiplicity of each token type must be zero in
F. Therefore, the total multiplicity of each type of asset must be 0 as an integer.
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7 Implementation and Benchmarks

To demonstrate the real-world performance of BP++, we provide a reference
implementation in C [19] as well as benchmarks. Our implementation builds on
top of the libsecp256k1-zkp library [44] and thus uses secp256k1, the elliptic curve
used in Bitcoin and many other cryptocurrencies. All operations on secret data
performed by the prover implementation are constant-time. The experiments
were performed on an Intel i7-10510U system at 1.80GHz using a single thread.
The implementation uses a single multi-exponentiation algorithm and scalar

Fig. 1. Proving and verification time for BP++ range proofs. X-axis shows the total
number of bits in the range proof. For x > 64 bits, we consider an aggregation of 64-bit
range proofs. Y-axis shows the time in milliseconds.

Table 2. Proving and verification time compared to prior work.

BP++ BP+ ([14]) BP ([17]) BP ([42])

Curve secp256k1 Ristretto255 Ristretto255 secp256k1

Range Prover time (ms)

1 × 64 4.041 11.851 12.136 19.241

32 × 64 52.108 307.26 384.20 499.060

Range Verifier time (ms)

1 × 64 0.840 1.815 1.907 2.223

32 × 64 6.424 28.920 29.490 33.548
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precomputation optimizations. In summary, verifying a 64-bit range proof took
about 0.9ms and proving about 4ms. Figure 1 shows the proving and verification
time as a function of the total number of range proof bits.

In order to compare the performance of BP++ with existing implementations
of BP and BP+, we ran a BP implementation on secp256k1 [42], a BP imple-
mentation on Ristretto255 [17] and a BP+ implementation on Ristretto255 [14].
The results are summarized in Table 2. Despite secp256k1 having slower group
operations than Ristretto255, for a 64-bit range proof, the BP++ prover is about
3 times and the verifier about 2.2 times faster than the BP+ implementation.
The performance improvement in BP++ is amplified when aggregating mul-
tiple range proofs, e.g., when aggregating 32 64-bit range proofs, the BP++
prover and verifier are about 5–6 times faster than BP+. Moreover, based on
SwiftRange’s [52] comparison to BP, we anticipate BP++ to outperform Swift-
Range significantly, with roughly 3 times faster proving speed and 1.3 times
faster verification speed.3
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