
Efficient and Generic Methods to Achieve
Active Security in Private Information
Retrieval and More Advanced Database

Search

Reo Eriguchi1(B), Kaoru Kurosawa1,2, and Koji Nuida1,3

1 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
eriguchi-reo@aist.go.jp

2 Research and Development Initiative, Chuo University, Tokyo, Japan
kaoru.kurosawa.kk@vc.ibaraki.ac.jp

3 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
nuida@imi.kyushu-u.ac.jp

Abstract. Motivated by secure database search, we present secure com-
putation protocols for a function f in the client-servers setting, where a
client can obtain f(x) on a private input x by communicating with mul-
tiple servers each holding f . Specifically, we propose generic compilers
from passively secure protocols, which only keep security against servers
following the protocols, to actively secure protocols, which guarantee pri-
vacy and correctness even against malicious servers. Our compilers are
applied to protocols computing any class of functions, and are efficient
in that the overheads in communication and computational complexity
are only polynomial in the number of servers, independent of the com-
plexity of functions. We then apply our compilers to obtain concrete
actively secure protocols for various functions including private infor-
mation retrieval (PIR), bounded-degree multivariate polynomials and
constant-depth circuits. For example, our actively secure PIR protocols
achieve exponentially better computational complexity in the number of
servers than the currently best-known protocols. Furthermore, our pro-
tocols for polynomials and constant-depth circuits reduce the required
number of servers compared to the previous actively secure protocols.
In particular, our protocol instantiated from the sparse Learning Par-
ity with Noise (LPN) assumption is the first actively secure protocol
for multivariate polynomials which has the minimum number of servers,
without assuming fully homomorphic encryption.

1 Introduction

Client-server outsourcing is a central problem in secure computation. In par-
ticular, there are a wide variety of deployed systems which allow a client to
search a database stored in one or more servers for desired contents. Since a
client’s query may contain sensitive information, it is important to realize secure
database search, enabling a client to search a database without revealing his or
c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14655, pp. 92–121, 2024.
https://doi.org/10.1007/978-3-031-58740-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58740-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-58740-5_4


Efficient and Generic Methods to Achieve Active Security 93

her query to the servers. A trivial solution is downloading the whole database and
searching it locally. However, since the database size is typically very large, we
need to construct protocols whose communication and client-side computational
complexity is sublinear in the database size.

Traditionally, the problem of secure database search has been considered in
two types of setting. In the single-server setting, there is only one server storing a
database who may be corrupted; In the multi-server setting, there are m servers
storing copies of a database and any t of them are corrupted. In this work, we
focus on the multi-server setting since it is known to be impossible to efficiently
achieve information-theoretic security in the single-server setting [21] and even in
computational settings, the bounded collusion of servers allows better efficiency
and weaker cryptographic assumptions than single-server protocols [12,13,26].

Private Information Retrieval (PIR) is a fundamental cryptographic primitive
to realize the most basic database search. The goal of PIR is to enable an honest
client to retrieve a data item ai from a database a = (a1, . . . , aN ) hiding the
index i from the servers1. To allow more complex queries such as partial match
search, Barkol and Ishai [5] considered a more general setting in which a client
has a private input x and servers share a function f , and the goal of the client is
to obtain f(x) by communicating with the servers. A rich line of works proposed
secure protocols computing various classes of functions f including PIR [8–10,14,
17,27,28], bounded-degree multivariate polynomials [6,24,36,43], and bounded-
depth circuits [5,16,39,40]. Note that the communication complexity of these
protocols is much smaller than the size of circuits computing f , which is the
main advantages over usual multiparty computation protocols [15,23,34,35].

We note that the above-mentioned protocols are passively secure, i.e., the
privacy and correctness are guaranteed only if servers follow the protocol speci-
fications. On the other hand, it is desirable to achieve active security in real-world
scenarios. Namely, protocols should not only protect the privacy of queries but
also guarantee the correctness of results even if some servers deviate from the
protocols arbitrarily. For example, servers may try to let a client accept an incor-
rect result, or compute responses from an out-of-date copy of a database. This
paper concerns a fundamental problem of constructing an efficient compiler from
passively secure protocols to actively secure protocols. Given such a compiler,
existing passively secure protocols can be directly upgraded into actively secure
protocols with small overheads. Prior to our work, however, the only known
passive-to-active compilers are the inefficient ones applied to PIR [11,29], which
incurs exponentially large computational overheads in the number of servers
(see Sect. 1.2 for more related works on compilers in different settings including
GMW-style compilers).

1.1 Our Results

In this paper, we study the problem of secure computation in the client-servers
setting, where a client can obtain f(x) on a private input x by communicating
1 Throughout the paper, a client is assumed to be honest.



94 R. Eriguchi et al.

with multiple servers each holding f . We demonstrate theoretical feasibility of
compilers that upgrade passively secure k-server protocols into actively secure
m-server protocols with m > k. We present two such compilers: The first one
upgrades a one-round passively secure protocol into a multi-round actively secure
protocol. It increases the number of servers by a corruption threshold t, which
seems the best possible (see Remark 1). The second one upgrades a one-round
passively secure protocol into a one-round actively secure protocol while increas-
ing the number of servers by a larger factor. More specifically,

– Our first compiler transforms a one-round passively secure k-server protocol
into an O(m2)-round actively secure m-server protocol such that m = k + t.

– Our second compiler transforms a one-round passively secure k-server pro-
tocol into a one-round actively secure m-server protocol such that m =
O(k log k) + 2t.

Our compilers are generic and efficient in the sense that they are applied to
protocols computing any class of functions f and the overheads in communica-
tion and computational complexity are only polynomial in m, independent of
the complexity of f . Furthermore, our compilers are unconditional, i.e., requires
no additional assumptions, which allows us to obtain actively secure protocols
from various assumptions or even information-theoretically as shown below.

Along the way, we introduce two novel notions, conflict-finding protocols and
locally surjective map families. The former is an intermediate notion between
passively secure and actively secure protocols, which is used in our first compiler.
The latter is a variant of perfect hash families with a stronger property, which
is used in our second compiler. A key observation behind our techniques is that
if a pair of servers return different answers to the same query, then a client finds
that at least one of them is malicious. A difficulty is that we have to carefully
design such a strategy, since just disclosing a query for one server to another
may reveal his private input. See Sect. 2 for details on our techniques.

Remark 1. Our first compiler increases the number of servers by t but this seems
the best possible. Indeed, the existence of a generic compiler for an actively secure
protocol with m′ < t + k servers implies a compiler from a k-server protocol to
a k′-server protocol for k′ := m′ − t < k since an actively secure m′-server
protocol implies a passively secure (m′ − t)-server protocol2. Thus, the increase
in the number of servers is optimal unless there is a generic method to reduce
the number of servers. Such a method has not been found up until now.

Instantiations. Based on our compilers, we show concrete actively secure pro-
tocols for PIR, bounded-degree multivariate polynomials and constant-depth cir-
cuits. Remarkably, our protocol instantiated from the sparse LPN assumption
is the first actively secure protocol for multivariate polynomials which has the
minimum number of servers, without assuming fully homomorphic encryption.
2 The active security enables a client to obtain a correct result by interacting with

m′ − t servers and computing the responses of the other t servers arbitrarily.



Efficient and Generic Methods to Achieve Active Security 95

PIR. There are compilers from a passively secure k-server PIR protocol to an
actively secure m-server protocol for m = k + 2t [11] and m = k + t [29]. How-
ever, these compilers incur exponentially large multiplicative overheads mO(t)

in client-side computational complexity. On the other hand, our first compiler
gives an actively secure m-server protocol such that m = k+t with a polynomial
computational overhead mO(1). The only cost is that it requires O(m2) rounds of
interaction between a client and servers. Our second compiler gives a one-round
actively secure protocol with a polynomial computational overhead at the cost of
a larger number of servers m = O(k log k) + 2t. A detailed comparison is shown
in Table 1.

In the information-theoretic setting, the currently most communication-
efficient passively secure PIR protocol for t ≥ 2 is the 3t-server protocol in
[10], which has sub-polynomial communication and computational complexity
No(1) ·3t+o(t) in the database size N . (Although the original protocols in [10,14]
assume non-colluding servers, i.e., t = 1, the corruption threshold t can be
amplified by using the technique in [7] as pointed out in [32].) By applying our
compilers, we obtain actively secure 3t+o(t)-server PIR protocols whose computa-
tional complexity is No(1) ·2O(t). It exponentially (in t) improves the complexities
No(1) ·3t+o(t) ·mO(t) = No(1) ·2O(t2) of actively secure protocols that are obtained
from the previous compilers [11,29]. In the computational setting, if we apply
our compilers to the protocol assuming one-way functions [14], we can achieve
logarithmic communication and computational complexity in N and reduce the
number of servers. A detailed description is shown in Table 2.

Table 1. Comparison of passive-to-active compilers for PIR

Method Multiplicative overhead to
client-side computation

# servers # rounds

[11] mO(t) k + 2t 1

[29] mO(t)λ k + t 1

Ours (Theorem 3) O(m5λ) k + t O(m2)

Ours (Theorem 5) O(tm2) O(k log k) + 2t 1

k and m denote the numbers of servers in passively secure and actively secure
protocols, respectively, t denotes a corruption threshold, and λ denotes a secu-
rity parameter.

Bounded-Degree Multivariate Polynomials. In the information-theoretic setting,
there is a passively secure protocol for polynomials in [43], which can be made
actively secure by using the technique in [38]. In the computational setting, a
passively secure protocol is given in [24], which can be made actively secure by
the standard error correction algorithm [41]. Now, by applying our compilers, we
can reduce the required number of servers of these protocols by t. Based on the
passively secure protocol in [36], we can further reduce the number of servers



96 R. Eriguchi et al.

Table 2. Comparison of PIR protocols with sub-polynomial communication and com-
putational complexity in the database size N for a corruption threshold t ≥ 2

Method Client-side computation # servers # rounds Assumption

Passive [10] + [7] No(1)2O(t) 3t 1 IT

[14] + [7] log N · 2O(t)λO(1) 2t 1 OWF

Active [11] + [7] + [10] No(1) · 2O(t2) 3t + 2t 1 IT

[11] + [7] + [14] log N · 2O(t2) 2t + 2t 1 OWF

[29] + [7] + [10] No(1) · 2O(t2)λ 3t + t 1 IT

[29] + [7] + [14] log N · 2O(t2)λO(1) 2t + t 1 OWF

Theorem 3 + [7] + [10] No(1) · 2O(t)λ 3t + t O(32t) IT

Theorem 3 + [7] + [14] log N · 2O(t)λO(1) 2t + t O(22t) OWF

Theorem 5 + [7] + [10] No(1) · 2O(t) O(t3t) 1 IT

Theorem 5 + [7] + [14] log N · 2O(t) O(t2t) 1 OWF

λ denotes a security parameter. “IT” stands for “information-theoretic” (i.e., no cryp-
tographic assumption is necessary) and “OWF” stands for “one-way functions.”

by a factor of d assuming homomorphic encryption for degree-d polynomials.
Notably, our protocol instantiated from [24] achieves the minimum number of
servers 2t + 1.3 A detailed comparison is shown in Table 3.

Table 3. Comparison of actively secure protocols for multivariate polynomials

Method # servers # rounds Assumption

[38] + [43]
(
D
2

+ 2
)
t + 1 1 IT

Theorem 3 + [43]
(
D
2

+ 1
)
t + 1 O((Dt)2) IT

Theorem 3 + [36]
(

D
d+1

+ 1
)

t + 1 O((Dt)2) d-HE

[41] + [24] 3t + 1 1 sparse LPN

Theorem 3 + [24] 2t + 1 O(t2) sparse LPN

D denotes the degree of the polynomials and t denotes a
corruption threshold. “IT” stands for “information-theoretic”
and “d-HE” stands for homomorphic encryption for polyno-
mials of degree d.

Constant-Depth Circuits. Barkol and Ishai [5] proposed a passively secure proto-
col for unbounded fan-in constant-depth circuits (i.e., the complexity class AC0).
It can be made actively secure by applying the error correction algorithm [41],
and the resulting protocol needs at least (12 (log M+O(1))D−1+2)t servers, where
M and D = O(1) are the size and depth of circuits, respectively. On the other
hand, if we apply our first compiler, we need only (12 (log M + O(1))D−1 + 1)t

3 The active security is impossible if the majority of servers are corrupted, i.e., m ≤ 2t,
since there is an attack for corrupted servers to replace their input f with another
function f ′.



Efficient and Generic Methods to Achieve Active Security 97

servers, which decreases the number of servers of [5] by t. For example, for the
partial match problem on an M -sized database (which can be captured by depth-
2 circuits of size M), our protocol requires only (log M + 2.5)t servers while the
protocol obtained from [5] requires (log M + 3.5)t servers.

A beneficial consequence is that our compilers can be directly applied to
future developments in passively secure protocols in the client-servers scenario
and may yield new efficient constructions of actively secure protocols.

1.2 Related Work

Passive-to-Active Compilers. Within the context of PIR, there are compilers
from a passively secure k-server protocol to an actively secure m-server protocol
for m = k + 2t [11] and m = k + t [29]. As said above, however, these compilers
are not only less generic in that they are applied only to PIR, but also inefficient
since they incur exponential overhead

(
m
t

)
= mO(t) in computational complexity.

There are also passive-to-active compilers in a more general multi-client setting
where a private input is arbitrarily distributed among multiple clients [15,23,34,
35]. However, in actively secure protocols resulting from these compilers, servers
need to interactively evaluate a circuit gate by gate. Consequently, protocols
require communication and computational complexity that is proportional to
the size of a function, and do not work efficiently if the function encodes a large
database.

PIR. There are direct constructions of m-server PIR protocols in a malicious
setting [3,25,33,38,47]. However, the communication complexities of [3,25,33,
38] are all polynomial NO(t/m) in the database size N , while those of ours are
No(1), i.e., smaller than any polynomial function in N . The protocol in [47]
does not guarantee privacy if malicious servers collude, and thus does not satisfy
active t-security for t > 1 in our sense4. There are also constructions of PIR with
a weaker security guarantee [19,22], which can only tell a client the existence
of malicious servers. Actively secure PIR is also considered in a special setting
where the length of each entry of a database is sufficiently large (e.g., [4,44] and
references therein). The protocols in [4,44] assume that the length of each entry
of a database is at least exponential in N and hence result in exponentially large
communication complexity in N .

Protocols in the Single-Server Setting. Generally, if we have a passively secure
single-server protocol, then we can obtain an actively secure protocol with the
minimum number of servers 2t + 1 since a client just runs the passively secure
protocol with each server and computes the majority of 2t+1 outputs. However,
there is an impossibility result on efficient single-server protocols for PIR in the
information-theoretic setting [21]. Even if we go for computational security, it
seems to be impossible to construct single-server PIR protocols from the minimal
assumption of one-way functions [26], and for a general function, we currently

4 We mean by t-security that at most t servers are corrupted.



98 R. Eriguchi et al.

need to assume fully homomorphic encryption, which is only instantiated from
a narrow class of assumptions [31,42].

Verifiable Computation. The problem of dealing with malicious servers has also
been considered within the context of verifiable computation in the single-server
setting [2,20,30] and in the multi-server setting [1,45,46]. However, these verifi-
able computation protocols only detect malicious behavior of servers and cannot
achieve active security in our sense. The protocol in [18] uses a similar idea that
a client compares answers from one server with those from another. However, it
does not consider the setting where a client’s input x should be private and also
assumes that all parties agree on a function f in advance, while in our setting
the client does not know f since it corresponds to an unknown database.

2 Technical Overview

In this section, we provide an overview of our compilers to construct an actively
t-secure m-server protocol Π ′ from any one-round passively t-secure k-server
protocol Π such that k < m. Let V = {S1, . . . ,Sm} be the set of m servers of
Π ′. A key observation behind our constructions is that if a pair of servers in
V return different answers to the same query of Π, then at least one of them
is malicious5. We call such two servers a conflicting pair. The client continues
to remove conflicting pairs from V in an appropriate way. Finally, the client
executes a protocol only with remaining honest servers and obtains a correct
result. For ease of exposition, we first explain our non-interactive actively secure
protocol and then explain our interactive protocol with fewer servers.

2.1 Non-interactive Actively Secure Protocols

As a first attempt, we consider the following basic construction.

1. A client C partitions V = {S1, . . . ,Sm} into k groups V = G1 ∪ . . . ∪ Gk in
such a way that each Gj contains at least one honest server.

2. C computes k queries of Π on his private input and sends the j-th query to
all servers in the j-th group Gj .

If every group contains no conflicting pair (i.e., all servers in each Gj return the
same answer), then C can compute the correct result from the k answers of the
k groups. Otherwise, C removes a conflicting pair from V , and repeats the above
process at most t times to remove all malicious servers. This method, however,
requires a large number of servers m = Ω(kt) since the size of each group Gj

needs to be larger than t.
We reduce the number of servers to m ≈ 2t+k by introducing a novel notion

of locally surjective map families. Technically, we consider a family F of maps
from the set V = {S1, . . . ,Sm} of m servers to [k] := {1, 2, . . . , k}. Each map

5 Here, we assume that the server-side computation is deterministic.



Efficient and Generic Methods to Achieve Active Security 99

f ∈ F defines a partition V = Gf,1 ∪ · · · ∪ Gf,k, where Gf,j = {Si : f(Si) = j}.
For each map f ∈ F , the client C computes k queries of Π on his private input
and sends the j-th query to all servers in the j-th group Gf,j . Our strategy is
that C proceeds in t steps to detect and remove at least one new malicious server
per step. In each step,

– If for every (f, j), all the remaining servers in Gf,j return the same answer
ansf,j , then C computes an output xf of Π from (ansf,1, . . . , ansf,k) for each
f and decides the final output by the majority vote over the xf ’s;

– Otherwise, i.e., if two remaining servers in some Gf,j give different answers,
then C removes this conflicting pair and proceeds to the next step.

Observe that in the latter case, at least one of the two servers is malicious and
hence at least one malicious server is always removed. The requirement for C
to succeed is that in the former case, more than half of the xf ’s are correct. A
sufficient condition is that for more than half of the f ’s, there remains at least
one honest server in each of Gf,1, . . . , Gf,k. Indeed, for such f ’s, C receives the
correct answer from servers in each of Gf,1, . . . , Gf,k, or proceeds to the latter
case and removes a conflicting pair. Since there remains at least m − 2t honest
servers at every step, the condition can be formulated as the family F of maps
satisfying that for any subset H ⊆ V of size m − 2t, there exist more than half
of the f ’s such that f(H) = [k]. We name such a family as a locally surjective
map family.

We can prove by a probabilistic argument the existence of a locally surjec-
tive map family F of size O(m) if k = O((m − 2t)/ log(m − 2t)). Therefore,
we can obtain an actively t-secure m-server protocol Π ′ from a passively t-
secure k-server protocol Π if m = O(k log k) + 2t. Since the client can run all
instances of Π in parallel, the resulting protocol Π ′ is one-round and only incurs
a O(tm|F|) = O(tm2) multiplicative overhead to communication and computa-
tional complexity.

2.2 Interactive Actively Secure Protocols

We further reduce the number of servers from m = O(k log k) + 2t to m = t + k.
In our first construction, if a client C finds a conflicting pair of servers, then he
removes both servers from the set V . After eliminating all t malicious servers, the
number of remaining servers is reduced to m − 2t in the worst case. Therefore,
as long as this approach is used, the number of servers must be m ≥ 2t+k since
it should hold that m − 2t ≥ k.

Our second construction reduces the required number of servers to m = t+k
by introducing a notion of t-conflict-finding protocols, which is an intermedi-
ate notion between passively t-secure protocols and actively t-secure ones. Intu-
itively, in a conflict-finding protocol, a client C obtains a correct result or a
non-trivial partition (G0, G1) of the set V of servers such that all honest servers
are included in G0 or G1 (and hence the other group consists of malicious servers



100 R. Eriguchi et al.

only)6. A pair of servers crossing the partition (G0, G1) is supposed to be con-
flicting.

More concretely, we consider a graph G with m vertices each of which repre-
sents a server. Our protocol starts with G being a complete graph, and repeats
the following steps:

1. The client C executes a conflict-finding protocol ΠCF with some subset V ′ ⊆
V which forms a connected subgraph of size k = m − t in G (which can be
efficiently found).

2. If all servers in V ′ behave honestly, then C obtains the correct output.
3. Otherwise C can find a partition (G0, G1) of V ′ thanks to the conflict-finding

property of ΠCF. Note that there is always an edge e = (Si,Sj) between G0

and G1 since G0∪G1 = V ′ is connected. Furthermore, since all honest servers
in V ′ are included in G0 or G1, at least one of Si and Sj is malicious. Now,
C removes the edge e from G instead of eliminating the two servers, and goes
back to the first step.

Since all edges among honest servers remain unremoved (and hence the set of
all honest servers remains connected), C can successfully find a set of k = m − t
honest servers within O(m2) rounds. Note that in the above construction, C
chooses a set of servers with which he executes ΠCF, depending on the answers
that are maliciously computed in the previous rounds. Thus servers may learn
some information on the client input x by seeing which servers C removes. To
address this problem, we impose an additional property that the distribution of
the partition (G0, G1) is independent of x regardless of how malicious servers
behave. Then, an edge removed in each round leaks no information on x and
hence the privacy of x is preserved.

Two-Round Conflict-Finding Protocols. The remaining problem is how
to construct conflict-finding protocols. We show a construction of a two-round
t-conflict-finding k-server protocol ΠCF from a passively t-secure k-server one
Π. For simplicity, let V ′ = (S1, . . . ,Sk). In the first round, a client computes
real queries (quei)i∈[k] on his private input x according to Π as usual. He also
computes dummy queries (que′

i)i∈[k] on a default input xdef which is independent
of x. He then sends a random permutation of (quei, que

′
i) to each server Si. Note

that the privacy of Π and the random permutation ensure that servers cannot
distinguish which queries are computed on x or xdef . Each server Si returns
answers (ansi, ans′i) to the two queries as usual. In the second round, the client
sends all the dummy queries (que′

i)i∈[k] on xdef to all servers in V ′, which does
not affect privacy since xdef is independent of x. In response, each server Sj

returns vj := (ans′i(j))i∈[k] to (que′
i)i∈[k], where ans′i(j) is the answer which Si

would compute to the dummy query que′
i.

For simplicity, suppose that S1 is the only malicious server. If S1 behaved
honestly in the first round, it holds that ans′1 = ans′1(2) = · · · = ans′1(k).

6 We say that a partition (G0, G1) is non-trivial if neither of G0 nor G1 is empty.



Efficient and Generic Methods to Achieve Active Security 101

If S1 returned an incorrect answer to que′
1, it is different from any of

ans′1(2), . . . , ans′1(k). From this observation, the client C trusts the answer
ans1 of S1 to the main query que1 in the first round if and only if ans′1 =
ans′1(2) = · · · = ans′1(k). Generalizing this, we let C compute an output based on
(ans1, ans2, . . . , ansk) if all the vj ’s take the same value. Otherwise, he partitions
the set of servers into equivalence classes by placing Si and Sj into the same class
if and only if vi = vj , and outputs a non-trivial partition (G0, G1) in some way.
Note that any pair of honest servers Si,Sj return the same answer in the second
round, i.e., vi = vj , and hence they are placed in the same class. A malicious
server successfully submits an incorrect answer without being detected only if
it guesses correctly which query encodes the client’s true input x. As we said
above, it happens with probability 1/2. More generally, if the client prepares
M − 1 sets of dummy queries, the cheating probability of malicious servers can
be reduced to 1/M . This can be made even negligible by executing sufficiently
many (say, κ) instances in parallel. If a conflict is found in some instance, C
outputs a non-trivial partition (G0, G1) obtained in that instance. Otherwise, he
outputs the majority of the κ outputs if it exists. To let this protocol fail, mali-
cious servers need to let the client output valid but incorrect outputs in at least
κ/2 instances. The cheating probability is thus O(M−κ/2), which is negligible.

To see that the partition (G0, G1) leaks no information on the client’s input
x, observe that (G0, G1) is determined by answers (vj)j∈[k]. These answers are
independent of x since they can be simulated from dummy queries and t queries
for x that malicious servers see. The former is independent of x in the first place
and the latter leaks no information on x due to the privacy of Π.

To summarize, we obtain an O(m2)-round actively t-secure m-server protocol
from a passively t-secure k-server protocol if k ≤ m− t. The communication and
computational overhead is a multiplicative polynomial factor in m.

3 Preliminaries

Notations. For m ∈ N, define [m] = {1, 2, . . . ,m}. Let X,Y be sets. If X ⊆ Y ,
we define Y \X = {y ∈ Y : y /∈ X} and simply denote it by X if Y is clear from
the context. We write u ←$X if u is chosen uniformly at random from X. Define(
X
k

)
as the set of all subsets of X of size k. Define Map(X,Y ) as the set of all

maps from X to Y . If X = [m] and Y = [k], we simply denote it by Map(m, k).
Let log x denote the base-2 logarithm of x and lnx denote the base-e logarithm
of x, where e is the Napier’s constant. We call a function f : N 	 λ 
→ f(λ) ∈ R

negligible if for any c > 0, there exists λ0 ∈ N such that 0 ≤ f(λ) < λ−c for any
λ > λ0. We call f polynomial there exists c > 0 such that 0 ≤ f(λ) < λc for all
λ. Throughout the paper, we use the following notations:

– m denotes the total number of servers, which is polynomial in a security
parameter λ.

– t denotes the number of corrupted servers.
– C denotes a client and Si denotes the i-th server.

The notation Õ(·) hides a polylogarithmic factor in a security parameter λ.



102 R. Eriguchi et al.

3.1 Secure Computation in the Client-Servers Setting

We follow the client-servers model used in [5]. In this model, there is an honest
client C who holds a private input x, and m servers S1, . . . ,Sm who all hold the
same input p. The goal is:

Byzantine-Robustness. The client learns the value F (p, x) for a publicly
known function F even if t servers behave maliciously;

Privacy. The client keeps his input x hidden from any collusion of t servers.

We do not assume any interaction between servers. We call a message from a
client to servers a query and a message from servers to the client an answer.

In the above setting, we assume that the function F takes a common input p
from servers. Typically, the input p will be a description of a function f applied
to the input x of a client (e.g., a description of a circuit or a polynomial) and F
is the universal function defined by F (p, x) = f(x).

If m ≥ 2t + 1, there is a trivial 1-round protocol achieving the above goal:
C downloads p from all servers, finds the correct p by the majority vote, and
computes F (p, x) by himself. However, this protocol results in large communi-
cation and client-side computational complexity that is linear in the description
length of p. In applications to database search, p encodes a large database and
its size is proportional to the database size. From this point of view, we say
that a protocol is efficient if its communication and client-side computational
complexity is sublinear in the description length of p and linear in that of x.

More formally, we define a secure computation protocol in the client-servers
setting as an abstract primitive. First, we show the syntax and correctness.

Definition 1. Let P = (Pλ)λ∈N, X = (Xλ)λ∈N, and Y = (Yλ)λ∈N be sequences
of sets with polynomial-size descriptions and F = (Fλ : Pλ × Xλ → Yλ)λ∈N

be sequences of functions with polynomial-size descriptions. An �-round m-
server protocol for F is a tuple of three polynomial-time algorithms Π =
(Query,Answer,Output), where:

– Query(1λ, x, st(j−1), (ans(j−1)
i )i∈[m]) → ((que(j)i )i∈[m], st

(j)): Query is a pos-
sibly randomized algorithm that takes x ∈ Xλ, a state st(j−1) and answers
(ans(j−1)

i )i∈[m] in round j − 1 as input, and outputs queries (que(j)i )i∈[m] and
a state st(j) in round j, where we define st(0), ans(0)i as the empty string;

– Answer(1λ, p, que
(j)
i ) → ans

(j)
i : Answer is a deterministic algorithm that takes

p ∈ Pλ and a query que
(j)
i in round j as input, and outputs an answer ans

(j)
i

in round j;
– Output(1λ, st(�), (ans(�)i )i∈[m]) → y: Output is a possibly randomized algorithm

that takes a state st(�) and answers (ans(�)i )i∈[m] in round � as input, and
outputs y ∈ Yλ;

satisfying the following property:



Efficient and Generic Methods to Achieve Active Security 103

Correctness. There exists a negligible function negl(λ) such that for any λ ∈ N

and any (p, x) ∈ Pλ × Xλ,

Pr
[
Output(1λ, st(�), (ans(�)i )i∈[m])) = Fλ(p, x)

]
≥ 1 − negl(λ),

where

((que(j)i )i∈[m], st
(j)) ← Query(1λ, x, st(j−1), (ans(j−1)

i )i∈[m]),

ans
(j)
i ← Answer(1λ, p, que

(j)
i )

for all j ∈ [�] and i ∈ [m].

We note that an answer algorithm Answer is not always defined to be determin-
istic in the literature but all the instantiations considered in this paper actually
have deterministic answer algorithms. We omit a security parameter 1λ from
inputs if it is clear from the context.

An abstract primitive Π = (Query,Answer,Output) immediately implies an
�-round protocol in the above client-servers setting. Indeed, a client has a private
input x and m servers have a common input p. In each round, the client runs
Query, sends queries to servers and stores a state in his memory. In response,
servers run Answer on the queries that they receive, and send answers back to
the client. In the final round, the client runs Output on his state and servers’
answers, and obtains y = Fλ(p, x). Due to this correspondence, we will use the
terminologies interchangeably for the sake of readability.

The above-mentioned trivial 1-round protocol corresponds to the scheme
in which Query outputs nothing, Answer outputs p and then Output computes
y = Fλ(p, x). To rule out this, we define the efficiency measures of Π as fol-
lows. Let que

(j)
i and ans

(j)
i be queries and answers computed by Π and denote

their bit-lengths by |que(j)i | and |ans(j)i |, respectively. Define the communication
complexity Commλ(Π) as

Commλ(Π) = sup
(p,x)∈Pλ×Xλ

∑

i∈[m],j∈[�]

(|que(j)i | + |ans(j)i |).

Define the client-side computational complexity c-Compλ(Π) as the sum of
the running time of Query(1λ, x, ·, ·) and Output(1λ, ·, ·) with worst-case inputs
(p, x) ∈ Pλ × Xλ. Let Comm(Π) = (Commλ(Π))λ∈N and c-Comp(Π) =
(c-Compλ(Π))λ∈N. We say that Π is efficient if there exists a sublinear function
g(�) = o(�) such that

max{Comm(Π), c-Comp(Π)} ∈ g(|p|) · |x| · poly(m,λ), (1)

where |p| and |x| are the description lengths of elements of Pλ and Xλ,
respectively. One can also define the server-side computational complexity
s-Compλ(Π) as the running time of Answer(1λ, p, ·), and define s-Comp(Π) =
(s-Compλ(Π))λ∈N. We see the communication and client-side complexity as a
primary efficiency measure and the server-side computational complexity as a
secondary measure.

Next, we show the security requirements.



104 R. Eriguchi et al.

Definition 2. Let Π = (Query,Answer,Output) be an �-round m-server protocol
for F = (Fλ : Pλ×Xλ → Yλ)λ∈N. We say that Π is actively t-secure if it satisfies
the following requirements:

Privacy. There exists a negligible function negl(λ) such that for any stateful
algorithm A and any λ ∈ N,

AdvΠ,A(λ) :=
∣
∣Pr

[
Priv0Π,A(λ) = 0

] − Pr
[
Priv1Π,A(λ) = 0

]∣∣ < negl(λ),

where for b ∈ {0, 1}, Privb
Π,A(λ) is the output b′ of A in the following experi-

ment:
1. (x0, x1, p, T ) ← A(1λ), where x0, x1 ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size

at most t.
2. For each j = 1, 2, . . . , �,

(a) Let ((que(j)i )i∈[m], st
(j)) ← Query(1λ, xb, st

(j−1), (ans(j−1)
i )i∈[m]) and

give (que(j)i )i∈T to A.
(b) If j < �, A outputs (ans(j)i )i∈T . If j = �, A outputs a bit b′ ∈ {0, 1}.

Byzantine-robustness. There exists a negligible function negl(λ) such that for
any stateful algorithm A and any λ ∈ N,

Pr [BRΠ,A(λ) = 1] < negl(λ),

where BRΠ,A(λ) is the output of the following experiment:
1. (x, p, T ) ← A(1λ), where x ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size at most

t.
2. For each j = 1, 2, . . . , �,

(a) Let ((que(j)i )i∈[m], st
(j)) ← Query(1λ, xb, st

(j−1), (ans(j−1)
i )i∈[m]) and

give (que(j)i )i∈T to A.
(b) A outputs (ans(j)i )i∈T .

3. Return 1 if Output(1λ, st(�), (ans(�)i )i∈[m]) �= Fλ(p, x), and otherwise
return 0.

We say that Π is passively t-secure if it satisfies the above requirements for
semi-honest adversaries A, i.e., those following the instructions of Π. Note that
for semi-honest adversaries, the Byzantine-robustness of Π immediately follows
from the correctness of Π. We say that Π is computationally actively t-secure
(resp. computationally passively t-secure) if it satisfies the above requirements
for probabilistic polynomial-time (PPT) adversaries A (resp. semi-honest PPT
adversaries A).

3.2 Existing Passively Secure Protocols

Private Information Retrieval. Let N = N(λ) be a polynomial function.
Define IndexN = (Fλ : {0, 1}N × [N ] → {0, 1})λ∈N as a sequence of functions
such that for each λ ∈ N,

Fλ((a1, . . . , aN ), x) = ax, ∀(a1, . . . , aN ) ∈ {0, 1}N ,∀x ∈ [N ].



Efficient and Generic Methods to Achieve Active Security 105

An m-server protocol for IndexN is called an m-server private information
retrieval (PIR) protocol for N -sized databases. In the information-theoretic set-
ting, the most communication-efficient passively secure 3-server PIR protocol
was given by [10] and in the computational setting, the passively secure 2-server
PIR protocol was given by [14] assuming the existence of one-way functions.
Although the original protocols in [10,14] assume t = 1, the corruption thresh-
old t can be amplified by using the technique in [7] as pointed out in [32]. More
specifically, the following propositions hold.

Proposition 1. There exists a passively t-secure 1-round 3t-server protocol Π
for IndexN such that

– Comm(Π) = exp(O(
√

log N log log N)) · t3t = No(1) · 2O(t);
– c-Comp(Π) = exp(O(

√
log N log log N)) · t3t = No(1) · 2O(t);

– s-Comp(Π) = N2 · exp(O(
√

log N log log N)) · 2t = N2+o(1) · 2t.

Note that the above protocol satisfies the efficiency requirement (1) since
Comm(Π) and c-Comp(Π) are sub-polynomial (i.e., less than any polynomial)
in the description length N of elements of Pλ = {0, 1}N .

Proposition 2. Assume a pseudorandom generator G : {0, 1}λ → {0, 1}2(λ+1).
There exists a computationally passively t-secure 1-round 2t-server protocol Π
for IndexN such that

– Comm(Π) = O(log N · λ · t2t);
– c-Comp(Π) is O(log N · t2t) invocations of G;
– s-Comp(Π) is O(N2 log N · t) invocations of G.

Remark 2. Dvir and Gopi [27] devised a technique to optimize the 3-server pro-
tocol in [28] and obtained a 2-server PIR protocol with No(1) communication.
However, since the answer length is not constant, the passively t-secure protocol
obtained by applying the amplification technique of [7] has larger communica-
tion complexity exp(O(t

√
log N log log N)) and does not satisfy the efficiency

requirement (1).

Bounded-Degree Polynomials. Let N = N(λ), D = D(λ) and M = M(λ)
be polynomial functions. We define PolyN,D,M (R) = (Fλ)λ∈N as a sequence of
functions such that Fλ(p,x) = p(x) for any N -variate polynomial p over a ring R
with degree D and number of monomials M , and for any x ∈ RN . The following
is implicit in [43].

Proposition 3. Let N,D,M ∈ poly(λ). Let R be a ring such that for any
a ∈ {1, 2, . . . ,m−1}, an element a ·1R has an inverse in R, where 1R is the mul-
tiplicative identity of R. Suppose that m > Dt/2. Then, there exists a passively
t-secure 1-round m-server protocol Π for PolyN,D,M (R) such that

– Comm(Π) is O(Nm) ring elements;
– c-Comp(Π) is O(Ntm) ring operations;
– s-Comp(Π) is O(NMD) ring operations.



106 R. Eriguchi et al.

Since the description length of a polynomial with M monomials is
Õ(MD log |R|), the above protocol satisfies the efficiency requirement (1) if
MD = ω(N).

Ishai, Lai and Malavolta [36] showed that assuming homomorphic encryption
for degree-d polynomials, the number of servers in Proposition 3 can be decreased
by a factor of d.

Proposition 4. Let d = O(1) and R be a ring such that for any a ∈
{1, 2, . . . ,max{d,m − 1}}, an element a · 1R has an inverse in R, where 1R

is the multiplicative identity of R. Assume a homomorphic encryption scheme
HE for degree-d polynomials over R. Let M,N ∈ poly(λ) and D = O(1). Sup-
pose that m > Dt/(d+1). Then there exists a computationally passively t-secure
1-round m-server protocol Π for PolyN,D,M (R) such that

– Comm(Π) = O(Nm · �ct), where �ct is the description length of ciphertexts of
HE;

– c-Comp(Π) = O((Nt · τEnc + τDec)m), where τEnc and τDec are the running
time of the encryption and decryption algorithms of HE, respectively;

– s-Comp(Π) = O(MN ·τEval), where τEval is the running time of the evaluation
algorithm of HE per operation.

Note that we have max{d,m − 1} = poly(λ) since d = O(1) and m = poly(λ).
On the other hand, homomorphic encryption schemes mentioned in [36] assume
that R is a prime field of size q or a ring of integers modulo n = q1q2 for
exponentially large primes q, q1, q2. In these cases, a · 1R has an inverse in R if
a ∈ {1, 2, . . . ,max{d,m − 1}}.

Under the sparse Learning Parity with Noise (LPN) assumption over a field
Fq, Dao et al. [24] proposed a passively t-secure (t + 1)-server protocol for poly-
nomials of degree D = O(log λ/ log log λ). Although the original protocol does
not have sublinear-size upload cost when evaluating a single polynomial, it can
be seen that the upload cost is amortized if sufficiently many polynomials are
evaluated on the same input. Specifically, let N = N(λ), D = D(λ), M = M(λ),
and L = L(λ) be polynomial functions. We define PolyL

N,D,M (R) = (Fλ)λ∈N

as a sequence of functions such that Fλ((p1, . . . , pL),x) = (p1(x), . . . , pL(x)) for
any N -variate polynomials p1, . . . , pL over a ring R with degree D and number
of monomials M , and for any x ∈ RN .

Proposition 5. Assume that the (δ, q)-sLPN assumption holds for a constant
0 ≤ δ ≤ 1 and a sequence q = (q(λ))λ∈N of prime powers that are computable in
polynomial time in λ. Let L,M,N ∈ poly(λ) and D = O(log λ/ log log λ). Then,
there exists a computationally passively t-secure 1-round (t + 1)-server protocol
Π for PolyL

N,D,M (Fq) such that

– Comm(Π) = Õ((M2/δN + L)(log q)mλ);
– c-Comp(Π) = Õ((M2/δN + L)(log q)mλ);
– s-Comp(Π) = Õ(M1/δ+1L(log q)λ).



Efficient and Generic Methods to Achieve Active Security 107

Note that the description length of L polynomials each with M monomials is
Õ(ML log q) if the degree is D = o(log λ). Thus, if L = ω(M2/δ−1), the above
protocol satisfies the efficiency requirement (1). See [24] for the details including
the definition of the sparse LPN assumption.

Constant-Depth Circuits. We consider Boolean circuits of constant depth
with unbounded fan-in and fan-out. Formally, a Boolean circuit C is a labelled
directed acyclic graph. The nodes with no incoming edges are labelled with input
variables, their negations, or constants. The other nodes are called gates and are
labelled with one of operators in {AND,OR,NOT}. Nodes with no outgoing edges
are called output nodes. We only consider a circuit with a single output node.
The size of a circuit is the number of edges and its depth is the length of the
longest path from an input node to the output node. We define the output of
C on input x, which we denote by C(x), as the value of the output node after
input values proceed through a sequence of gates.

Let N = N(λ), D = D(λ) and M = M(λ) be polynomial functions. We define
CircN,D,M = (Fλ)λ∈N as a sequence of functions such that Fλ(C, x) = C(x) for
any Boolean circuit C with N input variables, depth D and size M , and for any
N -bit string x.

Proposition 6. Let N,M ∈ poly(λ) and D = O(1). Suppose that m ≥ (log M +
3)D−1t/2. Then, there exists a passively t-secure 1-round m-server protocol Π
for CircN,D,M such that

– Comm(Π) = O((log M)D−1N(log N)λm);
– c-Comp(Π) = O((log M)D−1N(log N)tm + (log M)2λm);
– s-Comp(Π) = O(M(log M)Nλ).

The protocol is efficient since Comm(Π) and c-Comp(Π) are linear in N and
polylogarithmic in the size M of circuits, omitting factors in λ and m.

4 Interactive Actively Secure Protocols

In this section, we show our compiler from one-round passively t-secure k-server
protocols to O(m2)-round actively t-secure m-server protocols such that m ≥
k + t. To this end, we introduce a notion of conflict-finding protocols, which is
an intermediate notion between passively secure and actively secure protocols.
We show a generic compiler from conflict-finding to actively secure protocols
in Sect. 4.3 and then show a generic compiler from passively secure to conflict-
finding protocols.



108 R. Eriguchi et al.

4.1 Graph Theory

To begin with, we recall the standard terminology of graph theory (see [37,
Chapter 2] for instance). A (simple and undirected) graph G is a pair (V,E),
where V is a set of vertices and E is a set of edges (i, j) ∈ V × V . Throughout
the paper, we only consider the cases where V is either [m] or a subset of [m].
Thus we may assume that V is a totally ordered set. The total order on V
naturally induces a lexicographic order on E, which is also a total order on E.
A graph G is called connected if there is a path between each pair of vertices. It
is a standard result that there is a deterministic algorithm D which decomposes
G into connected components in time O(|V | + |E|) [37]. For S ⊆ V , we denote
by G[S] the induced subgraph, i.e., the graph whose vertex set is S and whose
edge set consists of the edges in E that have both endpoints in S.

We show a deterministic algorithm C′
k such that for any connected graph

G = (V,E) with at least k vertices, C′
k(G) outputs a subset S ⊆ V such that

|S| = k and G[S] is connected. First, C′
k chooses the minimum node s of V with

respect to the total order on V . Secondly, C′
k runs the “textbook” depth-first

search algorithm [37] starting at the vertex s, except that it stops searching if
it visits k vertices. Finally, C′

k outputs the set S of all vertices it visited so far.
By definition, S is of size k. Since any pair of vertices in S are connected via s,
G[S] is connected. The running time of C′

k is O(|V | + |E|).
Next, we show a deterministic algorithm Ck such that for any graph G =

(V,E), if G contains a connected component of size at least k, Ck(G) outputs a
subset S ⊆ V of size k such that G[S] is connected, and otherwise, it outputs the
empty set ∅. First, Ck lists all the connected components of G, (G1, . . . ,Gq) ←
D(G). Secondly, Ck lets qmin be the minimum index q such that Gq has at least
k vertices. If no component has k vertices, Ck outputs ∅. Otherwise, Ck outputs
S ← C′

k(Gqmin). The correctness of Ck immediately follows from those of D and
C′

k. The running time of Ck is O(|V | + |E|).
Finally, we show a trivial but frequently-used algorithm E , which takes as

input a graph G = (V,E) and a pair of disjoint non-empty subsets G0, G1 ⊆ V ,
and outputs the minimum edge e = (i, j) ∈ E (with respect to the total order
on E) such that i ∈ G0 and j ∈ G1, or j ∈ G0 and i ∈ G1. The running time of
E is O(|E|).

4.2 Formalization of Conflict-Finding Protocols

Roughly speaking, in a conflict-finding protocol, a client obtains (y, z), where y
is the main output (supposed to be F (p, x)) and z is an auxiliary string. The
string z is either output, failure, or a non-trivial partition (G0, G1) of the set of
servers7. The security requirements are:

Soundness. The probability that z = output and y �= F (p, x) is negligible, and
the probability that the protocol outputs z = failure is also negligible;

7 We say that a partition (G0, G1) is non-trivial if G0 �= ∅ and G1 �= ∅.



Efficient and Generic Methods to Achieve Active Security 109

Conflict-Finding. If z is a non-trivial partition (G0, G1) of the set of servers,
then one of G0 or G1 contains all honest servers (and hence the other group
consists of malicious servers only);

Privacy. An adversary should not learn a client’s input x even if she knows z.

Intuitively, the conflict-finding property ensures that a client learns a subset of
malicious servers only, which allows him to find a pair of servers such that at
least one of them is malicious. We require the privacy should hold even if z is
leaked, in order for an adversary not to learn additional information from a set
of servers the client removes. Below, we show formal definitions.

Definition 3. We say that Π = (Query,Answer,Output) is an �-round t-
conflict-finding m-server protocol for F = (Fλ : Pλ ×Xλ → Yλ)λ∈N if it satisfies
the following properties:

Syntax. The syntax of Query and Answer is the same as that of Π as an �-round
m-server protocol for F (Definition 1). The algorithm Output takes a state
st(�) and answer (ans(�)i )i∈[m] in round � as input, and outputs (y, z) such that
(1) y ∈ Yλ and z = output, (2) y = ⊥ and z = (G0, G1), which is a non-
trivial partition of [m], or (3) y = ⊥ and z = failure. We call the first (resp.
second) component of the output of Output the y-output (resp. z-output).

Correctness. There exists a negligible function negl(λ) such that for any λ ∈ N

and any (p, x) ∈ Pλ × Xλ, it holds that

Pr
[
(y, z) ← Output(1λ, st(�), (ans(�)i )i∈[m])) : y = Fλ(p, x)

]
≥ 1 − negl(λ),

where

((que(j)i )i∈[m], st
(j)) ← Query(1λ, x, st(j−1), (ans(j−1)

i )i∈[m]),

ans
(j)
i ← Answer(1λ, p, que

(j)
i )

for all j ∈ [�] and i ∈ [m].
Soundness. There exists a negligible function negl(λ) such that for any stateful

algorithm A and any λ ∈ N,

Pr [SoundΠ,A(λ) = 1] < negl(λ), (2)

where SoundΠ,A(λ) is the output of the following experiment:
1. (x, p, T ) ← A(1λ), where x ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size at most

t.
2. For each j = 1, 2, . . . , �,

(a) Let ((que(j)i )i∈[m], st
(j)) ← Query(1λ, x, st(j−1), (ans(j−1)

i )i∈[m]) and
give (que(j)i )i∈T to A.

(b) A outputs (ans(j)i )i∈T .
3. Let (y, z) ← Output(1λ, st(�), (ans(�)i )i∈[m]).
4. Return 1 if y ∈ Yλ \ {Fλ(p, x)} and z = output, or y = ⊥ and z = failure.

Otherwise return 0.



110 R. Eriguchi et al.

Conflict-Finding. For any stateful algorithm A and any λ ∈ N,

Pr [CFΠ,A(λ) = 1] = 0,

where CFΠ,A(λ) is the output of the following experiment:
1. (x, p, T ) ← A(1λ), where x ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size at most

t.
2. For each j = 1, 2, . . . , �,

(a) Let ((que(j)i )i∈[m], st
(j)) ← Query(1λ, x, st(j−1), (ans(j−1)

i )i∈[m]) and
give (que(j)i )i∈T to A.

(b) A outputs (ans(j)i )i∈T .
3. Let (y, z) ← Output(1λ, st(�), (ans(�)i )i∈[m]).
4. Return 1 if z = (G0, G1), G0 � T and G1 � T . Otherwise return 0.

Privacy. There exists a negligible function negl(λ) such that for any stateful
algorithm A and any λ ∈ N,

AdvCF
Π,A(λ) :=

∣
∣
∣Pr

[
PrivCF,0

Π,A (λ) = 0
]

− Pr
[
PrivCF,1

Π,A (λ) = 0
]∣∣
∣ < negl(λ),

where for b ∈ {0, 1}, PrivCF,b
Π,A (λ) is the output b′ of A in the following experi-

ment:
1. (x0, x1, p, T ) ← A(1λ), where x0, x1 ∈ Xλ, p ∈ Pλ and T ⊆ [m] is of size

at most t.
2. For each j = 1, 2, . . . , �,

(a) Let ((que(j)i )i∈[m], st
(j)) ← Query(1λ, xb, st

(j−1), (ans(j−1)
i )i∈[m]) and

give (que(j)i )i∈T to A.
(b) A outputs (ans(j)i )i∈T .

3. Let (y, z) ← Output(1λ, st(�), (ans(�)i )i∈[m]) and give z to A.
4. A outputs a bit b′ ∈ {0, 1}.
For a (possibly non-negligible) function ε(λ), we define a weaker notion of a

ε-sound t-conflict-finding protocol Π as the one satisfying the requirements in
Definition 3 except that the condition (2) is replaced with

Pr [SoundΠ,A(λ) = 1] < ε.

We say that Π is computationally t-conflict-finding if it satisfies the above
requirements for PPT adversaries A.

4.3 Compiler from Conflict-Finding to Actively Secure Protocols

We construct an actively t-secure m-server protocol from a t-conflict-finding
(m − t)-server protocol. We give a sketch here and defer the formal proof to the
full version.



Efficient and Generic Methods to Achieve Active Security 111

Theorem 1. Suppose that there exists an �-round (resp. computationally) t-
conflict-finding k-server protocol ΠCF for F = (Fλ : Pλ × Xλ → Yλ)λ∈N. If
m ≥ t + k, there exists an O(�m2)-round (resp. computationally) actively t-
secure m-server protocol Π for F such that

– Comm(Π) = O(m2 · Comm(ΠCF));
– c-Comp(Π) = O(m2 · c-Comp(ΠCF) + m4);
– s-Comp(Π) = O(m2 · s-Comp(ΠCF)).

Proof (sketch). Define N :=
(
m
2

) − (
m−t
2

)
+ 1 = O(m2). Let V be the set of all

m servers and G(1) be the complete graph on V . Consider the following protocol
Π: For each j = 1, 2, . . . , N ,

1. The client C finds a k-sized subset S(j) of V such that G(j)[S(j)] is connected,
based on the algorithm Ck in Sect. 4.1.

2. C executes the conflict-finding protocol ΠCF with k servers in S(j), and obtain
an output (y(j), z(j)).

3. If z(j) = output, then C outputs the y-output y(j).
4. If z(j) = failure, then C outputs any default value y0.
5. If z(j) is a non-trivial partition (G(j)

0 , G
(j)
1 ) of S(j), then C does the following:

(a) Find an edge e(j) of G(j) crossing the partition (G(j)
0 , G

(j)
1 ) based on the

algorithm E in Sect. 4.1. Such an edge exists since G(j)[S(j)] is connected.
(b) Let G(j+1) be a graph obtained by removing e(j) from G(j).
(c) Go back to Step 1.

Privacy. An adversary corrupting a set T of at most t servers cannot learn
a client’s input from interaction at Step 2 due to the fact that |T ∩ S(j)| ≤
|T | ≤ t and the privacy of ΠCF. The adversary can also see a sequence of graphs
G(1),G(2), . . . ,G(N) but as shown at Step 5, the sequence is determined only by
a sequence of z-outputs z(1), z(2), . . . , z(N). Since ΠCF guarantees privacy even
if z-outputs are leaked, she learns no additional information.

Byzantine-Robustness. The client C outputs an incorrect result only if one
of the following events occurs: (1) z(j) = output and y(j) is an incorrect result
for some j ∈ [N ], (2) z(j) = failure for some j ∈ [N ], or (3) z(j) is a non-trivial
partition for all j ∈ [N ]. It follows from the soundness of ΠCF that the first and
second cases occur only with negligible probability.

We argue that the third case never occurs. Assume otherwise, then for all
j, the z-output z(j) of the j-th iteration is a non-trivial partition (G(j)

0 , G
(j)
1 ) of

S(j). Since the conflict-finding property of ΠCF ensures that either G
(j)
0 or G

(j)
1

includes the set of honest servers H := [m] \ T , the removed edge e(j) = (i1, i2)
satisfies i1 ∈ T or i2 ∈ T and hence the subgraph G(j)[H] is a complete graph for
all j. Since N is larger than the total number N ′ =

(
m
2

) − (
m−|T |

2

)
of unordered

pairs (i1, i2) such that i1 ∈ T or i2 ∈ T , G(N ′) has no edge e = (i1, i2) such
that i1 ∈ T or i2 ∈ T . Therefore, a set of servers S(N ′) involved in the N ′-th
iteration is a subset of H since k ≤ m − t ≤ |H|. We have assumed that z(N

′) is
a non-trivial partition (G(N ′)

0 , G
(N ′)
1 ) of S(N ′) but the conflict-finding property

ensures that H ⊆ G
(N ′)
0 or H ⊆ G

(N ′)
1 , which is contradiction. ��



112 R. Eriguchi et al.

4.4 Compiler from Passively Secure to Conflict-Finding Protocols

First, we show a basic construction of ε-sound conflict-finding protocols for non-
negligible ε. We give a sketch here and defer the formal proof to the full version.

Proposition 7. Let Π be a 1-round (resp. computationally) passively t-secure
m-server protocol for F = (Fλ : Pλ × Xλ → Yλ)λ∈N. Let M = poly(λ). Then,
there exists a 2-round (resp. computationally) ε-sound t-conflict-finding m-server
protocol Π ′ for F such that

– Comm(Π ′) = O(mM · Comm(Π));
– c-Comp(Π ′) = O(m2M · c-Comp(Π));
– s-Comp(Π ′) = O(mM · s-Comp(Π));

where ε = m/M + negl(λ) for some negligible function negl(λ).

Proof (sketch). Consider the following protocol Π ′:

First Round
1. The client C chooses μ∗ uniformly at random from [M ].
2. For all μ ∈ [M ], C computes queries (que〈μ〉

1 , . . . , que
〈μ〉
m ) of Π on his true

input x if μ = μ∗, and on a default input xdef otherwise.
3. C sends the queries (que〈μ〉

i )μ∈[M ] to each server Si as usual, who returns
answers (ans〈μ〉

i )μ∈[M ] to them.
Second Round

1. C sends all the queries (que〈μ〉
k )k∈[m],μ�=μ∗ for the default input xdef to all

servers.
2. For all k ∈ [m] and μ ∈ [M ] \ {μ∗}, each server Si returns an answer

ans
〈μ〉
k (i) as Sk would answer to que

〈μ〉
k .

To obtain an output, C defines vi = (ans〈μ〉
k (i))k∈[m],μ�=μ∗ for all i ∈ [m]. For

simplicity, we here assume that ans〈μ〉
i (i) = ans

〈μ〉
i for all i ∈ [m]. This is because

otherwise, it means that a server Si returns different answers in the first and
second rounds and hence Si is immediately found malicious. The client C parti-
tions the set of servers into equivalence classes G′

0, . . . , G
′
� under the equivalence

relation defined as: i ∼ j
def⇐⇒ vi = vj . If � = 0 (i.e., all servers belong to the

same equivalence class), then he runs the output algorithm of Π on the answers
(ans〈μ∗〉

1 , . . . , ans
〈μ∗〉
m ) to the queries for his true input. He then outputs the result

y along with z = output. If � ≥ 1, then he outputs y = ⊥ and z = (G0, G1),
where G0 = G′

0 and G1 = G′
1 ∪ · · · ∪ G′

�.

Conflict-Finding. Let T be a set of corrupted servers. Since honest servers i, j /∈
T always return the same answer to the same query, we have that ans

〈μ〉
k (i) =

ans
〈μ〉
k (j) for all k ∈ [m] and μ ∈ [M ] \ {μ∗}, and hence vi = vj . Therefore,

the set of honest servers is contained in an equivalence class and it holds that
T ⊆ G0 = G1 or T ⊆ G1 = G0.



Efficient and Generic Methods to Achieve Active Security 113

Soundness. In the first place, the protocol Π ′ never outputs z = failure. Assume
that Π ′ outputs z = output. Then, all servers belong to the same equivalence
class, which implies that vi = vj for any i, j ∈ [m]. To let the client accept an
incorrect result, an adversary needs to let at least one corrupted server Si submit
an incorrect answer exactly to the query que

〈μ∗〉
i for the client’s true input. (This

is because if a corrupted server submits incorrect ans
〈μ〉
i for some μ �= μ∗, then

it is detected when compared with an answer ans
〈μ〉
i (j) from an honest server

j /∈ T .) However, the adversary cannot learn which query encodes the client’s
true input due to the privacy of Π. Therefore, her best possible strategy is to
guess μ∗ uniformly at random, which succeeds only with probability 1/M . The
union bound implies that the error probability is at most m/M .

Privacy. Since M queries are generated independently, an adversary learns no
information on the client’s input x in the first round. The queries revealed in
the second round are the ones for a default input xdef , which is independent of
x, and hence the adversary learns no additional information. The privacy holds
even if the z-output z is leaked, since z is determined only by (vi)i∈[m], which
can be simulated from information that the adversary learns up to the second
round. ��

Next, we show that the error probability of the basic construction can be
made negligible by parallel execution. The proof is deferred to the full version.

Theorem 2. Let Π be a 1-round (resp. computationally) passively t-secure m-
server protocol for F = (Fλ : Pλ × Xλ → Yλ)λ∈N. Then there exists a 2-round
(resp. computationally) t-conflict-finding m-server protocol ΠCF for F such that

– Comm(ΠCF) = O(m2λ · Comm(Π));
– c-Comp(ΠCF) = O(m3λ · c-Comp(Π));
– s-Comp(ΠCF) = O(m2λ · s-Comp(Π)).

Finally, by combining Theorems 1 and 2, we obtain our generic construc-
tion of an O(m2)-round actively t-secure m-server protocol from any 1-round
passively t-secure k-server protocol for k ≤ m − t.

Theorem 3. Suppose that m > 2t. Let k ≤ m − t and Π be a 1-round (resp.
computationally) passively t-secure k-server protocol for F . Then there exists an
O(m2)-round (resp. computationally) actively t-secure m-server protocol Π ′ for
F such that

– Comm(Π ′) = O(m4λ · Comm(Π));
– c-Comp(Π ′) = O(m5λ · c-Comp(Π));
– s-Comp(Π ′) = O(m4λ · s-Comp(Π)).

4.5 Instantiations

By applying our compiler in Theorem 3 to the passively secure protocols in
Propositions 1 and 2, we obtain actively secure protocols for IndexN .



114 R. Eriguchi et al.

Corollary 1. Suppose that m ≥ 3t + t. Let N ∈ poly(λ). Then, there exists an
actively t-secure O(m2)-round m-server protocol Π for IndexN such that

– Comm(Π) = exp(O(
√

log N log log N)) · t3tm4λ;
– c-Comp(Π) = exp(O(

√
log N log log N)) · t3tm5λ;

– s-Comp(Π) = N2 · exp(O(
√

log N log log N)) · 2tm4λ.

In particular, max{Comm(Π), c-Comp(Π)} = No(1) · 2O(t)λ.

Corollary 2. Assume a pseudorandom generator G : {0, 1}λ → {0, 1}2(λ+1).
Suppose that m ≥ 2t + t. Let N ∈ poly(λ). Then, there exists a computationally
actively t-secure 1-round m-server protocol Π for IndexN such that

– Comm(Π) = O(log N · λ2 · t2tm4);
– c-Comp(Π) is O(log N · t2tm5) invocations of G;
– s-Comp(Π) is O(N2 log N · tm4) invocations of G.

In particular, max{Comm(Π), c-Comp(Π)} = log N · 2O(t) · poly(λ).

By applying Theorem 3 to Proposition 3, we obtain an actively secure pro-
tocol for multivariate polynomials.

Corollary 3. Let N,D,M ∈ poly(λ). Let R be a ring such that for any a ∈
{1, 2, . . . ,m − 1}, an element a · 1R has an inverse in R. Suppose that

m >

(
D

2
+ 1

)
t.

Then, there exists an actively t-secure 1-round m-server protocol Π for
PolyN,D,M (R) such that

– Comm(Π) = O(Nm4λ) ring elements;
– c-Comp(Π) = O(Ntm6λ) ring operations;
– s-Comp(Π) = O(NMDm4λ) ring operations.

In particular, max{Comm(Π), c-Comp(Π)} = N · poly(m,λ).

By applying Theorem 3 to Proposition 4, we can reduce the required num-
ber of servers by a factor of d assuming homomorphic encryption for degree-d
polynomials.

Corollary 4. Let d = O(1) and R be a ring such that for any a ∈
{1, 2, . . . ,max{d,m − 1}}, an element a · 1R has an inverse in R, where 1R

is the multiplicative identity of R. Assume a homomorphic encryption scheme
HE for degree-d polynomials over R. Suppose that

m >

(
D

d + 1
+ 1

)
t

Let M,N ∈ poly(λ) and D = O(1). Then there exists a computationally actively
t-secure O(m2)-round m-server protocol Π for PolyN,D,M (R) such that



Efficient and Generic Methods to Achieve Active Security 115

– Comm(Π) = O(Nm5λ · �ct), where �ct is the description length of ciphertexts
of HE;

– c-Comp(Π) = O((Nt · τEnc + τDec)m6λ), where τDec and τEnc are the running
time of the decryption and encryption algorithms of HE, respectively;

– s-Comp(Π) = O(M · m4λτEval), where τEval is the running time per operation
of the evaluation algorithm of HE.

In particular, max{Comm(Π), c-Comp(Π)} = N · poly(m,λ).

By applying Theorem 3 to Proposition 5, we obtain an actively t-secure
protocol for polynomials achieving the minimum number of servers 2t + 1.

Corollary 5. Suppose that m = 2t+1. Assume that the (δ, q)-sLPN assumption
holds for a constant 0 ≤ δ ≤ 1 and a sequence q = (q(λ))λ∈N of prime powers
that are computable in polynomial time in λ. Let L,M,N ∈ poly(λ) and D =
O(log λ/ log log λ). Then, there exists a computationally actively t-secure O(m2)-
round m-server protocol Π for PolyL

N,D,M (Fq) such that

– Comm(Π) = Õ((M2/δN + L)(log q)m5λ2);
– c-Comp(Π) = Õ((M2/δN + L)(log q)m6λ2);
– s-Comp(Π) = Õ(M1/δ+1L(log q)m4λ2).

In particular, max{Comm(Π), c-Comp(Π)} = (M2/δN + L) log q · poly(m,λ).

Finally, by applying Theorem 3 to Proposition 6, we obtain an actively secure
protocol for constant-depth circuits.

Corollary 6. Let N,M ∈ poly(λ) and D = O(1). Suppose that

m ≥
(

(log M + 3)D−1

2
+ 1

)
t.

Then, there exists an actively t-secure O(m2)-round m-server protocol Π for
CircN,D,M such that

– Comm(Π) = O((log M)D−1N(log N)λ2m5);
– c-Comp(Π) = O((log M)D−1N(log N)λtm6 + (log M)2λ2m6);
– s-Comp(Π) = O(M(log M)Nm4λ2).

In particular, max{Comm(Π), c-Comp(Π)} = N · poly(m,λ).

5 Non-interactive Actively Secure Protocols

In this section, we show our compiler from one-round passively t-secure k-
server protocols to one-round actively t-secure m-server protocols such that
m = O(k log k) + 2t. To this end, we introduce a novel combinatorial object
of locally surjective map families, which is a variant of perfect hash families
with a stronger property. We show a probabilistic construction of such families
in Sect. 5.1 and then show a generic compiler from passively secure to actively
secure protocols in Sect. 5.2.



116 R. Eriguchi et al.

5.1 Locally Surjective Map Family

We show the formal definition of locally surjective map families.

Definition 4. Let m,h, k ∈ N and L be a family of maps from [m] to [k]. We call
L an (m,h, k)-locally surjective map family if |AH | > |L|/2 for any H ∈ (

[m]
h

)
,

where AH = {f ∈ L : f(H) = [k]}.
A locally surjective map family satisfies a stronger property than a nearly perfect
hash family L′ introduced in [11], which assumes that for any H ∈ (

[m]
h

)
, there

exists at least one map f ∈ L′ such that f(H) = [k].
We show a probabilistic construction of an (m,h, k)-locally surjective map

family of size O(m) for k = O(h/ log h). The formal proof is deferred to the full
version.

Proposition 8. Let m,h, k ∈ N be such that h ≥ 15, m ≥ 15 and k ≤ h/(γ ln h),
where γ := 1 + (ln 3 − ln ln 15)/(ln 15) < 1.04. Then, there exists an (m,h, k)-
locally surjective map family L such that w := |L| = 14m.

5.2 Compiler from Passively Secure to Actively Secure Protocols

Based on locally surjective map families, we show our construction of one-round
actively secure protocols from any one-round passively secure protocol. We give
a sketch here and defer the formal proof to the full version.

Theorem 4. Suppose that there exists a 1-round (resp. computationally) pas-
sively t-secure k-server protocol Π = (Query,Answer,Output) for F = (Fλ :
Pλ ×Xλ → Yλ)λ∈N. If there exists an (m,m−2t, k)-locally surjective map family
L of size w = poly(λ), there exists a 1-round (resp. computationally) actively
t-secure m-server protocol Π ′ = (Query′,Answer′,Output′) for F such that

– Comm(Π ′) = O(twm · Comm(Π));
– c-Comp(Π ′) = O(twm · c-Comp(Π));
– s-Comp(Π ′) = O(tw · s-Comp(Π)).

Proof (sketch). Let L = {f1, . . . , fw} be an (m,h, k)-locally surjective map fam-
ily, where h = m − 2t. For u ∈ [w] and j ∈ [k], define Gu,j = f−1

u (j) = {i ∈ [m] :
fu(i) = j}. Consider the following protocol Π ′: For all u ∈ [w] and � ∈ [t + 1]
(in parallel),

1. The client C computes k queries (que(u,�)
1 , . . . , que

(u,�)
k ) of Π.

2. C sends que
(u,�)
fu(i)

to each server Si.

3. Each Si returns an answer ans
(u,�)
i as the fu(i)-th server would answer to

que
(u,�)
fu(i)

in Π.

To obtain an output, C sets S ← [m] and L ← 1, and does the following:



Efficient and Generic Methods to Achieve Active Security 117

1. Check whether for all u ∈ [w] and j ∈ [k], the answers ans
(u,L)
i returned by

servers Si in Gu,j are identical with each other.
2. If so, let αu,j be the unique answer by servers in Gu,j and run the output

algorithm of Π on (αu,1, . . . , αu,k) to obtain yu. Then, output the majority
of y1, . . . , yw.

3. Otherwise, find a pair (i1, i2) of servers who are mapped to the same group
Gu,j but returned different answers. That is, fu(i1) = fu(i2) and ans

(u,L)
i1

�=
ans

(u,L)
i2

for some u ∈ [w]. Note that at least one of them are malicious. Then,
update S ← S \ {i1, i2} and L ← L + 1, and go back to Step 1.

Privacy. An adversary corrupting a set T of at most t servers can only learn
queries received by a set fu(T ) of servers in Π. Since |fu(T )| ≤ |T | ≤ t, the
privacy of Π ′ follows from that of Π.

Byzantine-Robustness. An adversary succeeds in letting the client accept
an incorrect result only if at least w/2 out of y1, . . . , yw are incorrect in some
iteration (say, L) in the output phase of C. This implies that for at least w/2 u’s,
there exists a remaining corrupted server i ∈ T ∩ S who submits an incorrect
answer ãns

(u,L)
i �= ans

(u,L)
i . On the other hand, since at most one honest server

is eliminated from S in each iteration, it holds that |H ∩ S| ≥ (m − t) − t =
m − 2t, where H is the set of all honest servers. Therefore, the property of
locally surjective map families ensures that fu(H ∩ S) = [k] holds for at least
one of the above w/2 u’s. In other words, there exists a remaining honest server
i′ ∈ H ∩S such that fu(i′) = fu(i), and the answer ãns(u,L)

i is compared with the
correct answer ans(u,L)

i′ from the honest server i′. Thus, the client can detect the
malicious behavior of the corrupted server i. Therefore, the client can successfully
eliminate at least one malicious server in each iteration and obtain the correct
result after at most t iterations. ��

To obtain a concrete compiler from Theorem 4, we plug in the (m,h, k)-
locally surjective map family in Proposition 8 with h = m − 2t.

Theorem 5. Suppose that there exists a 1-round (resp. computationally) pas-
sively t-secure k-server protocol Π for F . If

m ≥ 2t + 15 and
m − 2t

γ ln(m − 2t)
≥ k,

where 1 < γ < 1.04 is the constant in Proposition 8, then there exists a 1-round
(resp. computationally) actively t-secure m-server protocol Π ′ for F such that

– Comm(Π ′) = O(tm2 · Comm(Π));
– c-Comp(Π ′) = O(tm2 · c-Comp(Π));
– s-Comp(Π ′) = O(tm · s-Comp(Π)).

Remark 3. The computational complexity of the construction in Theorem 5 does
not take into account that of finding a locally surjective map family L. We note
that the choice of L does not affect the security of a protocol. Hence we can
construct it before the protocol starts and the family is reusable any number of
times.



118 R. Eriguchi et al.

5.3 Instantiations

By applying our compiler in Theorem 5 to the protocols in Propositions 1 and 2,
we obtain the following corollaries. The formal proof appears in the full version.

Corollary 7. Suppose that m ≥ max{2t3t+2t, 2t+15}. Let N ∈ poly(λ). Then,
there exists a computationally actively t-secure 1-round m-server protocol Π for
IndexN such that

– Comm(Π) = exp(O(
√

log N log log N)) · t23tm2;
– c-Comp(Π) = exp(O(

√
log N log log N)) · t23tm2;

– s-Comp(Π) = N2 · exp(O(
√

log N log log N)) · t2tm.

In particular, max{Comm(Π), c-Comp(Π)} = No(1) · 2O(t).

Corollary 8. Assume a pseudorandom function G : {0, 1}λ → {0, 1}2(λ+1).
Suppose that m ≥ max{t2t+1 + 2t, 2t + 15}. Let N ∈ poly(λ). Then, there exists
an actively t-secure 1-round m-server protocol Π for IndexN such that

– Comm(Π) = O(log N · λ · t22tm2);
– c-Comp(Π) is O(log N · t22tm2) invocations of G;
– s-Comp(Π) is O(N2 log N · t2tm) invocations of G.

In particular, max{Comm(Π), c-Comp(Π)} = log N · 2O(t) · poly(λ).

Note that it is possible to apply the compiler in Theorem 5 to the passively
secure k-server protocols in Propositions 3, 4, 5, and 6. Since k > t, the number
of servers of the resulting protocols is Ω(k log k) + 2t = Ω(t log t). On the other
hand, these protocols can also be made actively secure by using the standard
error correction algorithm [41] or the technique of [38], and one can then obtain
actively secure protocols that has a smaller number of servers O(t). We thus do
not show instantiations based on these protocols.

Acknowledgements. This research was partially supported by JSPS KAKENHI
Grant Numbers JP20J20797 and JP19H01109, Japan, JST CREST Grant Num-
bers JPMJCR2113 and JPMJCR22M1, Japan, and JST AIP Acceleration Research
JPMJCR22U5, Japan.

References

1. Ananth, P., Chandran, N., Goyal, V., Kanukurthi, B., Ostrovsky, R.: Achieving
privacy in verifiable computation with multiple servers – without FHE and without
pre-processing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 149–166.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 9

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-
2 14

https://doi.org/10.1007/978-3-642-54631-0_9
https://doi.org/10.1007/978-3-642-14165-2_14
https://doi.org/10.1007/978-3-642-14165-2_14


Efficient and Generic Methods to Achieve Active Security 119

3. Augot, D., Levy-dit-Vehel, F., Shikfa, A.: A storage-efficient and robust private
information retrieval scheme allowing few servers. In: Gritzalis, D., Kiayias, A.,
Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 222–239. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12280-9 15

4. Banawan, K., Ulukus, S.: The capacity of private information retrieval from Byzan-
tine and colluding databases. IEEE Trans. Inf. Theory 65(2), 1206–1219 (2019)

5. Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with applica-
tions to database search problems. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 395–411. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 24

6. Barkol, O., Ishai, Y., Weinreb, E.: On d-multiplicative secret sharing. J. Cryptol.
23(4), 580–593 (2010)

7. Barkol, O., Ishai, Y., Weinreb, E.: On locally decodable codes, self-correctable
codes, and t-private PIR. Algorithmica 58(4), 831–859 (2010)

8. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the o(n/sup 1/(2k-
1)/) barrier for information-theoretic private information retrieval. In: The 43rd
Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings,
pp. 261–270 (2002)

9. Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: a unified
construction. In: Automata, Languages and Programming, pp. 912–926 (2001)

10. Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and private infor-
mation retrieval. In: 2012 IEEE 27th Conference on Computational Complexity,
pp. 258–268 (2012)

11. Beimel, A., Stahl, Y.: Robust information-theoretic private information retrieval.
J. Cryptol. 20(3), 295–321 (2007)

12. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

13. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

14. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1292–1303, CCS 2016 (2016)

15. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Sublinear GMW-style compiler for MPC
with preprocessing. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12826, pp. 457–485. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84245-1 16

16. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices with-
out FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS,
vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 1

17. Bunn, P., Kushilevitz, E., Ostrovsky, R.: CNF-FSS and its applications. In:
Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography – PKC
2022, vol. 13177, pp. 283–314. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-97121-2 11

18. Canetti, R., Riva, B., Rothblum, G.N.: Refereed delegation of computation. Inf.
Comput. 226, 16–36 (2013)

https://doi.org/10.1007/978-3-319-12280-9_15
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-030-84245-1_16
https://doi.org/10.1007/978-3-030-84245-1_16
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-97121-2_11
https://doi.org/10.1007/978-3-030-97121-2_11


120 R. Eriguchi et al.

19. de Castro, L., Lee, K.: VeriSimplePIR: verifiability in simplePIR at no online
cost for honest servers. In: 33rd USENIX Security Symposium (USENIX Security
2024) (2024, to appear). https://www.usenix.org/conference/usenixsecurity24/
presentation/de-castro

20. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 28

21. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–982 (1998)

22. Colombo, S., Nikitin, K., Corrigan-Gibbs, H., Wu, D.J., Ford, B.: Authenticated
private information retrieval. In: 32nd USENIX Security Symposium (USENIX
Security 2023), pp. 3835–3851 (2023)

23. Damg̊ard, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or:
efficient MPC over arbitrary rings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 799–829. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 27

24. Dao, Q., Ishai, Y., Jain, A., Lin, H.: Multi-party homomorphic secret shar-
ing and sublinear MPC from sparse LPN. In: Handschuh, H., Lysyanskaya, A.
(eds.) Advances in Cryptology – CRYPTO 2023. LNCS, vol. 14082, pp. 315–348.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38545-2 11

25. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information
retrieval. In: 21st USENIX Security Symposium (USENIX Security 2012), pp. 269–
283 (2012)

26. Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private information
retrieval implies oblivious transfer. In: Preneel, B. (eds.) Advances in Cryptology
– EUROCRYPT 2000. LNCS, vol. 1807, pp. 122–138. Springer, Cham (2000).
https://doi.org/10.1007/3-540-45539-6 10

27. Dvir, Z., Gopi, S.: 2-server PIR with subpolynomial communication. J. ACM 63(4),
1–15 (2016)

28. Efremenko, K.: 3-query locally decodable codes of subexponential length. SIAM J.
Comput. 41(6), 1694–1703 (2012)

29. Eriguchi, R., Kurosawa, K., Nuida, K.: On the optimal communication complex-
ity of error-correcting multi-server PIR. In: Kiltz, E., Vaikuntanathan, V. (eds.)
Theory of Cryptography, TCC 2022. LNCS, vol. 13749, pp. 60–88. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-22368-6 3

30. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

31. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009,
pp. 169–178 (2009)

32. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

33. Goldberg, I.: Improving the robustness of private information retrieval. In: 2007
IEEE Symposium on Security and Privacy (SP’07). pp. 131–148 (2007)

34. Hazay, C., Ishai, Y., Marcedone, A., Venkitasubramaniam, M.: LevioSA:
lightweight secure arithmetic computation. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp. 327–344,
CCS 2019 (2019)

https://www.usenix.org/conference/usenixsecurity24/presentation/de-castro
https://www.usenix.org/conference/usenixsecurity24/presentation/de-castro
https://doi.org/10.1007/978-3-642-36594-2_28
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-031-38545-2_11
https://doi.org/10.1007/3-540-45539-6_10
https://doi.org/10.1007/978-3-031-22368-6_3
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-55220-5_35


Efficient and Generic Methods to Achieve Active Security 121

35. Hazay, C., Venkitasubramaniam, M., Weiss, M.: The price of active security in
cryptographic protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 184–215. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 7

36. Ishai, Y., Lai, R.W.F., Malavolta, G.: A geometric approach to homomorphic secret
sharing. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 92–119. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-75248-4 4

37. Korte, B.H., Vygen, J.: Combinatorial Optimization, vol. 1. Springer, Cham (2011).
https://doi.org/10.1007/978-3-642-77489-8

38. Kurosawa, K.: How to correct errors in multi-server PIR. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 564–574. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 20

39. Orlandi, C., Scholl, P., Yakoubov, S.: The Rise of Paillier: homomorphic secret
sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12696, pp. 678–708. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77870-5 24

40. Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR and appli-
cations. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
687–717. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 23

41. Rudra, A.: Lecture 27: Berlekamp-Welch algorithm. https://cse.buffalo.edu/
faculty/atri/courses/coding-theory/lectures/lect27.pdf

42. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

43. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic private
information retrieval. SIAM J. Comput. 37(4), 1046–1056 (2007)

44. Yao, X., Liu, N., Kang, W.: The capacity of multi-round private information
retrieval from Byzantine databases. In: 2019 IEEE International Symposium on
Information Theory (ISIT), pp. 2124–2128 (2019)

45. Yoshida, M., Obana, S.: Verifiably multiplicative secret sharing. IEEE Trans. Inf.
Theory 65(5), 3233–3245 (2019)

46. Zhang, L.F., Wang, H.: Multi-server verifiable computation of low-degree poly-
nomials. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 596–613
(2022)

47. Zhang, L.F., Wang, H., Wang, L.P.: Byzantine-robust private information retrieval
with low communication and efficient decoding. In: Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security, pp. 1079–1085,
ASIA CCS 2022 (2022)

https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1007/978-3-030-45724-2_7
https://doi.org/10.1007/978-3-030-75248-4_4
https://doi.org/10.1007/978-3-642-77489-8
https://doi.org/10.1007/978-3-030-34621-8_20
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/978-3-030-84252-9_23
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/lectures/lect27.pdf
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/lectures/lect27.pdf
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

	Efficient and Generic Methods to Achieve Active Security in Private Information Retrieval and More Advanced Database Search
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Non-interactive Actively Secure Protocols
	2.2 Interactive Actively Secure Protocols

	3 Preliminaries
	3.1 Secure Computation in the Client-Servers Setting
	3.2 Existing Passively Secure Protocols

	4 Interactive Actively Secure Protocols
	4.1 Graph Theory
	4.2 Formalization of Conflict-Finding Protocols
	4.3 Compiler from Conflict-Finding to Actively Secure Protocols
	4.4 Compiler from Passively Secure to Conflict-Finding Protocols
	4.5 Instantiations

	5 Non-interactive Actively Secure Protocols
	5.1 Locally Surjective Map Family
	5.2 Compiler from Passively Secure to Actively Secure Protocols
	5.3 Instantiations

	References


