
SPRINT: High-Throughput Robust
Distributed Schnorr Signatures

Fabrice Benhamouda1(B) , Shai Halevi1 , Hugo Krawczyk1 , Yiping Ma2 ,
and Tal Rabin1,2

1 AWS, New York, NY, USA
fabrice.benhamouda@gmail.com, shai.halevi@gmail.com, hugokraw@gmail.com

2 University of Pennsylvania, Philadelphia, PA, USA
{yipingma,talr}@seas.upenn.edu

Abstract. We describe robust high-throughput threshold protocols
for generating Schnorr signatures in an asynchronous setting with
potentially hundreds of parties. The protocols run a single message-
independent interactive ephemeral randomness generation procedure
(i.e., DKG) followed by non-interactive signature generation for mul-
tiple messages, at a communication cost similar to one execution of a
synchronous non-robust protocol in prior work (e.g., Gennaro et al.) and
with a large number of parties (ranging from few tens to hundreds and
more). Our protocols extend seamlessly to the dynamic/proactive set-
ting where each run of the protocol uses a new committee with refreshed
shares of the secret key; in particular, they support large committees
periodically sampled from among the overall population of parties and
the required secret state is transferred to the selected parties. The proto-
cols work over a broadcast channel and are robust (provide guaranteed
output delivery) even over asynchronous networks.

The combination of these features makes our protocols a good match
for implementing a signature service over a public blockchain with many
validators, where guaranteed output delivery is an absolute must. In that
setting, there is a system-wide public key, where the corresponding secret
signature key is distributed among the validators. Clients can submit
messages (under suitable controls, e.g., smart contracts), and authorized
messages are signed relative to the global public key.

Asymptotically, when running with committees of n parties, our pro-
tocols can generate Ω(n2) signatures per run, while providing resilience
against Ω(n) corrupted nodes and broadcasting only O(n2) group ele-
ments and scalars (hence O(1) elements per signature).

We prove the security of our protocols via a reduction to the hardness
of the discrete logarithm problem in the random oracle model.

F. Benhamouda, S. Halevi, H. Krawczyk and T. Rabin—Work done prior to joining
Amazon, partially while at the Algorand Foundation.

c© International Association for Cryptologic Research 2024
M. Joye and G. Leander (Eds.): EUROCRYPT 2024, LNCS 14655, pp. 62–91, 2024.
https://doi.org/10.1007/978-3-031-58740-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58740-5_3&domain=pdf
http://orcid.org/0000-0002-8300-1820
http://orcid.org/0000-0003-3432-7899
http://orcid.org/0000-0003-3130-1888
http://orcid.org/0000-0002-3183-9402
http://orcid.org/0000-0003-1386-605X
https://doi.org/10.1007/978-3-031-58740-5_3

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 63

1 Introduction

In this work, we describe a suite of protocols that we call1, aimed at gener-
ating many Schnorr signatures at a low amortized cost. SPRINT consists of
a single interactive distributed key generation (DKG) for generating message-
independent ephemeral randomness, followed by a non-interactive and robust
signature generation for many messages. Here, robustness means that with a
sufficient number of honest parties, the protocol is guaranteed to output the
requested signatures.

Threshold Schnorr signature schemes have seen a revival due to applications
in the blockchain space. However, the bulk of existing work focuses on the case
of a small number of signers, targeting applications such as key custody and
multi-signatures. For those cases, one can afford a non-robust scheme where a
single misbehaving party can cause the protocol to abort: If the misbehaving
party can be identified, then it can be removed before re-running the protocol.
This is indeed the approach most recent schemes embrace (e.g., [8,15,27,28]).
However, the remove-and-restart approach does not scale well with the number
of signers, since the protocol may need to be restarted as many times as the
number of misbehaving parties. Also, this approach cannot be used in a fully
asynchronous setting, where there is no distinction between a malicious party
that refuses to participate and an honest party that is just slow. Here, we study
robust threshold Schnorr signatures in scenarios with many messages and many
signers (possibly hundreds of them), in an asynchronous setting.

One of the motivating scenarios for considering a large set of signers signing
many messages is provided by blockchain settings, where the validator nodes
should generate signatures on behalf of the blockchain (see more below). That
use case precludes non-robust protocols, as it requires an asynchronous protocol
that remains feasible for many signers. At the same time, public blockchains
provide tools such as a broadcast channel and PKI, which can simplify the
design of the signature protocol. Moreover, the large number of parties makes
it reasonable to assume a large honest majority, a significant advantage when
building robust protocols.

Let us recall Schnorr-type signatures. They work over a group of prime order
p with a generator G; a signature on a message M relative to secret key s ∈ Zp

and public key S = s ·G, has the form (R, r+e ·s), where r ∈ Zp is an ephemeral
random secret, R = r ·G is ephemeral randomness, and e = Hash(S,R,M) ∈ Zp.
A standard way to compute robust threshold Schnorr signatures among n parties
who secret-share a long-term secret key s is to run a distributed key generation
(DKG)2 procedure [16] that produces a message-independent ephemeral ran-
domness R = r · G where r is a fresh random value secret-shared among the
parties. This phase is often called preprocessing or just DKG, and the message-

1 SPRINT is a permuted acronym for “Robust Threshold Schnorr with Super-
INvertible Packing”.

2 Throughout the paper, we use a DKG protocol for different purposes, including
ephemeral Schnorr randomness generation, long-term key generation, and proactive
refreshment.

64 F. Benhamouda et al.

independent ephemeral randomness is often called presignatures. Then, the par-
ties use their shares of s and r to produce signature shares that can be combined
into a single standard Schnorr signature. The bulk of the cost for signature gen-
eration is the DKG procedure that has O(n2) cost both in terms of bandwidth
and computation.

Robust threshold Schnorr schemes have been known for over 20 years [16,37],
but they are less efficient than their non-robust counterparts. These robust pro-
tocols include at least 2–3 rounds to generate message-independent ephemeral
randomness, and at least one additional round for signature generation. More-
over, the randomness-generation rounds are expensive, using a bandwidth of at
least Ω(n2) broadcasted group elements. Non-robust schemes can reduce the
randomness generation part to a single round, performed before knowing the
message to be signed, and a single non-interactive message-dependent round
(where parties just output signature shares).

Our robust signature protocol features a two-round message-independent dis-
tributed ephemeral randomness generation, followed by a single non-interactive
signature generation round. However, the latter non-interactive round can pro-
duce signatures for many messages, hence amortizing the cost of the randomness
generation protocol over many signatures. The protocols we present can produce
thousands of signatures in each run, at a communication cost similar to one exe-
cution of a synchronous non-robust protocol in prior work [16].

Our protocols are flexible: they are useful in the fixed-committee setting
where the same set of parties is used repeatedly, but extends seamlessly to the
dynamic/proactive setting where each run of the protocol is done by a differ-
ent committee with refreshed shares of the secret key. They naturally support
large systems, where committees are periodically sub-sampled from among the
overall population of parties and the required shared secret state is transferred
to the selected parties. The protocols are also modular : we present a high-level
protocol based on a generic agreement protocol (for the parties to agree on a set
of correctly dealt shares) instantiated on an asynchronous broadcast channel.
Without tying the high-level signature protocol to the details of the agreement
or the communication model, we are able to take advantage of systems (such as
blockchain) that natively provide agreement and communication primitives.

This agreement protocol is instrumental in achieving one of our significant
design goals, namely, to perform well in the optimistic case of normal network
conditions, but also to avoid degrading performance unnecessarily when network
delays (possibly adversarially induced) are significant. Crucial for ensuring this
property is to achieve agreement as soon as possible among a sufficient number
of parties. This calls for forgoing techniques such as complete secret sharing [32]
where all honest parties must receive shares of the secret, hence adding longer
delays (and latency) to the protocol completion.

We next describe techniques used to achieve the above functional and per-
formance properties of our solution, starting with two main components: (a) an
early agreement protocol allowing non-complete sharing and (b) “extreme pack-
ing” that combines packed secret sharing [13] with super-invertible matrices [24]
to extend the number of signatures we get from a single ephemeral-randomness
creation stage.

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 65

A Simple Early-agreement Protocol. Many threshold systems require com-
plete secret sharing, i.e., all honest parties must receive shares of the secret. This
means that honest parties cannot terminate until they ensure that all other
honest parties will eventually learn their shares. The completeness requirement
often adds significant complexity to the protocol and an opportunity for the
adversary to create high-latency executions in the asynchronous setting. In our
protocols we forgo completeness and its adverse effects by only requiring that
a sufficiently large subset of honest parties learn their shares so that they can
generate signatures; there is no need to ensure that all honest parties get shares.

Weakening the completeness requirement of secret sharing allows us to use
a very simple agreement protocol over the underlying asynchronous broadcast
channel. Furthermore, the use of a broadcast channel enables verifiable com-
plaints by shareholders, namely proofs that a dealer sent bad shares. Our use
of these complaints is markedly different than in prior works. In protocols that
aim at complete sharing (such as [19]), a party uses the complaints to inform
other parties that it is missing its share, triggering a complex protocol by which
the other honest shareholders help them get their missing shares. In contrast,
we use the complaint to disqualify the bad dealer, there is no need to help
the complaining shareholder get any more shares. This technique simplifies the
agreement protocol and saves rounds of broadcast3 (see Sects. 2.2 and 4 and our
full version [4, Appendix E] for details). We believe that this simple agreement
protocol could find other uses beyond DKG and threshold signatures.

Extreme Packing. To maximize efficiency, we introduce an efficiency param-
eter a, such that each run of the protocol produces a(n − 2t) signatures where t
is the maximal number of corrupted parties supported by the protocol. In more
detail, we use super-invertible matrices [24] to get a sharing of at least n−2t ran-
dom polynomials for every run of the ephemeral randomness generation, and use
packed secret sharing [13] to put a random values in each of these polynomials
(see Sects. 2.4 and 2.5).4

We pay for this extreme packing with a slight reduction in resilience: To
withstand t corrupted parties, the number of nodes that we need is n ≥ 3t +
2a − 1, compared to n ≥ 3t + 1 for a naive protocol that generates a single
signature.5 The result is a bandwidth-optimal protocol, up to some not-too-large
constants: With n parties, it provides resilience against Ω(n) corrupted parties,
using broadcast bandwidth of only O(1) group-elements/scalars per signature, in
both the optimistic and the pessimistic cases (where the number of faulty parties
is small or large, respectively). We stress that the odds of everybody participating

3 Our use of an underlying broadcast channel also obviates the need to find a biclique
of dealers and shareholders, which is sometimes needed when giving up completeness,
and which can be computationally hard (cf. [2]).

4 We also describe some optimizations related to faster multiplication by super-
invertible matrices in our full version [4, Appendix B].

5 Since our techniques apply in the asynchronous setting, they inherently require n ≥
3t + 1; see our full version [4, Appendix H].

66 F. Benhamouda et al.

honestly diminishes as the number of parties grows, so in the large-committee
setting it becomes more important to have an efficient pessimistic path. In our
protocol, the pessimistic case features additional complaints, but those add at
most O(t/a) group-elements/scalars per signature.

For a few examples in the static-committee setting (and assuming no com-
plaints), setting the efficiency parameter at a = n/5, they withstand t = n/5 cor-
rupted parties and consume broadcast bandwidth of roughly 17.33 scalars/group-
elements per signature. To support t = n/4 we must reduce the efficiency
parameter to a = n/8, resulting in a per-signature bandwidth of about 34
scalars/group-elements. This O(1) complexity is to be contrasted with the O(n2)
complexity of the standard threshold Schnorr scheme [16]. See our full version [4,
Appendix C] for details.

1.1 Other Techniques

Achieving high efficiency requires the use of many ideas and techniques, beyond
the two main ones that we described above. Below is a list of these techniques,
in no particular order. See Sect. 2 for a detailed overview of the entire protocol
and the roles that these techniques play.

Local SIMD Computation. Working with packed secret sharing increases
the number of secrets shared, but current MPC solutions for using packed secret
sharing entail non-trivial protocols, even for simple functions [18]. For Schnorr
signatures we need to compute s · (e1, . . . , ea)+ (r1, . . . , ra) where s and the rv’s
are secret and the ev’s are public. While simple, an MPC protocol for comput-
ing that function still seems to require interaction, since it includes a product.
Furthermore, when using simple Shamir sharing for s, some joint processing is
needed to create multiple signatures.

To enable a more efficient protocol with full advantage of packing and to
avoid interaction, we introduce the following technique. We share the long-term
secret key in a packed vector (s, . . . , s) instead of just the single scalar s. This
enables SIMD generation of the partial signature, with each party using only a
local multiplication (without degree reduction), with randomization done locally
as well. Using this technique, signature generation becomes non-interactive: The
only communication required is for the party to broadcast their partial signa-
ture, after which anyone can assemble the signatures themselves. The cost is a
reduction in the resilience to t < (n − 2a + 2)/3. See Sect. 2.6 for details.

Refreshing Packed Secrets. In the dynamic/proactive setting, we need to
refresh the sharing of the packed vector (s, . . . , s). This requires a generalization
to the GRR protocol [17], see Sect. 2.7 and our full version [4, Appendix I]. We
remark that in the current version of the writeup we only prove security of the
static protocol. The proof for the dynamic/proactive protocol should be a fairly
straightforward extension, using the same techniques. See a brief discussion in
our full version [4, Appendix G.7].

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 67

Security of Distributed Parallel Schnorr Signatures. The starting point
for our protocol is similar (though not quite identical) to the GJKR distributed
Schnorr signature protocol from [16], which we extend and optimize to sign many
messages. However, GJKR-like protocols [16] are known to fail in the concurrent
setting where the protocol is run in parallel for multiple messages; specifically,
such protocols are open to ROS-type attacks [5,11]. Our work focuses on signing
a given set of messages (a batch) in parallel. To enable this parallelism and
avoid ROS-type attacks, we use a mitigation technique similar to prior work
(e.g., [20,27]). As far as we know, prior to our work this specific technique was
only analyzed in the generic group model for ECDSA signatures [20]. In our case,
we show it is sufficient for proving the security of our protocols (for signing a
single batch of messages) via reduction to the hardness of the discrete logarithm
problem in the programmable random-oracle model. See Sect. 2.3 and our full
version [4, Appendix G]. These techniques do not guarantee concurrent security
for signing multiple batches in parallel. For this, Shoup [36] shows that technique
from FROST can be combined with our protocols to obtain full concurrent
security (see detailed discussion on this in Sect. 1.3).

Robust Threshold Signatures. Our protocols provide robustness in a strong
sense. They terminate with signatures for all a(n − 2t) input messages as soon
as t + 2a − 2 honest parties output their shares. Invalid shares can be identified
based on public information and discarded. This holds in both synchronous and
asynchronous networks. In the former case, after two rounds of broadcast for
generating ephemeral randomness, parties generate non-interactively the shares
from which all signatures are recovered.

Smaller Sub-sampled Committees Using a Beacon. To use our protocols
in massive systems with a huge number of nodes, one needs some mechanism
to sub-sample the committees from among all the nodes in the system. One
natural approach is to use self-selection via verifiable random functions (VRFs),
as done, e.g., in [7]. However, this results in somewhat loose tail bounds and
thus somewhat-too-big committees.

Instead, we note that we can get smaller committees by using a randomness
beacon to implement the sub-sampling, resulting in better bounds and smaller
committees. Thus, when acting in this large dynamic committee settings, we
augment the signature protocol to implement this beacon, which turns out to be
almost for free in our case. See Sect. 2.8 for more details. See also our full ver-
sion [4, Appendix A] for an additional optimization in this setting: using smaller
optimistic parameters by default with a safe fallback mechanism to pessimistic
parameters.

1.2 Prior Work

Recent years saw a lot of activity trying to improve the efficiency of thresh-
old signature schemes, including underlying techniques such as verifiable secret

68 F. Benhamouda et al.

sharing (VSS) and distributed key generation (DKG), much of which focused on
asynchronous protocols and some emphasizing robustness (guaranteed output
delivery). Below we focus on some of the more recent works on these subjects.

Threshold Signatures. Komlo and Goldberg described FROST [27], a non-
robust threshold Schnorr signature protocol that requires a single-round signing
protocol after a single-round preprocessing phase. The improved round complex-
ity comes at the expense of robustness, as it uses additive sharings and requires
correct participation of all prescribed signers. In our case, we use two rounds of
interaction in a message-independent phase but can then generate multiple sig-
natures non-interactively and with guaranteed output delivery. Our schemes are
designed to work in an asynchronous regime hence requiring a super-majority of
honest parties (see details in our full version [4, Appendix H]).

ROAST [35] presents a wrapper technique that can transform concurrently
secure non-robust threshold signature schemes with a single signing round and
identifiable abort into a protocol with the same properties but also robust in the
asynchronous model. In particular, this applies to the FROST protocol result-
ing in a scheme with concurrent security for any threshold t < n and optimal
robustness for up to n− t parties. The price for this strengthening is significant:
it involves O(tn2 + tnλ) per-signature transmitted bits (λ is a security parame-
ter) assuming a trusted coordinator and O(tn3 + tn2λ) without the coordinator;
whereas we only require O(λ) broadcasted bits (strictly better even when con-
sidering a quadratic overhead of the underlying broadcast).

Garillot et al. [15] implement a threshold Schnorr signature based on deter-
ministic signing, e.g., EdDSA, in order to avoid the potential risks of random-
ness reuse. They present a dishonest-majority non-robust scheme using zero-
knowledge proof and garbling techniques that, while optimized for this specific
application, is much more expensive than protocols that do not offer determin-
istic signing (like FROST and our SPRINT protocols).

Lindell [28] presents a threshold Schnorr signature scheme proven under stan-
dard assumptions in the UC model. The focus of that work was conceptual sim-
plicity and UC security rather than optimal efficiency. As in FROST, it utilizes
additive sharing, hence necessitating the choice of a new set of signers when a
chosen set fails to generate a signature.

For ECDSA signatures, Groth and Shoup [19] recently described a rather
efficient ECDSA signing protocol, with emphasis on guaranteed output delivery
over asynchronous channels. (The underlying VSS in their work achieves com-
pleteness, which is not needed in our case.) They use verifiable complaints in
order to notify other parties that they do not have a share. These complaints
trigger a complex protocol, by which honest shareholders help each other to get
all their missing shares.

Joshi et al. [25] address the lack of concurrent security in the basic threshold
Schnorr scheme from [16] by running two DKG executions per signature and
using a mitigation technique similar to the one we use here to bind a batch of

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 69

messages to be signed. However, while our solution generates multiple signatures
with a single DKG run, theirs requires two such runs per single signed message.

Distributed Randomness Generation (DKG). 6 As we said, a key dis-
tinction between our work and previous DKG protocols in the signature set-
ting [1,30,38], is that we do not require complete sharing (where all honest par-
ties must receive their shares). While completeness may be desired in traditional
MPC applications, eschewing this requirement is not a weakness but a feature
in our case, as it enables more efficient signature protocols.

Neji et al. [30] design a DKG intended to avoid the need to reveal the shares
of inactive (or slow) shareholders for disqualification as required in the GJKR
[16] solution. However, they do so by requiring additional rounds of interaction
and significant extra computational cost, namely the party who gets complained
does O(n) group additions and each other party does O(t) scalar multiplica-
tions where t is the corruption threshold (these costs are merely for handling
complaints beyond the verification). We achieve higher performance by using
publicly verifiable complaints: in our protocols, each party can verify that a
complaint is valid by doing a constant number of group operations and without
any additional interaction.

Yurek et al. [38] described a randomness generation protocol over asyn-
chronous communication channels, in the context of the offline phase of generic
secure MPC. They provide completeness for secret sharing needed for their MPC
applications. As in a recent work by Groth and Shoup [19], they use verifiable
complaints, yet unlike our work, they do not disqualify dealers upon a verifi-
able complaint—they instead complete the set of shares. Their asynchronous
VSS has an amortized network bandwidth O(n log n) in the optimistic case and
O(n2 log n) in the pessimistic case.

Abraham et al. describe Bingo [1], a packed method for asynchronous secret
sharing that allows a dealer to generate many sharings at an amortized com-
munication cost of O(λn) per secret. This solution requires KZG-style polyno-
mial commitments [26] to get completeness (and thus relies on pairing-friendly
groups). Specifically, the dealer performs a KZG commitment to a polynomial
of degree 2t (where n = 3t+1), which concretely is slightly more expensive than
our protocol. Also, our agreement sub-protocol makes a more direct usage of the
underlying broadcast channel than the agreement in Bingo, and is more efficient.

Various other papers (e.g., [9,10]) deal with the question of asynchronous
DKG. However, they do not directly relate to our paper as the main thrust of
their work is reaching an agreement in the asynchronous setting. In contrast, we
assume an underlying broadcast channel, simplifying the agreement significantly.

6 Recall we use DKG to refer to distributed key generation for long-term keys, for gen-
erating ephemeral randomness as needed in Schnorr signatures, and also for proactive
refreshment.

70 F. Benhamouda et al.

1.3 Subsequent Work

There have been several papers published after our paper was first made public.

Shoup’s Many Faces of Schnorr. In [36], Shoup presents a unifying frame-
work for obtaining robust concurrently-secure threshold Schnorr signatures com-
bining techniques from our work and FROST [29]. This framework applies to
two-phase protocols, like ours, consisting of an offline phase for generating “pres-
ignatures” (a.k.a., ephemeral randomness), and then an online phase for generat-
ing signatures from those presignatures. The concurrent-security aspect of these
protocols means that many copies of the online phase can be run concurrently,
as long as sufficiently many unused presignatures are available. Shoup shows
that concurrent security can be added to any protocol within this framework
(including ours) in one of two ways: either using two fresh DKG-generated secret
sharing of ephemeral randomness à-la-FROST (thus doubling the cost), or using
a randomness beacon (which adds rounds of communication).

Groth-Shoup Asynchronous Robust DKG. In [21], Groth and Shoup
present an asynchronous robust DKG protocol which can be used as a basis
for a threshold signature protocol, that require a total of O(nλ) bits of point-
to-point communication per signature over the optimistic path (roughly when
all parties behave honestly), amortized over O(n2) signatures. The optimistic
path communication complexity matches (asymptotically) our communication
complexity of O(λ) bits broadcast per signature.7

However, the Groth-Shoup protocol is a lot less efficient on the pessimistic
path, when parties misbehave: Its communication complexity increases by a
factor O(t′) where t′ is the number of actual misbehaving parties. In contrast,
the communication complexity of our protocol increases by at most a small
constant factor, no matter how many parties misbehave (as long as there are at
most t of them). On the other hand, the Groth-Shoup protocol can withstand
up to (n − 1)/3 misbehaving parties, compared to our t ≤ (n − 2a + 1)/3.
Our protocol is therefore a better choice in the large-committee setting, where
consistent performance also on the pessimistic path is important, and where
it is reasonable to assume a larger honest majority. The Groth-Shoup protocol
may be better in the small-committee setting, where higher resilience is more
important and assuming the optimistic path makes more sense.

The main difference between our protocol and Groth-Shoup stems from the
fact that the latter requires complete secret sharing, where all the honest parties
get their shares. In particular, if a dealer misbehaves and does not appropri-
ately distribute shares to some honest parties, these honest parties need other
honest parties to help them reconstruct their shares, whereas our protocol just
disqualifies that dealer. On the other hand, the Groth-Shoup protocol uses com-
plete secret sharing to eliminate the need for polynomial commitments in the
7 Broadcasting messages of size � ≥ nλ bits, as done in our protocol, can be achieved

using a total point-to-point communication of O(�n) bits [14,29].

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 71

sharing phase. Instead, they use error correction to reconstruct signature shares
at the end of the protocol without having to check validity against some public
commitment.

Another difference is that [21] uses a construction based on Pascal triangle for
super-invertible matrices, which is better than the small Vandermonde construc-
tion (see details in [4, Appendix B]). This way, they reduce the cost of evaluating
the product by the super-invertible matrix from ≈ (b − 1)n log n/ log p scalar-
element products in that solution to ≈ b(n−(b+1)/2)+1 group additions (which
correspond to about (b(n − (b + 1)/2) + 1)/(1.5 log p) scalar-element products).
Our proposal to use the ECFFT-EXTEND algorithm (see Sect. 2.4) is more effi-
cient asymptotically (O(k log k) scalar-element products, for k = max(b, n − b))
but the Pascal solution would most likely perform better up to n ≈ 8000.

1.4 Organization

The rest of this manuscript is organized as follows: In Sect. 2, we provide a high-
level step-by-step overview of our protocols and the various components that are
used in them. In Sect. 3, we describe in more detail our high-level protocol for the
static (fixed-committee) and dynamic settings. In Sect. 4, we describe the basic
agreement protocol that we use in the static-committee setting, the agreement
in the dynamic setting can be found in our full version [4, Appendix E]. Security
proofs and additional details are deferred to appendices. In particular, in the full
version [4, Appendix D], we discuss how to use SPRINT in one of our motivating
applications to implement a large-scale signature service over a public blockchain.

2 Technical Overview

We consider a static setting where the set of parties (a shareholder commit-
tee) is fixed and a dynamic one where shareholder committees change over
time while keeping the system’s signing key (in particular, its public verifica-
tion key) unchanged. In the latter case, shares are refreshed and proactivized
between committees. We begin by describing our protocols in the static com-
mittee setting, and discuss only towards the end the extra components for the
dynamic/proactive settings. The basic protocols for these two settings are shown
in Figs. 1 and 2.

In the static case, we have a committee that holds shares of the long-term
secret key s, shared via a degree-d polynomial F(X) with party i holding σi =
F(i) (for some degree d that we determine later) and where s = F(0). They
first run a distributed key-generation (DKG) protocol to generate a sharing
of ephemeral randomness, then use their shares of the long-term secret and
ephemeral randomness to generate Schnorr-type signatures on messages. The
DKG and signature protocols can be pipelined, where the committee uses the
randomness that was received in the previous run to sign messages, and at the
same time prepares the randomness for the next run.

While the static setting features just a single committee, we still often refer
to parties as dealers when they share secrets to others, and as shareholders when

72 F. Benhamouda et al.

they receive those shares. In the dynamic setting, these will indeed be different
parties, but in the static case, they may be the same.

Notations. We use Greek letters (e.g., σ, ρ, π, φ) and lowercase English letters
(e.g., e, r, s) to denote scalars in Zp, and also use some English lowercase letters
to denote indexes (i, j, k, �, u, v) and parameters (a, b, n, t). We denote the set of
integers from x to y (inclusive) by [x, y], and also denote [x] = [1, x]. We rely on
a group of prime order p generated by G. We use the additive notation for this
group. Group elements are denoted by uppercase English letters (G,S,R, etc.).
Polynomials are denoted by bold Uppercase English letters (F,H, I,Y,Z), and
commitments to them are sometimes denoted with a hat (F̂, Ĥ).

2.1 Starting Point: The GJKR Protocol

Our starting point is the protocol of Gennaro et al. [16] for distributed key gener-
ation (DKG), and a variation on their use of that protocol for Schnorr signatures.
In their DKG protocol, each dealer uses Verifiable Secret Sharing (VSS) to share
a random value; parties then add all the shares from dealers that shared their
values correctly (thus requiring an agreement protocol on which dealers fall in
this set, denoted QUAL). Specifically, each dealer Di shares a random ephemeral
secret (which is later used to compute ephemeral randomness and partial signa-
tures) using a degree-d′ polynomial Hi (for some degree d′ that we define later),
and commits publicly to this polynomial. Concretely, Di shares the random
ephemeral secret Hi(0) by sending shares Hj(i) to each shareholder Pi.

The shareholders then agree on a set QUAL of “qualified dealers” whose
values will be used, and a corresponding shareholder set HOLD that were able to
receive valid shares. Shareholders in HOLD can compute shares for the ephemeral
secrets from the shares that they received from these qualified dealers. Namely,
each shareholder can add the shares (i.e., the Shamir shares of ephemeral secrets
of dealers) that they received from dealers in QUAL, and the resulting ephemeral
secret is shared via the polynomial H =

∑
i∈QUAL Hi.

In our protocol, shareholders use their shares on polynomials H (the
ephemeral secret) and F (the long-term secret) to compute Shamir shares of the
signatures, and then reconstruct the signatures themselves. We note that this is
somewhat different from the signature protocol in [16]: there, it is the dealers
in QUAL that generate the signature (and HOLD is only used as a backup to
reconstruct the input of misbehaving dealers), whereas we let the shareholders in
HOLD generate the signature directly. Our variant could be more round-efficient
in some cases, and is easier to deploy in a proactive setting where the long-term
key is shared using Shamir sharing (as opposed to additive sharing as used in
the GJKR protocol). But otherwise these protocols are very similar.

Pedersen vs. Feldman Commitments. It was pointed out by Gennaro et
al. [16] that sharing randomness usually requires the dealers to commit to their
sharing polynomials using statistically-hiding commitments such as Pedersen’s

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 73

[33]. Using the less expensive Feldman secret sharing, where dealers commit to
coefficients hij of their polynomials by broadcasting the group elements hij · G,
are susceptible to rushing attacks in the DKG setting. Luckily, Gennaro et al.
prove in [16, Sec 5] that for the purpose of generating the ephemeral randomness
for Schnorr signatures, it is safe to use Feldman secret-sharing, and their proof
techniques extend to our signature protocol as well.

We note that for efficiency reasons, in our protocols we use commitments
to the value of the polynomials at certain evaluation points rather than to the
coefficients as done in [16] (see details in [4, Appendix A]).

2.2 The Agreement Protocol

We utilize the QUAL-agreement protocol in two different settings: for generation
of ephemeral randomness (in both the static and dynamic setting), and for re-
sharing of the long-term key (in the dynamic setting only). We observe that
randomness generation is less demanding of the agreement protocol than key-
refresh: For key-refresh we need the shareholders to have shares from at least
d + 1 dealers (d is the degree of the sharing polynomials), whereas randomness
generation can work even with a single honest dealer. Therefore, in the static
setting we use a weaker (and more efficient) agreement protocol than in the
dynamic setting. Both protocols use PKI, and both operate over a total-order
(aka atomic) broadcast channel, providing eventual delivery of messages from
honest parties, sender authentication, and prefix consistency (i.e., the views of
any two honest parties are such that one is a prefix of the other).

We start with the more efficient (but weaker) protocol for the static setting.
The protocol begins with the dealers distributing their shares, and then the
shareholders engage in a protocol to agree on sets of “qualified” and “bad”
dealers QUAL,BAD, and a set of shareholders HOLD. We want the following
properties: (i) every shareholder in HOLD received valid shares from every dealer
in QUAL, and (ii) BAD consists entirely of dishonest dealers. This protocol is
parameterized by d0, d1 (to be defined later as a function of the number of corrupt
parties and some additional parameters), and it ensures that |HOLD| ≥ d0 and
|QUAL| + |BAD| ≥ d1.

In more detail, each dealer Di broadcasts all the shares that it deals,
encrypted under the keys of their intended recipients, together with commit-
ments to the sharing polynomial Hi. As this information is visible to all, share-
holders that receive shares that are inconsistent with the commitments can
broadcast a verifiable complaint against a dealer, consisting of a proof that the
dealer has sent them a bad share.

The shareholders initially set QUAL to the first d1 dealers whose messages
appeared on the broadcast channel. Then each shareholder broadcasts verifiable
complaints if they have any, and otherwise they broadcast the empty set (signi-
fying that they have all the shares from dealers in QUAL). Now, QUAL contracts
by eliminating all the dealers who have a valid verifiable complaint against them
on the broadcast channel, moving them to the set BAD. The set HOLD is fixed to
the first d0 shareholders who broadcast verifiable complaints (or the empty set)

74 F. Benhamouda et al.

that were verified as valid complaints. By construction, we have |HOLD| ≥ d0
and |QUAL| + |BAD| ≥ d1, and the set BAD contains only (verifiably) dishonest
dealers. Also, since QUAL,BAD, and HOLD are determined by what is visible on
the broadcast channel, then all honest shareholders that read up to some point
in the channel will agree on these sets. This protocol’s specification can be found
in Fig. 3, and the proof is provided in Theorem 4.1.

In the dynamic setting (that includes also key-refresh), we need to ensure
|QUAL| ≥ d1 (as opposed to just |QUAL| + |BAD| ≥ d1). To that end, we run
iterations of the basic protocol above. At the beginning of the i + 1’st iteration,
we add to QUAL as many new dealers as the number of dealers that were added
to BAD in the i’th iteration. Once no more dealers are added to BAD, we have
|QUAL| ≥ d1, and we are done. A full specification is in our full version [4,
Appendix E].

2.3 Signing Many Messages in Parallel

Our large-scale signature service needs to handle signing many messages in
parallel, which brings up a security problem: The proof of security from [16,
Sec 5] when using Feldman commitments for Schnorr signatures, requires that
the reduction algorithm makes a guess about which random oracle query the
adversary intends to use for the signature. When signing many messages in par-
allel, the reduction will need to guess one random-oracle query per message,
leading to exponential security loss. Moreover, Benhamouda et al. demonstrated
in [5] that this is not just a problem with the reduction, indeed this protocol is
vulnerable to an actual forgery attack when many messages are signed in par-
allel. To fix this problem, we use a mitigation technique somewhat similar to
[20,27], where the ephemeral secrets are all “shifted” by a public random value
δ, which is only determined after all the messages and commitments are known.

As recalled in the introduction, a Schnorr signature on a message Mv relative
to secret key s and public key S = s · G, has the form (Rv, rv + ev · s), where rv

is an ephemeral random secret, Rv = rv · G, and ev = Hash(S,Rv,Mv), where
Hash maps arbitrary strings into Zp. (We are using a superscript v to indicate
a plurality of messages and their respective signatures.) In our context, we first
run DKG to generate all the required rv’s and corresponding Rv’s, and get from
the calling application all the messages Mv’s to be signed. Then we compute
δ = Hash(S, (R1,M1), (R2,M2), . . .) and Δ = δ · G. The signature on Mv is
then set as (Rv + Δ, rv + δ + ev · s), where ev = Hash(S,Rv + Δ,Mv).

With this mitigation technique, the reduction only needs to guess the
random-oracle query in which δ is computed, recovering the argument from [16,
Sec 5] and reducing security to the hardness of computing discrete logarithms
in the random-oracle model. See our full version [4, Appendix G.3]. We note
that our specific mitigation techniques provide security for a single run of the
protocol on input a set of multiple messages to be signed, but it does not imply
concurrent security for multiple parallel runs of the protocol on different sets of
messages. Following [36], we can obtain concurrent security by either adopting
the FROST mitigation (that requires doubling the DKG cost) or by relying on
a beacon (which would add one broadcast round).

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 75

2.4 Using Super-Invertible Matrices

As described so far, we would need to run a separate copy of the DKG protocol
to generate each ephemeral secret rv, but we can do much better. For starters,
assume that we can ensure many honest dealers in the set QUAL (say at least b
of them). Then we can use a (public) super-invertible matrix [24] to generate b
random ephemeral values in each run of the protocol.

Recall that the DKG protocol has each dealer Di share a random poly-
nomial Hi, then the shareholders compute a single random polynomial H′ =∑

i∈QUAL Hi and the ephemeral random secret is H′(0). Intuitively, the polyno-
mial H′ is random if even a single Hi is random, so a single honest dealer in
QUAL is enough to get a random ephemeral value. But if we have many hon-
est dealers in QUAL, then we can get many random polynomials. Specifically,
suppose we have b honest dealers in QUAL and let Ψ = [ψu

i] be a b-by-n super-
invertible matrix, i.e., each b-by-b sub-matrix of Ψ is invertible. Then we still have
each dealer Di share just a single polynomial Hi, but now the shareholders can
construct b random polynomials H1, . . . ,Hb, by setting Hu =

∑
i∈QUAL ψu

i Hi

for all u ∈ [b]. By the same reasoning as before, if we have b honest dealers in
QUAL with random input polynomials Hi, then the b output polynomials will
also be random and independent since the b-by-b matrix corresponding to the
rows of these b honest dealers is invertible.

The actual proof is more involved since we still use Feldman commitments in
the protocol, which means that a rushing adversary can bias the output polyno-
mials somewhat. But using essentially the same reduction as before, we can still
reduce the security of the Schnorr signature protocol to the hardness of comput-
ing discrete logarithms in the random oracle model. One technical point is that
the security proof in the asynchronous communication model requires that the
set QUAL is included in the hash function query that determines δ. That is, we
compute δ = Hash(S,QUAL, (R1,M1), (R2,M2), . . .). The reason is that in the
asynchronous case, we cannot guarantee that all honest dealers will be included
in QUAL. If we didn’t include it in the hash query, then the simulator would
have to guess the set QUAL, incurring at least an

(
n
b

)
loss factor in security.

We note that to ensure b honest dealers in QUAL, it is enough to run the
“weaker” agreement protocol (Fig. 3) with d1 = b+ t, where t is an upper bound
on the number of dishonest dealers. Indeed, that protocol ensures that |QUAL|+
|BAD| ≥ d1 = b + t, and BAD contains only dishonest dealers. Therefore, the
number of dishonest dealers in QUAL is at most t − |BAD|, and the number of
honest dealers is at least |QUAL|−(t−|BAD|) = |QUAL|+ |BAD|−t = d1−t = b.

Faster Multiplication by a Super-Invertible Matrix. While the use of
super-invertible matrices enables us to produce many more random shared
secrets without increasing bandwidth, computing all these sharings requires that
each shareholder multiply their sub-shares by that super-invertible matrix “in
the exponent”.8 The super-invertible matrix multiplication is the most computa-
8 We use additive notation for group operations, but sometimes use the traditional

exponentiation terminology.

76 F. Benhamouda et al.

tionally intensive operation in the protocol. We thus should carefully implement
the matrix multiplication to have good computational efficiency in practice.

We propose two solutions to make these operations more efficient. The first
solution, pointed out to us by Victor Shoup, is to use a Vandermonde matrix
Ψ corresponding to the powers of small scalars. We show in our full version [4,
Appendix B.1], that a variant of the Horner’s rule allows to evaluate the multiply-
by-Ψ operation using (b − 1)n scalar-by-element products with log n-bit scalars
(instead of full-length scalars, that is log p-bit scalars). This is equivalent to about
(b−1)n log n/ log p full scalar-by-element product, that is a log n/ log p speed-up
over the naive solution. In practice, p has at least 256 bits, while n = b+ t varies
but is unlikely to be higher than 10 bits, so this is a more than 25× speed-up.

Our second solution is new and consists of selecting Ψ so that it corresponds
to FFT-related operations. However, when implementing Schnorr signatures over
the elliptic curve ED25519, the scalar field Zp does not even have a 23-th root of
unity.9 Instead, we show that we can use the ECFFT-EXTEND algorithm from
Ben-Sasson et al. [3], resulting in O(k log k) scalar-by-element products, where
k = max(b, t) and n = b+ t. This is asymptotically better than the first solution.
Details are provided in the full version [4, Appendix B.2].

We implemented both solutions, benchmarked them, and report results in [4,
Appendix B.3]. In short, for ED25519, when b = t is a power of 2, the small Van-
dermonde matrix solution is better in practice for up to b = t = 28 = 256, after
which the ECFFT solution is more efficient.10 The benchmarking code is avail-
able from https://github.com/fabrice102/ecfft-group, under the MIT license.
This code is based on the code [6] and adapts it to work with polynomials
with coefficients in a group, instead of in the base field.

2.5 Using Packed Secret Sharing

Similarly to above, we can also assume many honest parties among the set HOLD
of shareholders, and use packed secret sharing [13] to get even more ephemeral
shared values: If HOLD contains at least 2t + a shareholders (for some a ≥ 1),
then we can let each shared polynomial pack a values rather than just one: Each
shared polynomial Hu will have degree d′ ≥ t + a − 1 (rather than d′ = t)
and will encode the a values Hu(0),Hu(−1), . . . ,Hu(−a+1). (Below we denote
these scalar values by ru,v = Hu(1 − v), with the corresponding group elements
Ru,v = ru,v · G.)

Importantly, this amplifies the effect of using super-invertible matrices: We
have each dealer Di sharing a single random polynomial Hi of degree d′, packing
a values, and we derive b random degree-d′ polynomials Hu from these sharings,
which gives us a · b shared random scalars.
9 p = 2252 +27742317777372353535851937790883648493 and the factorization of p−1

is 22 × 3 × 11 × 198211423230930754013084525763697 × 276602624281642239937218
680557139826668747.

10 The ECFFT solution performs better for b = t is a power of two. But we show in
the full version [4, Appendix B.2] that it also works for general b and t, with a cost
depending on the smallest power of 2 larger or equal to max(b, t).

https://github.com/fabrice102/ecfft-group

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 77

2.6 More Efficient Signing

Once the ephemeral secrets are shared, we use them—together with the shared
long-term secret key—to generate many signatures. Computing on the packed
ephemeral secrets would generically require a full-blown secure-MPC protocol
among the shareholders, but we observe that we can generate all the a signatures
from each packed random polynomial with only a single share-reconstruction
operation.

To see how, recall again that a Schnorr-type signature has the form
(Rv, rv + ev · s).11 Our shareholders hold Shamir sharings of the secret key
s and the vector (r1, r2, . . . , ra) of ephemeral secrets (where rv = H(1 − v)
for v ∈ [a]). Also, the public key S, the messages Mv’s, and the group
elements Rv’s are publicly known, so everyone can compute all the scalars
ev = Hash(S,Rv,Mv). To improve efficiency, we also share the long-term key s
in a packed form, namely the shareholders hold a Shamir sharing of the vector
(s, s, . . . , s), via a polynomial F of degree d = t + a − 1 (i.e., F(1 − v) = s for
v ∈ [a]). All they need to do, therefore, is compute the pointwise linear function
(r1, r2, . . . , ra) + (e1, e2, . . . , ea) � (s, s, . . . , s).

While pointwise addition can be computed locally, computing the pointwise
product (e1, e2, . . . , ea) � (s, s, . . . , s) seems like still requiring a nontrivial inter-
active protocol, even for a known vector of ev’s. But we can eliminate even this
little interaction, by assuming a larger honest majority and using higher-degree
polynomials for the ephemeral randomness. Specifically, we assume that HOLD
contains at least 2t + 2a − 1 shareholders (so at least t + 2a − 1 honest ones),
and modify the DKG protocol so that the sharing of the ephemeral secrets is
done with random polynomials of degree d′ = d+a−1 = t+2a−2 (rather than
degree t + a − 1).

Since the ev’s are known, each shareholder can interpolate the unique degree-
(a − 1) polynomial that packs the vector (e1, . . . , ea). Denote this polynomial as
Z (we have Z(1 − v) = ev for v ∈ [a]). Then each shareholder j with a share
σj = F(j) for the long-term secret, can locally compute σ′

j = Z(j) ·σj . Note now
that the σ′

j ’s lie on the polynomial Z ·F of degree d+a−1 that packs the vector
(e1 · s, . . . , ea · s), since (Z · F)(1 − v) = ev · s for v ∈ [a].

Each shareholder j, with share ρj on an ephemeral-randomness polynomial,
computes and broadcasts πj = σ′

j + ρj , and we note that these πj ’s lie on a
polynomial of degree d′ that packs all the values (r1+e1s, . . . , ra+eas). Moreover,
if the ephemeral secrets were shared via a random degree-d′ polynomial, then the
πj ’s constitute a random sharing of that vector. After seeing d′ + 1 = t + 2a − 1
valid shares of these broadcast values, everyone can reconstruct the polynomial
and read out all the scalars φv = rv+ev ·s that are needed for these a signatures.

2.7 The Dynamic Setting

So far, we have described our protocols for the static (fixed committee) setting.
Here we present the additional components that we need in the dynamic case,
11 We suppress here the index u, which is irrelevant for this discussion.

78 F. Benhamouda et al.

where we have different committees for the dealers and shareholders. Impor-
tantly, in all the protocols above we never assumed that the dealers and share-
holders are the same committee, so they all still work as-is also in the dynamic
setting. What is missing is a share-refresh protocol where the dealers can pass to
the shareholders a sharing of the long-term secret s. Here we essentially just use
the GRR protocols of Gennaro et al. from [17], with a minor adaptation since
we need to share it in a packed manner.12

Each dealer Di begins with a share σi of the long-term secret key s, shared
using a “packed” polynomial F(X) of degree d = t+a−1. Namely, σi = F(i), and
F(0) = F(−1) = · · · = F(1− a) = s. In addition, everyone knows a commitment
to F. Di reshares its share using a fresh random degree-d polynomial Fi with
Fi(0) = Fi(−1) = · · · = Fi(1 − a) = σi, and also commits publicly to Fi.

This is done in parallel to the sharing of the random, degree-d′, polyno-
mial Hi. The shareholders then engage in an agreement protocol (full protocol
description can be found in [4, Appendix E]) to determine the sets HOLD of
shareholders, QUAL1,BAD1 for the H dealers, and QUAL2,BAD2 for the F deal-
ers, with |HOLD| ≥ n − t, |QUAL1| ≥ n − t, and |QUAL2| ≥ d + 1.13 Having
received σij = Fi(j) from each dealer Di ∈ QUAL2, Pj then computes their
share of the long-term secret as σ′

j =
∑

i∈QUAL2
λiσij . The λi’s are the Lagrange

coefficients for recovering Q(0) from {Q(i) : i ∈ QUAL2} for degree-d polyno-
mials Q. As usual, denoting F′ =

∑
i∈QUAL2

λiFi, the shares of shareholders in
HOLD satisfy σ′

j = F′(j), and also

F′(0) =
∑

i∈QUAL2

λiFi(0) =
∑

i∈QUAL2

λiF(i) = F(0).

Moreover, since all the Fi’s satisfy Fi(0) = Fi(−1) = · · · = Fi(1 − a), then so
does F′.

2.8 Sub-sampling the Committees

One of the main use cases for our protocol is an open system (such as a public
blockchain), which could be very large. In this use case, the committees in each
epoch must be sub-sampled from the entire population, and be large enough to
ensure a sufficiently large honest majority with overwhelming probability.

One way of implementing this sub-sampling would be to use verifiable ran-
dom functions (VRFs), but this would result in rather loose tail bounds and
large committees. We can get smaller committees by having the committees
implement also a randomness beacon, outputting a (pseudo)random value that
the adversary cannot influence at the end of each run of the protocol. At the
12 As described here, the protocol only works for resharing a packed vector of the form

(s, s, . . . , s). But it is not very hard to extend it to reshare arbitrary packed vectors
(using somewhat higher-degree polynomials), see the full version [4, Appendix I].

13 Recall that in the dynamic setting we use an agreement protocol that provides
stronger guarantees about the size of QUAL, than in the static setting. Namely
|QUAL| ≥ d1 instead of just |QUAL| + |BAD| ≥ d1. See Sect. 2.2.

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 79

beginning of the T + 1’st protocol, everyone therefore knows the value UT that
was produced by the beacon in the T ’th run. Members of the T +1’st committee
determine the members of the T + 2’nd committee by applying a PRG on UT .

To see why this helps, note that when the total population is very large, the
number of honest parties in a committee chosen by VRFs is approximated by a
Poisson random variable with parameter λ = (1−f)n, where f is the fraction of
faulty parties in the overall population (and n is the expected committee size).
On the other hand, the number of honest parties in a committee when using the
randomness beacon follows a Binomial distribution with parameters n, p = 1−f .
The Binomial turns out to be much more concentrated than the Poisson, hence
the number of honest parties is much closer to (1 − f)n with the beacon than
with the VRF.

Implementing the randomness beacon for our protocol turns out to be very
easy. Since the T ’th committee held a sharing of the long-term secret scalar s,
they could locally compute a “sharing in the exponent” of s · Hash′(T) (with
Hash′ hashing into the group). Namely, everyone computes the group element
E = Hash′(T), then each dealer Di in the T ’th committee with share σi

can compute and broadcast UT,i = σi · E, together with a Fiat-Shamir zero-
knowledge proof that UT,i is consistent with the (public) Feldman commitment
of σi (which is a proof of equality of discrete logarithms).14 Once the quali-
fied set QUAL2 is determined, everyone can interpolate “in the exponent” and
compute UT =

∑
i∈QUAL′ λi · UT,i = s · E, where the λi’s are the Lagrange inter-

polation coefficients. The group element UT is the next output of the beacon.
Note that the adversary has no influence over the UT ’s, they are always set as
UT = s ·Hash′(T). On the other hand, before the shares UT,i are broadcast, the
value UT is unpredictable (indeed pseudorandom) from the adversary’s point of
view.

2.9 More Optimizations

While quite efficient as-is, in many settings there are additional optimizations
that can significantly improve the performance of our protocols, such as com-
mitting to evaluation points (rather than coefficients) and using optimistic
parameters with safe fallback when sub-sampling committees (See details in [4,
Appendix A]). Also, in the full version [4, Appendix H] we discuss the dishonest
majority case for a mixed malicious/semi-honest adversary model.

2.10 Parameters and Performance

Various parameters and performance analysis are provided in the full version [4,
Appendix C], here we give a very brief overview.

To get enough honest parties in HOLD, we need to have n ≥ 3t+2a− 1, and
we often assume that this holds with equality. Then we set d1 = |QUAL| = n − t

14 More precisely, there is a public commitment F̂ of F from which anyone can derive
a Feldman commitment σi · G of σi. See Sect. 2.1.

80 F. Benhamouda et al.

and get b = n − 2t, hence we can get as many as ab = a(n − 2t) signatures for
each run of the protocol. Some example numbers are n = 10, t = 2, a = 2, b = 6
(12 signatures per run), or n = 64, t = 15, a = 10, b = 34 (340 signatures per
run). In the setting of a large open system where committees are sub-sampled,
we can even sign more messages in each run without reducing resiliency: for
example, assuming 80% honest parties, we can sub-sample a committee of size
n = 992 with t = 336, a = 40, b = 320, and sign 12880 messages in each run.15

If we set t = a = n/5, we can sign 3n2/25 messages per run, with an amor-
tized bandwidth of fewer than 35 scalars/group elements broadcasted per signa-
ture. For the sub-sampling parameters above with n = 992 (with a group of size
≈ 2256), the total broadcast bandwidth is only under 100MB.

Given parameters n, t, a, the parties broadcast less than 4n2 scalars and
group elements (in total). If we set t = a = n/5, we can sign 3n2/25 messages
per run, with an amortized bandwidth of fewer than 35 scalars/group elements
broadcasted per signature. For the sub-sampling parameters above with n = 992
(with a group of size ≈ 2256), the total broadcast bandwidth is only under
100MB.

In terms of computation, the most expensive part is multiplying the super-
invertible matrix in the exponent (which is needed to compute the public R’s).
This part takes at most at(n − 2t) products (using a naive algorithm), which is
t scalar-elements multiplications per signature. But as we explain in Sect. 2.4,
we can use much more efficient matrix-multiplication to reduce it, or just use
small scalars. With the small-scalar Vandermonde optimization from above, the
computation is about 1 min.

Since the super-invertible matrix multiplication is the most expensive part
of the protocol, we wrote code to benchmark actual performances for both our
possible optimizations from Sect. 2.4. In the full version [4, Appendix B.3], we
show the results for various values of b. For b = t = 256, our first solution
provides a 29× speed up compared to the naive solution and only takes 682ms
when a = 1 (on a single core of a 2.20GHZ AMD EPIC 7601 CPU). Even
with a = 64, the total super-invertible matrix multiplication would take less
than 1 min on a single-core. In addition, this operation is trivially parallelizable,
computations for each of the a packed values are completely independent of each
other and can be run on different threads.

For b = t = 512, our second solution becomes faster and provides a 28×
speed up compared to the naive solution. It only takes 2.80 s to compute the
super-invertible matrix multiplication in that setting for a = 1, on a single core.

15 We need n ≥ 657 to get (statistical) safety failure < 2−80 (and liveness failure
< 2−11), without packing (i.e., a = 1). Setting a = 40 only requires n ≥ 992 while
multiplying the number of messages that can be signed by 40 and while providing
the same safety guarantees. This is because we have less than (n − 1)/3 corrupted
parties selected in each committee with overwhelming probability. See details in the
full version [4, Appendix D.1].

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 81

3 The SPRINT Protocols

3.1 Static-Committee Setting

We begin with our base protocol shown in Fig. 1, namely, a robust threshold
Schnorr signature scheme for the static-committee case where the set of par-
ties is fixed. It follows the design and rationale presented in Sect. 2 (particu-
larly, till Sect. 2.6), resulting in a two-round ephemeral randomness generation
phase (dependent on the number of messages to be signed but not on the mes-
sages themselves) followed by a non-interactive signing procedure. It considers
n parties of which at most t are corrupted, and is given a packing parameter
a and an amplification (via a super-invertible matrix) parameter b. It assumes
an asynchronous broadcast channel. The protocol consists of three parts. An
initial setup stage where parties obtain shares σi of a long-term secret key s,
and corresponding public key S = s · G, and Si = σi · G are made public.
We assume that sharing the secret key uses packed secret sharing, namely, the
parties’ shares σi lie on a polynomial F of degree d = t + a − 1, such that
F(0) = F(−1) = . . . = F(−a + 1) = s. This initial setup can be done via a
distributed key generation (DKG) protocol or another secure procedure.

The second part is the generation of ephemeral randomness for Schnorr sig-
natures. Following the DKG blueprint of [16,34], each party Pi shares a random
polynomial Hi by transmitting the value Hi(j) to each other party Pj and com-
mitting to Hi(·) over a public broadcast channel. Our application allows for the
use of the more efficient Feldman secret sharing [12]. In our case, parties com-
mit to their polynomials H by broadcasting values H(v) · G for d′ + 1 different
evaluation points v where d′ is the degree of H (specifically, in our case, this set
is defined as the interval [−a + 1, t + a − 1]).

A central part of such a protocol is for the parties to agree on sets of dealers
(denoted QUAL,BAD) that shared their polynomials correctly/badly, and a large
enough set of parties (denoted HOLD) that received correct sharings from all
parties in QUAL. In Sect. 4.1 we describe an implementation of such a protocol
over an asynchronous atomic broadcast channel.

The source of efficiency for SPRINT is the use of packing to share a secrets at
a little more cost than sharing just one and attaining further amplification, by a
factor of b, using super-invertible matrices [24] (see Sect. 2.4). Here, b is the num-
ber of rows in the super-invertible matrix Ψ , e.g., a Vandermonde matrix, and
is set to its largest possible value (as analysis shows), b = |QUAL| − (t − |BAD|).
(Smaller values of b can be used too, if fewer messages need to be signed.) Once
the randomness generation procedure is completed, each party in HOLD gener-
ates (non-interactively) signature shares consisting of a point on a polynomial
Y that when reconstructed (via interpolation of d′ + 1 signature shares) can be
evaluated on a points to achieve a signatures. Remarkably, using super-invertible
matrices one can generate b different polynomials Y, hence resulting in a·b signa-
tures at the cost of a single execution of the (interactive) randomness generation
procedure.

82 F. Benhamouda et al.

Fig. 1. SPRINT Scheme in the Static-Committee Setting

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 83

In all, we have that after the randomness generation procedure, parties gen-
erate their shares of the signatures without any further interaction. Each party
Pj computes locally their signature shares πu

j , u ∈ [b] and publishes them.
Reconstructing the signature for each batch of a messages Mu1, . . . Mua can
be done by interpolation from any d′ + 1 correct signature shares πu

j . More-
over, signature shares can be verified individually by a Schnorr-like validation
πu
j · G = Zu(j) · Sj + ρuj · G, where all the required information is public. Thus,

invalid signature shares can be discarded.
An additional ingredient in the protocol is the use of the “mitigation value”

δ = Hash(S,QUAL, {(Ru,v,Mu,v) : u ∈ [b], v ∈ [a]}) needed to achieve security
when running the a · b signatures in parallel, as explained in Sect. 2.3.

We prove the security of the SPRINT protocol in Fig. 1 in the full version [4,
Appendix G].

3.2 The Dynamic/Proactive Setting

The adaptation of SPRINT to the dynamic setting is shown in Fig. 2. See also
Sect. 2.7. It requires two types of sharings. One is ephemeral randomness gener-
ation as in the static setting, where dealers have no input, and they just share
random polynomials. The other is a share refresh (i.e., proactive resharing),
in which the dealers have shares of the long-term secret, and they refresh the
sharing of that secret to the shareholders. These two sharings are enabled by
(almost) the same DKG-like protocol, both using the agreement protocol (see
details in [4]) with the same set HOLD and two QUAL sets for the two sharings.
Note that the use of the same set HOLD for both sharings is crucial to guarantee
that enough parties (those in HOLD) have both shares of the secret s and of
the ephemeral randomness as needed for generating signatures. Proving security
of this protocol is very similar to the static case; see more details in our full
version [4, Appendix G.7].

A Note on the “Traditional” Proactive Setting. The proactive setting
[22,23,31] was originally envisioned as a periodic operation, say every week, in
order to heal the system from active and passive corruptions. When running
SPRINT in such a scenario, one would not want to perform a share refresh with
each run of the signature generation protocol (Fig. 1) but only at the end of
a full proactive period. However, by decoupling the two sharings (refresh and
randomness generation), we lose the ability to use the same set HOLD for both
cases. This raises a liveness issue: If the share refresh ends with a set HOLD
of size n − t and a subsequent execution of SPRINT ends with a different set
HOLD′ of the same size, then it may be the case that the intersection of these
two sets will have less than t + 1 uncorrupted parties, hence unable to create
signatures.

However, the traditional proactive setting already assumes the share refresh
to happen within a more controlled environment.16 Thus, it makes sense to con-
16 E.g., it assumes human intervention to replace or reboot servers, to export public

keys from new servers or servers that choose new (encryption) keys, etc. (see [23]).

84 F. Benhamouda et al.

Fig. 2. SPRINT Scheme in the Dynamic-Committee Setting

sider a more synchronous setting (with monitored and resolved delays) during
refresh in which case the share refresh operation can be assumed to be completed
after a defined amount of time for non-adversarial servers. In this case, parties
that did not make it to HOLD by that time will be disqualified from participat-
ing in signature generation until the next proactive execution and be counted
towards the bound t on corrupted parties. This guarantees that all honest parties
in sets HOLD created by runs of SPRINT until the next refresh period will have
valid shares of the secret s.

4 The Agreement Protocol

For agreement, we observe that in the static setting we can have a more effi-
cient agreement protocol than in the proactive/dynamic setting. As a result, we

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 85

present two protocols of a very similar flavor for the task of reaching agreement.
In this section we describe in detail the base agreement protocol, which achieves
the best results for the static setting. Then we sketch the enhancements that we
need for the dynamic/proactive setting in what we refer to as the full protocol,
which is described in the full version [4, Appendix E].

This protocol is designed to work over an asynchronous total-order (aka
atomic) broadcast channel. Recall that a total-order broadcast channel provides
the following guarantees:

– Eventual delivery. A message broadcasted by an honest party will eventually
be seen (unmodified) by all honest parties. However, the adversary can change
the order in which messages are delivered to the broadcast channel.

– Prefix consistency. Considering the views of the broadcast channel at a given
time by two different honest parties, the view of one is a prefix of the other.

– Authenticity. Messages that are received on behalf of honest parties were
indeed sent by those honest parties.

We also assume a PKI, i.e., each party has an encryption public key that is known
to all other parties. The protocol below uses only the broadcast channel for
communication, private messages are sent by encrypting them and broadcasting
the ciphertext.

Time and Steps. While a total-order broadcast channel is not synchronous,
and thus it has no absolute notion of time, we are still ensured that the parties
all see the same messages in the same order. We can therefore define a “step T”
as the time when the T ’th message is delivered. Even though different parties
may see it at different times, they will all agree on the message that was delivered
at step T . If we have a protocol action that is based only on the messages that
appeared on the broadcast channel up to (and including) the T ’th message, we
are ensured that all the honest parties will take the same action, and they will
all know that they did it at “step T”.

In the description below we distinguish between dealers and shareholders.
The protocol begins with the dealers broadcasting messages, then the share-
holders engage in a protocol among themselves based on the dealer messages
that they see on the channel. For every dealer message and every shareholder,
the shareholder either accepts this message or complains about it.

An important technique in our protocol is the use of “verifiable complaints”:
This is a complaint by a shareholder about a dealer, that will be accepted by all
other honest shareholders. (In our context, it will be implemented by proving
that the message sent by that dealer is invalid.) We say that a dealer message
is “locally bad” for shareholder Pj , if that shareholder is able to generate a
verifiable complaint against it. Importantly, we assume that it is impossible to
produce a verifiable complaint against messages sent by honest dealers.

We denote the number of dealers as n1, at least d1 of them are assumed to
be honest. The protocol is run among a set of n0 shareholders, at least d0 of
which are assumed to be honest. We require that this base protocol terminates,

86 F. Benhamouda et al.

Fig. 3. Base protocol for agreeing on QUAL,BAD,HOLD

and that all honest shareholders output the same sets HOLD, QUAL,BAD, where
HOLD is a subset of the shareholder set with |HOLD| ≥ d0, and QUAL,BAD are
disjoint subsets of the dealer set with |QUAL| + |BAD| ≥ d1.

The base protocol is described in Fig. 3 and proven in Theorem 4.1 (details in
[4, Appendix F]). Here each shareholder initially sets QUAL to the first d1 deal-
ers whose broadcast message they receive. Then each shareholder broadcasts a
message specifying which of these d1 dealers sent correct shares and complain-
ing about the ones that did not. Thereafter, each shareholder continuously adds
to HOLD the shareholders whose message appeared on the channel, and moves
dealers from QUAL to BAD when they see a verifiable complaint against them
on the channel. The protocol terminates once HOLD reaches size d0.

Theorem 4.1. Consider an execution of the base agreement protocol from Fig. 3
over a total-order broadcast channel, among a set of n0 shareholders of which at
least d0 are honest. Assume that at most n1 dealers broadcast messages, at least
d1 of these dealers are honest, and no verifiable complaint can be constructed
against any honest dealer. Then all honest shareholders will eventually termi-
nate, all outputting the same sets with |HOLD| ≥ d0 and |QUAL| + |BAD| ≥ d1.
Moreover:

– No shareholder in HOLD complained against any dealer in QUAL; and
– Every dealer in BAD has at least one shareholder in HOLD that lodged a

verifiable complaint against them.

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 87

Fig. 4. Dealer messages and shareholder complaints

4.1 Agreement in SPRINT, the Static Case

To instantiate the base agreement protocol in SPRINT, we need to set the
parameters n0, d0, n1, d1 and specify how the dealer’s messages and verifiable
complaints are generated and verified.

In our protocols, a dealer’s message is just a Shamir sharing of secrets via
polynomials. In the static case, we have one pair of QUAL,BAD for the DKG
polynomials. We assume a PKI, and the dealers encrypt and broadcast all the
shares under the public keys of their intended recipient, and also broadcast
Feldman commitments to the polynomials themselves.

There are checks that all shareholders can perform on public information
that the dealers broadcast, i.e. verifying that the committed polynomials are
of the right degree, and that the dealer’s message includes all the ciphertexts
that it is supposed to. However, each shareholder is the only one who can check
if the share encrypted under their public key is consistent with the committed
polynomial.

If the encrypted share is not consistent with the committed polynomial, the
shareholder will create a verifiable complaint, using the fact that the dealer’s
message is visible to all. A verifiable complaint from shareholder Pj , denoted πji,
consists of the decrypted value from the ciphertext that Di sent to Pj , and a
proof-of-correct-decryption relative to Pj ’s public key.17 Once other parties see
the decrypted value they can all verify that the share indeed is not consistent
with the committed polynomial.

The dealer messages and shareholder complaints are described in Fig. 4.

Parameters in the Static-committee Setting. In the static-committee set-
ting, each dealer shares a single random polynomial Hi of degree d′ = t+2a−2.
To ensure that the resulting random polynomials can be recovered we need at

17 The proof-of-decryption can be very simple: a proof of equality of discrete logs if
using ElGamal encryption for the shares, or showing an inverted RSA ciphertext if
using RSA-based encryption.

88 F. Benhamouda et al.

least d′+1 honest parties in HOLD, so we have to set d0 ≥ t+d′+1 = 2t+2a−1.
But we can set it even bigger, it can be as large as n − t since we know that
there are at least as many honest shareholders. (This implies that we need
n − t ≥ 2t + 2s − 1, namely n ≥ 3t + 2a − 1.)

We note that for the DKG protocol, the size of QUAL is unrelated to the
degree of the polynomials Hi. The only constraint on it is that to get b output
random polynomials we need |QUAL| + |BAD| = d1 ≥ b + t. To get the best
amortized cost, we want to make b as large as possible, which means using as
large an initial set QUAL∪BAD as we can get. Every party can serve as a dealer
for the DKG protocol, so we have at least n − t honest dealers and can set
d1 = n − t (and therefore b = n − 2t).

Hence, we run the agreement protocol with parameters d0 = d1 = n − t. (If
we have fewer messages to sign, we can do with a smaller b, which means smaller
d1, any value d1 > t would work.)

4.2 Agreement in the Dynamic/Proactive Setting

In this setting, dealers share two types of polynomials, random polynomials Hi

of degree d′ = t + 2a − 2 for the DKG, and packed re-sharing polynomials Fi of
degree d = t + a − 1.

Here we must rely on stronger agreement guarantees. For the static case, it
was enough to ensure that in a setting with d1 honest dealers, we will end up
with |QUAL| + |BAD| ≥ d1, this was enough to ensure d1 − t honest dealers
in QUAL (which is the best we can so in the worst case, and is what’s needed for
the DKG). Now, however, we need to ensure the stronger condition |QUAL| ≥ d1,
since this is what’s needed for re-sharing the secret.

We therefore augment the agreement by running multiple iterations of the
base protocol. In every iteration, we enlarge QUAL until it reaches side d1, then
have one round of complaints and potentially move some more dealers from
QUAL to BAD. This is repeated until no more dealers are added to BAD, at
which point we have |QUAL| ≥ d1. (Note that at the beginning of each iteration,
we always have enough honest dealers whose messages were not yet incorporated
in the protocol to reach QUAL of size-d1 in this iteration.)

Another enhancement to the protocol is that we now have two separate
QUAL’s (and corresponding two BAD’s): one pair QUAL1,BAD1 for the Hi’s,
and another pair QUAL2,BAD2 for the Fi’s. We however only have one share-
holder set HOLD (since we need the same shareholders to get both a share of the
key and a share of the ephemeral secrets). The protocol is in the full version [4,
Appendix E].

Parameters in the Dynamic-committee Setting. Here we have parame-
ters n0, d0 for HOLD and n1, d1 for QUAL,BAD as before (for the Hi’s), but in
addition also n2, d2 for QUAL′,BAD′. For the Hi’s we have the same parameters
as above, n0 = n1 = n and d0 = d1 = n − t. For the Fi’s, we need d + 1 = t + a
dealers in QUAL′ in order for shareholders in HOLD to be able to recover their
shares, so we set d2 = t + a.

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 89

All the dealers in QUAL′ must have shares of the long-term secret, so they
had to be in HOLD in the previous epoch. Hence, the pool of dealers could be
as small as n2 = d0 = n − t, and t of them could be corrupted, so we cannot set
d2 any larger than n − 2t. This implies the constraint d2 = n − 2t ≥ t + a or
n ≥ 3t + a. This constraint is weaker than the constraint n ≥ 3t + 2a − 1 from
above.

Acknowledgements. We thank Victor Shoup for mentioning to us the solution using
a Vandermonde matrix for fast multiplication by a super-invertible matrix.

References

1. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G.: Bingo: adaptivity
and asynchrony in verifiable secret sharing and distributed key generation. In:
Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO (2023). https://doi.org/10.1007/
978-3-031-38557-5 2

2. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: 25th
ACM STOC, pp. 52–61. ACM Press (May 1993). https://doi.org/10.1145/167088.
167109

3. Ben-Sasson, E., Carmon, D., Kopparty, S., Levit, D.: Elliptic curve fast Fourier
transform (ECFFT) part I: low-degree extension in time O(n log n) over all finite
fields. In: Bansal, N., Nagarajan, V. (eds.) SODA 2023, Florence, Italy, January
22–25, 2023, pp. 700–737. SIAM (2023). https://doi.org/10.1137/1.9781611977554.
ch30

4. Benhamouda, F., Halevi, S., Krawczyk, H., Ma, Y., Rabin, T.: SPRINT: high-
throughput robust distributed Schnorr signatures. Cryptology ePrint Archive
(2023). https://eprint.iacr.org/2023/427

5. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. J. Cryptol. 35(4), 25 (2022). https://doi.org/10.1007/s00145-022-09436-
0

6. Borgeaud, W.: ECFFT algorithms on the BN254 base field (2023). https://github.
com/wborgeaud/ecfft-bn254

7. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor.
Comput. Sci. (2019). https://doi.org/10.1016/j.tcs.2019.02.001

8. Crites, E.C., Komlo, C., Maller, M.: How to prove Schnorr assuming schnorr: secu-
rity of multi- and threshold signatures. Cryptology ePrint Archive (2021). https://
eprint.iacr.org/2021/1375

9. Das, S., Xiang, Z., Kokoris-Kogias, L., Ren, L.: Practical asynchronous high-
threshold distributed key generation and distributed polynomial sampling.
USENIX Security (2023)

10. Das, S., Yurek, T., Xiang, Z., Miller, A.K., Kokoris-Kogias, L., Ren, L.: Practical
asynchronous distributed key generation. In: 2022 IEEE Symposium on Security
and Privacy, pp. 2518–2534. IEEE Computer Society Press (May 2022). https://
doi.org/10.1109/SP46214.2022.9833584

11. Drijvers, M., Edalatnejad, K., Ford, B., Kiltz, E., Loss, J., Neven, G., Stepanovs, I.:
On the security of two-round multi-signatures. In: 2019 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 1084–1101 (2019). https://doi.org/10.1109/SP.2019.
00050

https://doi.org/10.1007/978-3-031-38557-5_2
https://doi.org/10.1007/978-3-031-38557-5_2
https://doi.org/10.1145/167088.167109
https://doi.org/10.1145/167088.167109
https://doi.org/10.1137/1.9781611977554.ch30
https://doi.org/10.1137/1.9781611977554.ch30
https://eprint.iacr.org/2023/427
https://doi.org/10.1007/s00145-022-09436-0
https://doi.org/10.1007/s00145-022-09436-0
https://github.com/wborgeaud/ecfft-bn254
https://github.com/wborgeaud/ecfft-bn254
https://doi.org/10.1016/j.tcs.2019.02.001
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP46214.2022.9833584
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1109/SP.2019.00050

90 F. Benhamouda et al.

12. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th FOCS, pp. 427–437. IEEE Computer Society Press (Oct 1987). https://doi.
org/10.1109/SFCS.1987.4

13. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: 24th ACM STOC, pp. 699–710. ACM Press (May 1992).
https://doi.org/10.1145/129712.129780

14. Ganesh, C., Patra, A.: Optimal extension protocols for byzantine broadcast and
agreement. Distributed Comput. 34(1), 59–77 (2021). https://doi.org/10.1007/
s00446-020-00384-1

15. Garillot, F., Kondi, Y., Mohassel, P., Nikolaenko, V.: Threshold Schnorr with state-
less deterministic signing from standard assumptions. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 127–156. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84242-0 6

16. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key gener-
ation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (Jan 2007).
https://doi.org/10.1007/s00145-006-0347-3

17. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Coan, B.A., Afek,
Y. (eds.) 17th ACM PODC, pp. 101–111. ACM (Jun / Jul 1998). https://doi.org/
10.1145/277697.277716

18. Goyal, V., Polychroniadou, A., Song, Y.: Sharing transformation and dishonest
majority MPC with packed secret sharing. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO (2022). https://doi.org/10.1007/978-3-031-15985-5 1

19. Groth, J., Shoup, V.: Design and analysis of a distributed ECDSA signing service.
Cryptology ePrint Archive, Report 2022/506 (2022). https://eprint.iacr.org/2022/
506

20. Groth, J., Shoup, V.: On the security of ECDSA with additive key derivation and
presignatures. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
Part I. LNCS, vol. 13275, pp. 365–396. Springer, Heidelberg (May / Jun 2022).
https://doi.org/10.1007/978-3-031-06944-4 13

21. Groth, J., Shoup, V.: Fast batched asynchronous distributed key generation. Cryp-
tology ePrint Archive (2023). https://eprint.iacr.org/2023/1175

22. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive public
key and signature systems. In: Graveman, R., Janson, P.A., Neuman, C., Gong,
L. (eds.) ACM CCS 97, pp. 100–110. ACM Press (Apr 1997). https://doi.org/10.
1145/266420.266442

23. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

24. Hirt, M., Nielsen, J.B.: Robust multiparty computation with linear communication
complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 28

25. Joshi, S., Pandey, D., Srinathan, K.: Atssia: asynchronous truly-threshold schnorr
signing for inconsistent availability. In: Park, J.H., Seo, S.H. (eds.) Information
Security and Cryptology - ICISC 2021, pp. 71–91. Springer International Publish-
ing, Cham (2022)

26. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1145/129712.129780
https://doi.org/10.1007/s00446-020-00384-1
https://doi.org/10.1007/s00446-020-00384-1
https://doi.org/10.1007/978-3-030-84242-0_6
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1145/277697.277716
https://doi.org/10.1145/277697.277716
https://doi.org/10.1007/978-3-031-15985-5_1
https://eprint.iacr.org/2022/506
https://eprint.iacr.org/2022/506
https://doi.org/10.1007/978-3-031-06944-4_13
https://eprint.iacr.org/2023/1175
https://doi.org/10.1145/266420.266442
https://doi.org/10.1145/266420.266442
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/11818175_28
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11

SPRINT: High-Throughput Robust Distributed Schnorr Signatures 91

27. Komlo, C., Goldberg, I.: FROST: flexible round-optimized schnorr threshold signa-
tures. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS,
vol. 12804, pp. 34–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81652-0 2

28. Lindell, Y.: Simple three-round multiparty schnorr signing with full simulatability.
Cryptology ePrint Archive, Report 2022/374 (2022). https://eprint.iacr.org/2022/
374

29. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols
for byzantine broadcast and agreement. In: Attiya, H. (ed.) 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual
Conference. LIPIcs, vol. 179, pp. 28:1–28:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2020). https://doi.org/10.4230/LIPIcs.DISC.2020.28

30. Neji, W., Blibech, K., Ben Rajeb, N.: Distributed key generation protocol with a
new complaint management strategy. Security Commun. Netw. 9(17), 4585–4595
(2016). https://doi.org/10.1002/sec.1651

31. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: Logrippo, L. (ed.) 10th ACM PODC., pp. 51–59. ACM (Aug 1991).
https://doi.org/10.1145/112600.112605

32. Patra, A., Choudhary, A., Rangan, C.P.: Efficient statistical asynchronous ver-
ifiable secret sharing with optimal resilience. In: Kurosawa, K. (ed.) ICITS 09.
LNCS, vol. 5973, pp. 74–92. Springer, Heidelberg (Dec 2010). https://doi.org/10.
1007/978-3-642-14496-7 7

33. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46416-6 47

34. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

35. Ruffing, T., Ronge, V., Jin, E., Schneider-Bensch, J., Schröder, D.: ROAST: robust
asynchronous schnorr threshold signatures. In: Yin, H., Stavrou, A., Cremers, C.,
Shi, E. (eds.) ACM CCS 2022, pp. 2551–2564. ACM Press (Nov 2022). https://
doi.org/10.1145/3548606.3560583

36. Shoup, V.: The many faces of Schnorr. Cryptology ePrint Archive (2023). https://
eprint.iacr.org/2023/1019

37. Stinson, D.R., Strobl, R.: Provably secure distributed Schnorr signatures and a (t,
n) threshold scheme for implicit certificates. In: Varadharajan, V., Mu, Y. (eds.)
ACISP 2001. LNCS, vol. 2119, pp. 417–434. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-47719-5 33

38. Yurek, T., Luo, L., Fairoze, J., Kate, A., Miller, A.K.: hbACSS: How to robustly
share many secrets. In: 29th Annual Network and Distributed System Security
Symposium, NDSS 2022, San Diego, California, USA, April 24-28, 2022 (2022)

https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374
https://doi.org/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.1002/sec.1651
https://doi.org/10.1145/112600.112605
https://doi.org/10.1007/978-3-642-14496-7_7
https://doi.org/10.1007/978-3-642-14496-7_7
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/3548606.3560583
https://doi.org/10.1145/3548606.3560583
https://eprint.iacr.org/2023/1019
https://eprint.iacr.org/2023/1019
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33

	SPRINT: High-Throughput Robust Distributed Schnorr Signatures
	1 Introduction
	1.1 Other Techniques
	1.2 Prior Work
	1.3 Subsequent Work
	1.4 Organization

	2 Technical Overview
	2.1 Starting Point: The GJKR Protocol
	2.2 The Agreement Protocol
	2.3 Signing Many Messages in Parallel
	2.4 Using Super-Invertible Matrices
	2.5 Using Packed Secret Sharing
	2.6 More Efficient Signing
	2.7 The Dynamic Setting
	2.8 Sub-sampling the Committees
	2.9 More Optimizations
	2.10 Parameters and Performance

	3 The SPRINT Protocols
	3.1 Static-Committee Setting
	3.2 The Dynamic/Proactive Setting

	4 The Agreement Protocol
	4.1 Agreement in SPRINT, the Static Case
	4.2 Agreement in the Dynamic/Proactive Setting

	References

