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Abstract. A recent work by Ball, Li, Lin, and Liu [Eurocrypt’23] pre-
sented a new instantiation of the arithmetic garbling paradigm intro-
duced by Applebaum, Ishai, and Kushilevitz [FOCS’11]. In particular,
Ball et al.’s garbling scheme is the first constant-rate garbled circuit over
large enough bounded integer computations, inferring the first constant-
round constant-rate secure two-party computation (2PC) over bounded
integer computations in the presence of semi-honest adversaries.

The main source of difficulty in lifting the security of garbling schemes-
based protocols to the malicious setting lies in proving the correctness
of the underlying garbling scheme. In this work, we analyze the security
of Ball et al.’s scheme in the presence of malicious attacks.

– We demonstrate an overflow attack, which is inevitable in this com-
putational model, even if the garbled circuit is fully correct. Our
attack follows by defining an adversary, corrupting either the garbler
or the evaluator, that chooses a bad input and causes the computa-
tion to overflow, thus leaking information about the honest party’s
input. By utilizing overflow attacks, we show that 1-bit leakage is
necessary for achieving security against a malicious garbler, discard-
ing the possibility of achieving full malicious security in this model.
We further demonstrate a wider range of overflow attacks against a
malicious evaluator with more than 1 bit of leakage.

– We boost the security level of Ball et al.’s scheme by utilizing two
variants of Vector Oblivious Linear Evaluation, denoted by VOLEc
and aVOLE. We present the first constant-round constant-rate 2PC
protocol over bounded integer computations, in the presence of a
malicious garbler with 1-bit leakage and a semi-honest evaluator,
in the {VOLEc,aVOLE}-hybrid model and being black-box in the
underlying group and ring. Compared to the semi-honest variant,
our protocol incurs only a constant factor overhead, both in compu-
tation and communication. The constant-round and constant-rate
properties hold even in the plain model.
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1 Introduction

Secure two-party computation (2PC) [41] allows two mutually untrusting parties
to jointly compute arbitrary public functions with their private inputs while only
revealing the output. It has been deployed in many real-world use cases, including
medicine, privacy-preserving machine learning, and many more.

While 2PC can be built based on multiple approaches, instantiating it using
garbled circuits is one of the most popular methods due to its simplicity, flex-
ibility, and high practicality in constant-round 2PC. In these protocols, a gar-
bler (denoted by G) generates an encoded version of the publicly agreed circuit
C, referred to as a garbled circuit (GC). G further generates a set of garbled
labels encoding all potential wire values of every input wire. Next, an evaluator
(denoted by E) can evaluate the GC on a single input to get the corresponding
output upon obtaining the GC and the garbled input labels.

A garbled circuit is a cryptographic object consisting of three algorithms:
(1) circuit encoding, (2) input encoding, and (3) evaluation, where security is
followed by privacy and correctness. Namely, privacy implies that the former
two encoding algorithms can be simulated without accessing the input to the
computation x, whereas correctness ensures that the evaluator learns C(x). Gar-
bled circuits easily imply passive (semi-honest) 2PC, given that the parties have
access to parallel semi-honest oblivious-transfer [30] or oblivious linear evalua-
tion, where the communication rate is O(κ) for a security parameter κ.1

Yao’s Boolean GC. The classic approach for designing garbled circuits, com-
monly known as Yao’s GC, considers garbling Boolean circuits consisting of AND
and XOR gates. It was first introduced by Yao in 1986 [41] and later refined in
[30] as a scheme requiring 4κ bits of communication per gate. Following these,
a long line of work has devoted substantial effort to improving the communica-
tion overhead. Notable improvements include row reduction (GRR3) [33], which
reduced the communication per gate to 3κ; free XOR [27], which eliminated
the communication for XOR gates; half-gates [42], which reduced the commu-
nication per AND gate to 2κ while being compatible with free XOR; and most
recently, the three halves [37], which achieves state of the art 1.5κ bits per AND
gate. This great effort did not improve the asymptotic communication rate for
arbitrary circuits. Namely, the communication rate remained O(κ).

Arithmetic GC over Bounded Integer Computations. To break the barrier of
O(κ) rate, a natural attempt is to design garbling schemes for computations
defined beyond Boolean circuits, e.g., a circuit defined over some ring R. One
such endeavor led by Ball et al. [4] to generalize free XOR to the bounded inte-
ger computations. The model of computation considers circuits defined over the

1 Communication rate for passive protocols compares the number of bits transferred
within the protocol execution vs. the size of the computed circuit. In this work,
we use the terminology “rate” to express the overhead from insecure execution to
passive/active secure execution in communication only.
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integer ring Z with addition and multiplication gates and a pre-defined bound
B, where any wire value falls within [−B,B]. Nevertheless, this effort did not
achieve any asymptotic rate improvement due to employing bit decomposition
techniques. Other attempts (e.g. [1,25]) studied new approaches for arithmetic
GC. However, their scope was limited to arithmetic formulas and branching
programs. The first construction for arbitrary arithmetic circuits over bounded
integer computations, which took a different route from Yao’s paradigm, was
proposed by Applebaum, Ishai, and Kushilevitz (AIK) [2]. Their construction is
based on the Learning With Errors (LWE) assumption while still requiring O(κ)
rate. This rate is due to a so-called key extension (KE) gadget that enables E to
expand a short garbled label to a long one while encoding the same value. At the
core of this construction lies a key and message homomorphic encryption scheme,
and AIK illustrated how to instantiate this encryption scheme with LWE. Build-
ing on [2], a recent work by Ball et al. [3] improved over the AIK paradigm by
introducing an alternative instantiation of their KE gadget based on the Deci-
sional Composite Residuosity (DCR) assumption over Paillier groups [13,35].
Notably, [3]’s GC over B-bounded integer computations achieves O(1) rate for
a large enough bound B = B(λ). This implies the first semi-honest constant-
round constant-rate 2PC protocol in this computational model. Henceforth, we
use the term BLLL’s GC to denote the constant-rate GC scheme in [3]. We note
that [3] additionally proposed GC schemes for other models, but only the GC
for bounded integer computations achieves a constant rate.

Active 2PC via Yao’s GC. Lifting the security of the Yao semi-honest proto-
cols to the active (aka, malicious) setting is challenging due to the intricate
task of proving the correctness of a garbled circuit. In theory, boosting pas-
sive to active is feasible with a constant communication overhead due to the
GMW compiler [19] and succinct proofs. Nevertheless, its high computation
cost keeps encouraging researchers to develop more desirable solutions. Many
of these works, explicitly or implicitly, exploit the fact that Yao’s GC is natu-
rally secure against a malicious E. Namely, the main focus becomes forcing a
malicious G to provide a correct GC. Within the developed methods, the cut-
and-choose paradigm [23,28,29] addresses some of the practicality concerns by
repeating the garbling procedure multiple times but inflates the overheads by
a factor of statistical parameter λ to achieve 2−λ error. A different approach
applies authentication to the wire labels [12,14,20,24,39], while achieving con-
stant communication overhead.

With the aim of reducing the concrete communication overhead, another line
of work weakens the standard security notion, allowing the adversary to learn
one bit of information about the honest party’s input. This notion is denoted by
security with 1-bit leakage. Several variants of this notion have been considered in
the literature, such as the dual execution paradigm [22,26,32,36] and one-sided
leakage [20]. This security relaxation enables constant communication factor
overheads where the concrete factors are smaller than 2.
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1.1 Our Contributions

Motivated by the recent breakthrough achieved by BLLL’s GC, we focus on con-
structing constant-rate constant-round 2PC over bounded integer computations
in the presence of static malicious adversaries. Our focus is not only feasibility
but also practicality. We list our following contributions:

– Observing a security subtlety in the bounded computational model.
We discuss an issue in the bounded integer computation model, which is
inherited by the nature of the computation. Namely, a B-bounded input may
still cause an internal wire value to overflow. Nevertheless, the model does
not specify what should be the output in case of an inadmissible input, partly
because a party cannot tell whether an input is admissible without viewing
the other party’s input. While this is not required in the semi-honest setting,
it eliminates the possibility of obtaining full security in the active setting, as
an adversary may choose its input maliciously. We stress that this issue holds
even if the attack is limited to only modifying the input to the computation.

– Understanding the active security of BLLL garbling. We demonstrate
a new class of attacks coined overflow attacks and show that these attacks are
inevitable in BLLL’s GC because even with a fully correct GC, both G and E
can exploit this attack to compromise the privacy of the honest party’s inputs.
This attack implies that the best notion of security in the bounded integer
model via BLLL’s GC in the presence of a malicious G and a semi-honest E
is security with 1-bit leakage, as the leakage boils down to whether E aborted
or not. We further show that this is not necessarily the case in the presence
of a malicious E, which may leak the entire input of G by demonstrating a
larger class of attacks overflowing multiple wires.

– Lifting BLLL’s GC to the active setting. We construct a practical 2PC
protocol over bounded integer computations, achieving the above best notion
of security using two hybrids (see Theorem 1). The first hybrid refers to Vector
Oblivious Linear Evaluation correlations2 (VOLEc) functionality [10,11,31]
that can be instantiated based on the LPN assumption with sublinear commu-
nication cost, whereas the second hybrid refers to the so-called authenticated
VOLE3 (aVOLE) functionality that our protocol uses to allow the evaluator
to learn his garbled input labels. We do not instantiate the aVOLE function-
ality since its effect on the overall cost vanishes with the circuit’s size as its
complexity grows with E’s input size. Therefore, even general malicious 2PC
can be used here. Overall, our protocol is constant-round and maintains both
constant computation and communication multiplicative overheads compared
to the semi-honest variant in the {VOLEc, aVOLE}-hybrid model, where the

2 Where VOLE correlations over ring ZNζ sample correlated randomness for the sender
and receiver. The sender will obtain u, w ∈ Z

n
Nζ and the receiver will obtain Δ ∈

ZNζ , v ∈ Z
n
Nζ such that v = w + uΔ. See Fig. 1 and Sect. 1.2 for details.

3 Authenticated VOLE works similarly to (non-randomized) VOLE. In aVOLE, the
sender inputs four vectors a, b, c, d and the receiver sends two elements x, Δ to learn
ax + b, aΔ + c, bΔ + d. See Fig. 4 and Sect. 5.3 for details.
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VOLE correlations can be generated in a circuit-independent pre-processing
phase. Moreover, our protocol achieves a constant communication rate even
in the plain model and only uses black-box access to the underlying group and
ring. To construct our protocol, we transfer the VOLE-based ZK (e.g., [15])
to the integer ring ZNζ where N is an RSA modulus and ζ ∈ Z

+, as well as
design a customized Σ-protocol [38], which could have independent interests.

Theorem 1 (Informal, Main). Assuming DCR assumption over Z
∗
Nζ+1 where

N = pq is a safe RSA modulus and ζ is a sufficiently large integer. There exists
a constant-rate constant-round secure two-party computation protocol for any
circuit C over B-bounded integer computations in the {VOLEc, aVOLE}-hybrid
model instantiated via BLLL’s GC [3], where the computation is linear in |C|.
The protocol is secure against malicious G with 1-bit leakage and semi-honest E.

1.2 Technical Overview

In this section, we informally explain our techniques while neglecting less impor-
tant details; we refer to Sect. 3 for a complete overview of BLLL’s GC.

Overflow Attacks. We begin with an overview of the subtlety within the bounded
integer computation model. While considering active adversaries, we noticed that
B-bounded inputs do not guarantee that all wires will be B-bounded, where an
intermediate wire can overflow. Such an overflow may occur even if the garbled
circuit is constructed correctly and, in the presence of corrupting, either G or
E. I.e., the adversary can set B-bounded inputs but try to cause the evaluation
of GC to suffer from overflows on intermediate wires. We call these inputs legal
but inadmissible. Now, since the evaluation procedure of BLLL’s GC heavily
relies on all wires being B-bounded, overflow attacks can help a malicious E to
break the privacy guarantee of BLLL’s GC scheme and a malicious G to cause
an input-dependent select-failure abort as follows:

– Malicious E (see Sect. 4.1): While evaluating a BLLL’s GC, E obtains a
garbled label encoding a private value on each wire. There are O(|C|) wires in
the BLLL’s GC having the following property: if the wire encoding a value w,
the garbled label during evaluation will reveal w+r to E where r is uniformly
chosen from a larger fixed bound Be such that w + r statistically hides w.
Note that w + r can only be leaked to E if w is bounded by B. When E uses
bad inputs and w overflows, w + r no longer hides w, so it should not be
leaked to E. Essentially, E can select his inputs and monitor whether each
wire overflows to make G’s inputs leak.

– Malicious G (see Sect. 4.2): While evaluating a BLLL’s GC, E needs to
decode O(|C|) garbled labels from domain ZNζ to Z.4 In particular, E can
decode these labels because they are B-bounded, so they will not wrap around
the domain ZNζ . When G uses bad inputs, the value could wrap around if

4 The computation in this scheme is embedded into a sufficiently large integer ring
ZNζ where N is an RSA modulus.
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Fig. 1. The VOLE correlation functionality

some wire overflows. Hence, E might incorrectly decode the garbled labels
and fail to evaluate the garbled tables, which will abort the execution. Thus,
G can cause a selective failure attack, learning whether an overflow occurs,
which can be captured as applying a predicate on E’s inputs.

VOLE Correlations and Authenticated VOLE over ZNζ as Hybrid Functional-
ities. Vector Oblivious Linear Evaluation (VOLE) allows a receiver (E in our
protocol) to learn a linear combination of two vectors held by a sender (G in our
protocol). In the case where the sender’s vectors and the receiver’s evaluation
point are (pseudo-)random, known as VOLE correlation (VOLEc)5, recent works
(e.g., [10]) show that it can be instantiated via the Learning Parity with Noise
(LPN) assumption with sublinear communication cost, known as the Pseudo-
random Correlation Generator (PCG) paradigm. Our 2PC protocol relies on
“authenticating” G’s randomness in BLLL’s GC using VOLE correlations. In
particular, we need to use VOLE correlations defined over ZNζ where N is an
RSA modulus and ζ ∈ Z

+. Recently, Liu et al. [31] showed that the decisional
LPN problem over the integer ring ZNζ is as hard as the LPN problems over the
fields Fp and Fq. Therefore, it is sufficient to generate VOLE correlations over
ZNζ via the standard PCG paradigm to achieve sublinear cost in communication.
Formally, this functionality is defined in Fig. 1.

Our protocol also uses another hybrid functionality called authenticated
VOLE (aVOLE) to allow E to learn his input garbled labels (as the OT in
Yao). The authenticated VOLE is just a small modification over the standard
(non-randomized) VOLE where G holds 4 vectors a, b, c,d and E holds two ele-
ments x,Δ such that E can learn ax + b,aΔ + c, bΔ + d. Crucially, the cost of
instantiating this functionality is only proportional to E’s input size, so we do
not instantiate it. See Fig. 4 and Sect. 5.3 for more discussions.

5 We note that prior works use this terminology interchangeably.
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Our Protocol. Overflow attacks imply that the best we can hope while boosting
the security of BLLL’s GC is 1-bit leakage security in the presence of malicious G
and a semi-honest E. We notice that to achieve this security notion, we only need
to guarantee that E must obtain a result of the intended computation whenever
it evaluates the circuit and does not abort. This means that a malicious G can
either learn the output of C or that E had aborted.

Interestingly, we observe that this can be guaranteed by an almost correct
rather than fully correct BLLL’s GC (see Sect. 4.2). By simplifying the state-
ments, we can design custom zero-knowledge proofs (ZKP) at a very low cost. To
see how it works, recall that the BLLL garbling procedure includes the following
operations: (1) sample uniform randomness in ZNζ ; (2) add two random samples
over ZNζ ; (3) multiply two random samples over ZNζ ; and (4) use two random
samples a, b to construct an element in the group Z

∗
Nζ+1 as τa(N +1)b where τ is

a public uniform 2Nζ-th residue. The operation (4) generates the garbled tables
for the KE gadgets. BLLL’s GC utilizes the homomorphism of this ciphertext
format where (τa1(N +1)b1)k(τa2(N +1)b2) = τa1k+b1(N +1)a2k+b2 . By obtain-
ing k, a1k + b1 from the GC evaluation, E can obtain a2k + b2 by solving the
discrete logarithm of (N +1)a2k+b2 to the base N +1, which is known to be easy
and commonly used in the Paillier cryptosystem [13,35].

Inspired by the authenticated garbling method of [39], we observe that the
randomness used in the garbling procedure of BLLL’s GC can be generated in an
authenticated manner by VOLE correlations over ZNζ in a circuit-independent
pre-processing phase. Namely, the ideal functionality FN,ζ

VOLEc can be used to gen-
erate a pool of committed randomness over ZNζ , which can replace operation (1).
Later, during the GC generation procedure, G and E consume the committed
randomness to authenticate the garbled circuit. I.e., G will use the committed
randomness to produce correlated (and new committed) randomness for opera-
tions (2–3), and use special-purpose ZK proofs to validate that the computation
of (4) is done almost correctly. In slightly more detail:

– To support operations (2–3): We transform the existing VOLE-based ZK
proofs to the ring ZNζ domain (see Sect. 5.1), used to prove the correctness
of addition/multiplication operations. The proof of each operation requires
sending only O(1) elements and performing O(1) ring operations.

– To support operation (4): We observe that as long as a committed random
element b ∈ ZNζ is indeed used to generate a garbled table ciphertext τa(N +
1)b ∈ Z

∗
Nζ+1 of some KE gadget, it ensures that E will perform an intended

computation of the KE gadget upon evaluating it. Namely, an erroneous
garbled table of form ε(N + 1)b is harmless under 1-bit leakage where ε can
be an arbitrary error that is not dividable by N + 1 in Z

∗
Nζ+1 . By exploiting

the order of N + 1 in the group Z
∗
Nζ+1 is exactly N ζ , we adjust the well-

known Schnorr’s Σ-protocol [38] for the knowledge of the discrete logarithm to
achieve this (see Sect. 5.2). Roughly speaking, the crucial adjustment requires
G to open the committed randomness in the response phase of Σ-protocol.
The adjusted Σ-protocol is also very cheap and requires sending only O(1)
group elements, and performing O(1) exponentiation in Z

∗
Nζ+1 (and O(1)

additions/multiplications in ZNζ ).
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To conclude, our protocol is constant-round6 and constant-rate, with constant
factor blowup in both computation and communication (compared to [3]) in the
{FN,ζ

VOLEc,FN,ζ
aVOLE}-hybrid model, and only uses black-box access to the underly-

ing group ZNζ and ring Z
∗
Nζ+1 . The cost of our protocol is dominated by a total

number of O(|C|) operations (4), achieving constant factor blowup. Finally, by
using LPN assumption over ZNζ to instantiate FN,ζ

VOLEc with sublinear communi-
cation cost in O(|C|), our protocol preserves a constant rate of communication,
and constant-round, even in the plain model.

Full Version. Full version of this paper is available at [21].

2 Notations and Definitions

Our work uses the following notations:

λ is the statistical security parameter (e.g., 40).
κ is the computational security parameter (e.g., 128).
x � y denotes that x is defined as y. x := y denotes that y is assigned to x.
We denote that x is uniformly drawn from a set S by x

$← S.
We denote {1, . . . , n} by [n], {a, . . . , b} by [a, b].
We denote vectors by bold lower-case letters (e.g., a), where ai (or a[i])
denotes the ith component of a (starting from 1).
We denote sets by bold upper-case letters (e.g., A). In some cases, the ele-
ments in the set will be indexed via integer tuples (e.g., Ai,j,k).
N denotes a safe RSA modulus. That is, N = pq where p, q are equal-length
large primes (e.g., 1024-bits). Moreover p = 2p′ + 1 and q = 2q′ + 1 where
p′, q′ are also primes. W.l.o.g., we assume p < q. Formally, p, q are sampled
according to the security parameter λ.
≈c denotes the computational indistinguishability. ≈s denotes the statistical
indistinguishability; see [18] for more details.

Due to space limitations, we defer the following definitions to our full version:

We extend the classic security definition of 2PC and define secure two-party
computation with 1-bit leakage in the Ideal/Real simulation paradigm, which
is adopted from [20]. The main modification allows the adversary to submit
a predicate to the ideal functionality.
We include the DCR and LPN hardness assumptions. We include the hardness
lemma regarding the LPN over ZNζ , which is adopted from [31].
We include the definitions for arithmetic garbling scheme over bounded inte-
ger computations and communication rate, adopted from [3].

6 In the random oracle model, our protocol only requires 2 rounds by applying the
Fiat-Shamir transformation [16], in the {FN,ζ

VOLEc, FN,ζ
aVOLE}-hybrid model, when both

parties receive the output.
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Fig. 2. Information-theoretic add/mult gadgets from the AIK paradigm [2]

3 A Review of Constant-Rate BLLL’s GC

Given that BLLL’s GC, building on AIK, dramatically deviates from the stan-
dard Yao’s paradigm, we provide a concise overview of this scheme in this section.
Recall that the bounded integer computation model requires that, for a class of
admissible inputs over Z, all wire values fall within the range [−B,B] for some
predefined positive integer B. Naturally, the computation can be embedded into
a large enough modular integer ring.

The AIK Paradigm for Arithmetic Garbling. BLLL’s GC follows the AIK
paradigm [2] for arithmetic garbing. Unlike Yao’s GC, the AIK paradigm gener-
ates the GC backward, i.e., in the reverse topology order. To garble a circuit C
defined over some integer ring R (i.e., the computation is defined over the integer
ring R), the AIK paradigm generates GC from the following components:
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– Affine garbled labels: The AIK GC encodes garbled labels using affine
functions. That is, for each wire w in C, G assigns it with a pair of keys
(kw

0 ,kw
1 ) ∈ Rn × Rn for some positive integer n. During the evaluation, E

obtains a garbled label encoding w defined by Lw � kw
0 w + kw

1 . The key
pair (kw

0 ,kw
1 ) is denoted by the garbled key pair7 for wire w. In particular,

n = |kw
0 | = |kw

0 | denotes the length of the garbled key pair.
– Information-theoretic addition/multiplication gadgets: For a gate

with input wires x, y and output wire z, E holding Lx and Ly should learn Lz.
The AIK GC achieves this in an information-theoretic way without commu-
nication. Essentially, G selects the garbled key pairs of two input wires after
the garbled key pair of the output wire is assigned. The complete scheme is
presented in Fig. 2. Note that the gate can have unlimited fan-out. Hence, the
garbled key pair of wire z is constructed as the concatenation of all garbled
key pairs of the wire z provided as inputs to the next layer.

– Key extension gadgets: While the constructions for addition/multiplication
gadgets are information-theoretic, the length of the garbled key pairs grows
exponentially backward because (1) the length for one garbled key pair of the
inputs of a multiplication gate doubles and (2) a gate (including an input gate)
can have unlimited fan-out. Thus, transferring garbled labels of inputs of C from
G to E will require exponential costs. To tackle this issue, the AIK GC scheme
introduced a garbled gadget called the key extension (KE) gadget. A KE gadget
allows E to expand a short, so-called “version-A”, gabled label Lw,A ∈ Rns to
a longer “version-B” garbled label Lw,B ∈ Rnl (where nl > ns and ns is a
small constant), while encoding an identical value w. In other words, it can
be viewed as augmenting C with extra “identical” gates. Recursively applying
the KE gadgets will result in a KE gadget that allows E to expand a length n
garbled label into any length. We emphasize that, since G garbles the circuit
backward, a KE gadget helps G to shrink the length of the garbled key pair.
That is, the length of the garbled key pair will no longer grow exponentially.
Unlike the addition and multiplication gadgets, a KE gadget requires garbled
tables to be transferred from G to E. [2] showed how to build KE gadgets from
the Learning With Errors (LWE) assumption. Building on [2,3] further showed
how to build them based on the DCR assumption. Essentially, optimizing the
communication cost requires building improved KE gadgets.

The complete garbling procedure of the AIK paradigm can be roughly viewed
as follows: G assigns the output wires with garbled key pair (1, 0).8 G assigns the
corresponding garbled key pair to each gate backward in a gate-by-gate manner.
For the output wire of each gate (including an input gate), G applies a KE
gadget to shrink the length of the garbled key pair to a value smaller than (or
equal to) ns. Finally, G obtains garbled key pairs for the input wires of input
gates, each of a maximum length of ns, where ns is a small constant. Then E
can evaluate the circuit by obtaining the garbled labels of the inputs and the
truth tables generated by the KE gadgets.
7 We note that unlike in Yao’s GC where, kw

0 and kw
1 respectively represent the bits

0 and 1, in the AIK paradigm, these keys have nothing related to encoding 0 and 1.
8 Thus, the output label encoding wire w is just w.
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A General Paradigm to Construct KE. Both [2] and [3] utilize an encryption
scheme with linear homomorphism to implement the KE gadget. Consider an
integer ring R and an encryption scheme with the procedures enc and dec, where
enc takes a key k ∈ R and a vector of messages m ∈ Rn (n > 2) as its input
and outputs a ciphertext denoted by enc(k,m). The encryption scheme supports
linear evaluation over keys and plaintexts. Namely, given a constant element β ∈
R, a ciphertext enc(k1,m1) that encrypts m1 under the key k1 and a ciphertext
enc(k2,m2) that encrypts m2 under the key k2, one can compute a ciphertext
enc(k1β +k2,m1β +m2) by computing (β × enc(k1,m1)) + enc(k2,m2) where
β is embedded inside the ciphertext space and ×, + are operations defined over
the ciphertext space. Recall that our goal is to let E with Lw,A � aw + b obtain
Lw,B � cw + d where (a, b) and (c,d) are garbled key pairs assigned to the
input and output wires of the KE gadget. Assume that E obtains the garbled
label Lw,A = aw + b = (w + r, s1(w + r) + s2) during the evaluation, where
a � (1, s1) and b � (r, s1r + s2), and r, s1, s2 are sampled by G (the precise way
of sampling r, s1, s2 is instantiated per GC and it will be addressed soon). In
addition, G sends E the following ciphertexts as the garbled tables:

enc (s1, c) enc (s2,−c · r + d)

E can first utilize the linear homomorphism to obtain a new ciphertext:

(w + r) × enc (s1, c) + enc (s2,−c · r + d) � enc (s1 (w + r) + s2, c · w + d)

then decrypts the new ciphertext using key s1(w + r) + s2 and learns c · w + d.
This achieves a KE gadget that can expand a length-2 garbled label to a length-
n garbled label. While the paradigm is simple and elegant, instantiating it is
non-trivial. This is mainly because we need to ensure x + r and s1(x + r) + s2

are allowed to be revealed without compromising privacy.

BLLL’s GC for the Bounded Integer Computation. The crucial observation of
the BLLL’s GC is that the AIK paradigm for bounded computation can be
instantiated by carefully selecting the integer ring R accompanied by a cus-
tomized KE gadget that is instantiated via a lightweight, customized encryption
scheme defined based on the DCR assumption. Consider two large enough (e.g.,
1024-bits) primes p = 2p′ + 1 and q = 2q′ + 1 of equal length,9 where p′, q′

are also primes, and the corresponding RSA modulus N = pq. Given that the
computation is B-bounded, select Be = Bλω(1), Bmsg = NBeλ

ω(1) and some suf-
ficiently large integer ζ such that Nζ > 2Bmsg + 1. For a small constant Ψ (e.g.,

10), G and E sample τ1, . . . , τΨ
$←

{
a2Nζ | a ∈ Z

∗
Nζ+1

}
as part of the encryption

parameters.
BLLL’s GC embeds the B-bounded integers into the integer modular ring

ZNζ . This is allowed because N ζ > 2B + 1. Essentially, BLLL’s GC applies the
AIK paradigm over ZNζ and further shows a KE gadget that can expand the
garble label defined over ZNζ . To achieve this, BLLL’s GC relies on an encryption
9 Formally, p, q are selected with the security parameter λ given as an argument.
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scheme where the enc algorithm takes a key k ∈ Z and a vector message m ∈
Z

Ψ
Nζ as input and outputs a ciphertext in (Z∗

Nζ+1)Ψ. More specifically, consider
m = (m1, . . . ,mΨ), procedure enc is defined as10:

enc(k,m) �
(
τk
1 (N + 1)2m1 , . . . , τk

n(N + 1)2mn
)

over Z
∗
Nζ+1

Note that the order of N + 1 within the group Z
∗
Nζ+1 is N ζ . The decryption

procedure is done by element-wise (1) multiplication each term with τ−k
i∈[n], and

(2) solving the discrete logarithm to the base N + 1 in the group Z
∗
Nζ+1 , which

is known to be easy [13,35]. Moreover, this encryption scheme supports linear
evaluations over keys and plaintexts. Namely, given an integer β ∈ Z.

enc(k1β + k2, βm1 + m2)

=
(
τk1β+k2
1 (N + 1)2m1,1β+2m2,1 , . . . , τk1β+k2

n (N + 1)2m1,nβ+2m2,n

)

=
(
τk1β
1 (N + 1)2m1,1β , . . . , τk1β

n (N + 1)2m1,nβ
)

⊗
(
τk2
1 (N + 1)2m2,1 , . . . , τk2

n (N + 1)2m2,n

)

= enc(k1,m1)β ⊗ enc(k2,m2)

where ⊗ is the element-wise product over Z
∗
Nζ+1 . Recall that we still need to

address how to select r, s1, s2 in the paradigm for constructing the KE gadget
we presented above. Here, for each KE gadget expanding a length-2 garbled
label to a length-Ψ garbled label, G samples r

$← [−Be, Be], s1
$← {0, . . . , N}

and s2
$← [−Bmsg, Bmsg]. Crucially, for any w ∈ [−B,B], (1) w + r statistically

hides w; and (2) s1(x + r) + s2 statistically hides s1(x + r). Hence, x + r and
s1(x + r) + s2 can be revealed to E.

A small subtlety arises here as the garbled labels are defined over ZNζ . How-
ever, the key (and the homomorphism operation) is defined over Z. Interest-
ingly, this is not an issue because Nζ is large enough and w is B-bounded. For
example, since w ∈ [−B,B], we have w + r ∈ [−B − Be, B + Be]. Now, since
N ζ > 2B + 2Be + 1, by obtaining the value w + r ∈ ZNζ , E can recover w + r
value in Z. Henceforth, we will use (α)Z to denote the procedure to map a value
α in ZNζ to a value in Z, specified by BLLL’s GC.

Finally, note that the encryption scheme above is not a standard Paillier
encryption [35]. In fact, it is not even a randomized encryption. However, it is
sufficient because each key is used in a single instance of enc.11.

Constant-Rate Property. The constant-rate property of BLLL’s GC comes from
that the garbled truth tables of the KE gadget are constant-rate. Namely, ele-
ment in Z

∗
Nζ+1 has length log N ζ+1 and:

10 The factor 2 in the equation is guided by the DCR assumption.
11 We note that “the single instance” term views enc as a complete object. Indeed, a

key k will be reused by different τi∈[Ψ] within a single enc.
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log N ζ+1 = O(log N + log Bmsg) = O(log N + log NBλω(1))
= O(log N + log B + ω(log λ))
= O(κ + log B)

4 Overflow Attacks via BLLL’s GC

In this section, we demonstrate why the natural 2PC protocol for bounded inte-
ger computations, instantiated via BLLL’s GC, is not secure against a malicious
adversary, corrupting either G or E. In contrast, the 2PC semi-honest protocol
instantiated via Yao Boolean GC implies security against a malicious E; see a
discussion in our full version regarding the reasons for these differences.

Ill-Defined Computation Model. Before showing concrete attacks, we note that
B-bounded integer computation regarding malicious 2PC is not well-defined.
This is because the computational model should properly define what should
happen if the computation is applied to an inadmissible input (where interme-
diate wires overflow B). This is not required in the semi-honest setting since the
definitions can condition over an admissible input. Nevertheless, what we show
in this section eliminates the possibility of defining the result of computing on
inadmissible inputs as abort when instantiating the garbling scheme with the
BLLL GC. Also, it is insufficient to output the computation result over ZNζ .

4.1 Overflow Attacks by Malicious E: A Toy Example

We present a concrete toy example attack that explains how a malicious E∗ could
compromise the privacy of the honest G by carefully selecting his inputs. Our
attack indicates the challenges in boosting security for E beyond semi-honest.
In the rest of this paper, we will only focus on a malicious G.

Consider 2PC over B-bounded integer computations where B = 2. That is,
the parties use inputs within [−2, 2] and compute the circuits over Z where all
the intermediate wires fall within [−2, 2] as well. Recall that in BLLL’s GC,
the parties need to set up some public parameters, including Be = Bλω(1). Let
λ = 40 and Be = 280. Now, consider a circuit C that includes an intermediate
wire w holding the value w = (xy)80 where x is G’s input, and y is E’s input.
Assume that w is used as an input of a KE gadget. Namely, E learns w + r (over
large enough ZNζ ) where r is sampled from [−280, 280]. Let the honest E hold
the input y = 0. This implies w = 0 no matter what G inputs for x. Indeed, any
x ∈ [−2, 2] with y = 0 forms an admissible input. In particular, w+r will always
be just r as a uniform distribution over [−280, 280] so E should not obtain any
information on x by observing (xy)80 + r.

However, a malicious E∗ can simply use ỹ = 1 as his input. Namely, w =
(xỹ)80 = x80. Obviously, if x ∈ {0,±1}, w + r will be within [−Be, Be] with
overwhelming probability over r. However, if x ∈ {±2}, w + r will be within
[−Be, Be] with probability roughly 1

2 over r. Say differently, if E∗ observes that
w + r does not belong to [−Be, Be], he learns that x ∈ {±2}. Thus, E∗ gains
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information about x simply by setting his input to 1 and monitoring (xỹ)80 + r.
We remark that 1 ∈ [−2, 2], so this input is legal. We denote this attack by an
overflow attack because E∗ compromises G’s privacy by causing an overflow by
maliciously choosing his B-bounded inputs.

One might think that the above toy example is contrived. Specifically, when
B = 2, by setting ỹ = 1, E learns whether (x, ỹ) is admissible. Namely, if
x ∈ {0,±1}, (x, ỹ) is an admissible input; otherwise, if x ∈ {±2}, it is not.
Therefore, this leakage may already be covered by the intended computation.
We emphasize that the leakage of an overflow attack is beyond the intended
computation. In particular, consider the same attack with x1, x2, y1, y2 where
there are wires w1 = (x1y1)80 and w2 = (x2y2)80. By changing the honest
input (y1, y2) = (0, 0) to (ỹ1, ỹ2) = (1, 1), E can use overflow to distinguish
the following three cases regarding G’s inputs (x1, x2): (a) ({0,±1}, {±2}), (b)
({±2}, {0,±1}), or (c) ({±2}, {±2}). This leakage is beyond learning whether
((x1, x2), (1, 1)) is an inadmissible input, which does not help to distinguish the
above three cases. We conclude with the following remark:

Remark 1 (Generality). The above example can be generalized to any bound
B. Consider Be = B2λ and a circuit C where there exists an intermediate wire
w = (xy)2λ such that x is G’s input, y is E’s input and y = 0 in the honest case.
By injecting ỹ = 1, a malicious E∗ can gain information regarding the range of
x based on whether w + r overflows Be, which should not happen when y = 0
because w + r should be uniform and always bounded by Be. Note that this
attack is not restricted to a power of xy and is feasible for other computations.

Notably, the overflow attack breaks privacy but may also harm correctness, as
it may prevent E∗ from obtaining the correct next garbled labels. Nevertheless,
in some cases, the overflow does not prevent E∗ from continuing to evaluate the
KE gadgets. To further see this point, recall that the garbled tables of a KE
gadget (for a single entry) are of the form:

τs1(N + 1)2c1 τs2(N + 1)−2c1r+2d1 over Z
∗
Nζ+1

where the garbled label of the input obtained by E will be:

w + r s1(w + r) + s2 over ZNζ

In the honest execution, E can recover w + r and s1(w + r) + s2 from the ZNζ

domain and use homomorphism to obtain c1w + d1 over ZNζ , as the garbled
output labels of the KE gadget. Now, when an overflow happens, recovering
w + r and s1(w + r) + s2 can be more challenging as they may wrap around
the domain of ZNζ . Nevertheless, it does not mean that E∗ fails to recover these
values since the wrapping may be small and E∗ can just brute force it.

An interesting case happens when w indeed overflows over integers, however,
due to the computation being taken over the ring ZNζ , it wraps around the space
and ends up as [−B,B] over ZNζ . In this case, a malicious E∗ cannot detect
whether an overflow occurred regardless of the choice of randomness r, s1, s2.
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We denote this type of overflow an undetectable overflow. It is easy to see that,
in this case, the security of a malicious E∗ can be reduced to the privacy of
BLLL’s GC since the simulator can use the simulator of BLLL’s GC to generate
faked garbled tables and faked garbled labels of inputs.

Given the above discussion, a malicious E may learn O(|C|) leaked bits regard-
ing G’s inputs since he can observe whether each wire overflows. In our full
version, we include a conjecture (strongest) ideal world that captures the 2PC
näıvely instantiated via BLLL’s GC for a malicious E.

4.2 Overflow Attacks by Malicious G: The Lower Bound

We already presented how a malicious E can utilize overflow attacks to compro-
mise the privacy of the honest G’s inputs. Indeed, a malicious G can also launch
a similar attack by using some legal B-bounded inputs, even while providing a
correct BLLL’s GC. However, the consequence of this attack changes.

Consider a malicious G∗ that provides a correct garbled BLLL’s GC but
uses some bad inputs. In this case, G∗ may observe whether the honest E aborts
the execution, which implies whether an overflow occurred, even without iden-
tifying the precise wire that overflowed. Note that aborting the execution may
be inevitable because E may not be able to evaluate the KE gadget when the
overflow is too large. This attack rules out achieving full security against a mali-
cious G since this abort event is correlated with E’s input. More precisely, the
best security notion we can hope to achieve in the presence of a malicious G is
security with leakage. In this work, we observe that this leakage can be as small
as only 1-bit, capturing the malicious G attacks. That is, a malicious G cannot
change the intended computation circuit but rather learn whether E aborted.

Leakage Class of Predicates in the Presence of a Correct GC. Recall that 1-bit
leakage is captured by allowing the ideal adversary to submit a leakage predicate.
We first analyze what class of leakage predicates can be submitted if we assume
that the malicious G∗ constructs a correct BLLL’s GC, which naturally serves as
a lower bound on the class of leakage predicates that a malicious 2PC protocol
via BLLL’s GC can tolerate as the attacks are only selective due to bad inputs.

Note that the only parameters G∗ can specify for each KE gadget are r, s1, s2.
Now, since the BLLL’s GC is constructed correctly, E must obtain the garbled
labels (L0, L1) = (w + r, s1(w + r) + s2) for the input wire of the KE gadget,
where w is a value defined by the circuit C. If either L0 or L1 overflows, E aborts.
We notice that when r, s1, s2 are selected within the correct bounds (see Sect. 3),
even if the computation can wrap around the domain ZNζ , a well-bounded L0

implies a well-bounded L1. Here, the well-bounded notion includes the scenario
of undetectable overflows. I.e., w+r ∈ [−B −Be +N ζT,B +Be +N ζT ] for some
integer T . Moreover, when E decodes these two values in Z as (L0)Z and (L1)Z,
it implies that E can use (L1)Z as the key to correctly decrypt Ψ ciphertexts:

{
(τs1

i (N + 1)2ci)(L0)Z · (τs2
i (N + 1)−2cir+2di)

}
i∈[Ψ]
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where (c,d) are the garbled key pair of the output wire of this KE gadget,
and τ1, . . . , τΨ are public parameters sampled from

{
a2Nζ |a ∈ Z

∗
Nζ+1

}
(which

will be reused across different KE gadgets). Thus, E aborts if and only if L0

overflows. Hence, the predicate that the ideal malicious G can submit to the
ideal functionality is a disjunction of the following predicate clauses:

– For each KE gadget12 over wire w = w(x,y) defined by the circuit C, a
malicious G can select r ∈ [−Be, Be] to add a clause checking whether:

L0(x,y) � w(x,y) + r
?∈ [−B − Be, B + Be] over ZNζ .

Note that the above leakage predicate is a disjunction of small predicate clauses.
In particular, if there are two wires being overflowed, while there are 2 clauses
being set to 1, the adversary can only learn that there exists at least one 1-clause.

Enlarging the Class of Leakage Predicates by Relaxing Correctness. Ensuring
correct garbling with respect to the above class of leakage predicates is chal-
lenging. In this work, we circumvent this difficulty by allowing a larger class of
predicates, where the leakage a malicious G can obtain remains a single bit.

Specifically, we present in Sect. 5 a non-trivial 2PC protocol via BLLL’s GC
that is secure against a malicious G with 1-bit leakage, preserving constant-rate
with low cost. This comes at the price of tolerating a slightly larger class of 1-bit
leakage predicates. The crucial observation lies in allowing G to inject some small
errors inside GC, which will not affect the correct evaluation if E does not abort.
In other words, we will only force a malicious G to provide an almost correct
BLLL’s GC rather than a fully correct one. We observe that if we can force G
to provide garbled tables (of a KE gadget) that encrypt the correct intended
plaintexts, it is already sufficient to ensure that E will obtain a correct garbled
label for the KE output wire. In slightly more detail, recall that the garbled
tables of a KE gadget (for a single entry) are of the form:

τs1(N + 1)2c1 τs2(N + 1)−2c1r+2d1 over Z
∗
Nζ+1

where (c1, d1) is one entry of the garbled output key pair and r, s1, s2 are selected
by G. Assume that E holds the garbled input label (L0, L1) = (w+r, s1(w+r)+
s2) over ZNζ . We notice that if we can ensure that (1) L0 equals to w + r −N ζT
for some integer T (i.e., a correct input garbled label); and (2) the garbled tables
encrypt the values 2c1 and −2c1r + 2d1, then we have:

(L0)Z = w + r − N ζT − N ζt where t ∈ {0, 1}
(N + 1)2c1(L0)Z · (N + 1)−2c1r+d1 = (N + 1)2c1w+d

since ord(N +1) = N ζ in Z
∗
Nζ+1 . This implies that E must obtain c1w +d as the

garbled output label of the KE gadget given that E can decrypt the ciphertext,

12 Due to the unlimited fan-out, each wire can have many KE gadgets assigned to it.
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which already provides a correct KE gadget. Namely, G cannot force E to output
an ill-formed garbled label (e.g., w + 1). As a result, we do not need to force
G to provide bounded r, s1, s2 or even bind s1, s2 within τs1 , τs2 in the garbled
tables. We remark that additional details to explain why this is true, e.g., how
to ensure E obtains a correct L0 and how we utilize this fact, will be covered
and discussed explicitly in Sect. 5. Informally, since the garbled labels are defined
over ZNζ and the order of N +1 is also N ζ modulus Z

∗
Nζ+1 , we can operate over

the space ZNζ to “authenticate” an almost correct BLLL’s GC.
We conclude this discussion by emphasizing that an almost correct BLLL’s

GC will allow a malicious G to specify a leakage predicate of a slightly larger class
than the one induced by a fully correct BLLL’s GC. This is because a malicious
G can further select unbounded r, s1, s2 and use ill-formed multiplication terms
τsi∈[2] in the garbled tables to trigger E’s abort. Note that this implies that
the leakage predicate will include more clauses but will still be defined as a
disjunction. Namely, our protocol complements the lower bound of 1-bit leakage
but leaves a gap concerning the minimal leakage predicate class. Given that the
GMW compiler, instantiated with succinct proofs, can complement this tighter
leakage class of predicate (again, with an undesirable non-black-box computation
cost), we leave it as a valuable open problem to extend our protocol to support
the tighter leakage predicate class or show that this expansion on the leakage
predicate class is harmless. We will further discuss the challenges in Sect. 5.

5 Secure Two-Party Computation over Bounded Integer
Computations for Malicious G with 1-Bit Leakage

We formally describe how to design secure two-party computation for bounded
integer computation based on BLLL GC and several non-trivial correctness
mechanisms to achieve malicious security for G with 1-bit leakage. Informally,
our protocol forces G to provide an almost correct BLLL’s GC (see Sect. 4.2).

Deferred Proofs. All proofs are deferred to our full version [21].

5.1 IT-MACs over ZN ζ

Our protocol requires G to commit the randomness she used to select the garbled
key pairs for each wire. As the garbled key pairs of two different wires can be
correlated (e.g., the garbled key pairs of an input and an output wires of a
multiplication gate), we use ZK proofs to ensure the correctness of the GC. To
run these proofs, G and E should be able to perform some basic operations over
the commitments, instantiated by VOLE correlation.
IT-MAC Commitments over ZNζ . VOLE correlations (see Fig. 1) can be viewed
as random Information Theoretic Message Authentication Codes (IT-MACs) [9,
34]. An IT-MAC of x ∈ ZNζ is a correlated distributed tuple where G holds a
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value x and a MAC of x as mac(x) $← ZNζ , and E holds a global key13 Δ
$← ZNζ

and a local key of x as key(x) = xΔ + mac(x). We denote the IT-MAC of x as
[x]Δ = 〈mac(x), x; key(x)〉 or [x]. Each VOLE correlation over ZNζ is an IT-MAC
[r] where r is a uniform sample. A random IT-MAC [r] can be “consumed” and
updated into an IT-MAC [x] using a standard technique [8]. Namely, G can send
x − r to E, and then both parties can adjust [r] to [x]. IT-MACs (in particular,
over ZNζ ) hold the following notable properties:

– Perfect hiding: For [x], key(x) and Δ include no information among x since
key(x) is one-time padded by a uniform mac(x).

– Statistical binding: For [x], G can open it by sending x,mac(x) where E
can check key(x) ?= xΔ+mac(x). A malicious G can only open x to a different
value x′ with probability up to 1

p as proven in Lemma 1. This is sufficient for
our security argument since p is a large enough prime (in λ).

– Linear homomorphism: IT-MACs can be linearly evaluated locally as:
• Holding [x] and [y], two parties can locally generate [x+y]Δ as 〈mac(x)+

mac(y), x + y; key(x) + key(y)〉.
• Holding c ∈ ZNζ , two parties can locally generate [c]Δ as 〈0, c; cΔ〉.
• Holding c ∈ ZNζ and [x], two parties can locally generate [cx] as 〈c ·
mac(x), cx; c · key(x)〉.

Lemma 1 (Statistical Binding for IT-MACs over ZNζ). Let N = pq be
an RSA modulus where p < q and ζ ∈ Z

+. An IT-MAC [x] over ZNζ can only
be opened to a different value x′ �= x with probability up to 1

p .

Zero-Knowledge Proofs for Multiplication Triples of IT-MACs over ZNζ . While
G and E can evaluate IT-MACs linearly without communication, in our pro-
tocol, we also need G and E to multiply two IT-MACs. This can be done by
the standard commit-and-prove paradigm. Formally, this means that G and E
holding [x], [y], [z] over ZNζ where G needs to convince E in ZK that z = xy.
While there are many different techniques to do this, e.g. [6,15,40], we find that
a technique called Line-point Zero-Knowledge (LPZK) over fields [15] can also
support rings ZNζ . LPZK only requires 2 ring elements of communications to
prove each multiplication triple. We note that the LPZK does not directly work
for some rings, e.g., Z2k (see [5]). We defer the details of LPZK to our full version.
Crucially, it relies on Lemma 2 to achieve a 2

p soundness error.

Lemma 2 (Number of Roots for Quadratic Equations over ZNζ). Let
N = pq be an RSA modulus where p < q and ζ ∈ Z

+. For any a, b, c ∈ Z such
that N ζ

� a, the following equation has at most 2pζ−1qζ solutions.

aχ2 + bχ + c ≡ 0 (mod N ζ) (1)

In summary, in the FN,ζ
VOLEc-hybrid, G and E can:

13 I.e., Δ is identical and reused among all IT-MACs.
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– Generate IT-MAC [r] from FN,ζ
VOLEc where r is uniform and unknown to E.

– Generate IT-MAC [x] where x is G-chosen by communicating 1 element.
– Open IT-MAC [x] to x by communicating 2 elements.
– Perform linear operations over IT-MACs for free.
– Obtain IT-MAC [xy] given [x] and [y] by communicating 3 elements.

The communication of the above operations is uni-directional once the VOLE
correlations are generated. The computation complexity for both parties is O(1)
additions/multiplications in ZNζ . We conclude by remarking that our arguments
hold only when G has no knowledge of Δ, which is the case in our protocol.

5.2 Protocol to Bind IT-MACs with Key Extension Gadgets

The operations presented in Sect. 5.1 allow G and E to perform additions and
multiplications on the IT-MACs. However, to garble a circuit as in BLLL’s GC,
G must also use the randomness committed within the IT-MACs to construct the
garbled tables of KE gadgets. Clearly, a malicious G can provide badly generated
garbled tables, so we need to design a mechanism to force G to use the committed
randomness. Recall that for KE gadgets (see Sect. 3), G sends ciphertexts Cs

defined over Z
∗
Nζ+1 . Let the public parameter τ be τ

$← {a2Nζ |a ∈ Z
∗
Nζ+1} then,

each ciphertext C is defined as14 τs · (N + 1)m over ZNζ+1 , where s and m are
determined (over ZNζ ) by the randomness of G. Therefore, s and m can also be
committed within the IT-MACs as [s] and [m]. We now present a protocol to
ensure that G indeed uses [m] to construct the garbled tables for the KE gadgets.
We note that a malicious G can use a different [s] or even an element in ZNζ+1

that is not generated by τ . In Sect. 4.2, we have already informally justified why
the evaluator does not need to monitor this attack, and why it affects neither
privacy (up to 1 bit of leakage) nor correctness. Our observation is crucial for
feasibility and reducing communication overhead, which leads to a non-trivial
Σ-protocol formalization discussed below.

Remark 2 (A gap between soundness and correctness). Our special-purpose
object (Definition 1) can be viewed as a customized interactive proof rather than
a classical one. More specifically, unlike a classical proof, the language recognized
by the correctness property in our customized interactive proof is a subset of the
language recognized by the soundness property. That is, given [s], [Γ ], C, cor-
rectness holds for C = τs(N + 1)Γ , while soundness only prevents a malicious
G∗ from using C = CU (N +1)Γ ′

where CU ∈ U and Γ ′ �= Γ . In particular, for a
C = CU (N + 1)Γ where CU ∈ U , our definition does not explicitly say whether
E will output C. Say differently; we only need to prevent a malicious G∗ from
using a ciphertext (i.e., the KE gadget) that encrypts a wrong message but not
using a wrong key. This suffices since (1) a corrupting key will only cause up to
1-bit leakage, and (2) a correct message ensures a correct execution.

Before continuing with the definition and protocol, we recall the decomposi-
tion property of an element in Z

∗
Nζ+1 .

14 We recall that there are Ψ different τ values.
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LU decomposition over Z
∗
Nζ+1 . Recall that Z

∗
Nζ+1 , is a direct product L × U ,

where L is the cyclic of order N ζ generated by (N + 1) and U is isomorphic
to Z

∗
N of order (p − 1)(q − 1). That is, given an element C in Z

∗
Nζ+1 , it can be

uniquely decomposed into CL ∈ L and CU ∈ U such that CL ·CU = C. Moreover,
CL = (N + 1)kC for some unique kC ∈ ZNζ . We define auxiliary functions
LU, returning CL, CU given an element C ∈ Z

∗
Nζ+1 , and LUk that outputs the

discrete logarithm of CL to the base N + 115. Clearly, for any C ∈ Z
∗
Nζ+1 , let

(CL, CU ) := LU(C), we have LUk(CL) = LUk(C) and LUk(CU ) = 0.
Special-purpose Σ-protocol in the VOLEc-hybrid. To ensure correctness on the
garbler’s side, we abstract out the following guarantees. Assume that G and E
hold an IT-MAC [Γ ] and an element C ∈ Z

∗
Nζ+1 generated by the KE gadget

forwarded from G. Then G can convince E in ZK that LUk(C) = Γ . The syntax
and security properties of this cryptographic object are defined in Definition 1.

Definition 1 (Special-purpose Σ-protocol in the VOLEc-hybrid). G

and E have access to all public parameters pp including λ,N = pq, ζ, τ
$←{

a2Nζ |a ∈ Z
∗
Nζ+1

}
and an ideal access to FN,ζ

VOLEc (Fig. 1) where FN,ζ
VOLEc outputs

a global key Δ ∈ ZNζ to E. G and E hold an IT-MAC [Γ ]Δ ∈ ZNζ (which is
generated from the basic IT-MAC operations presented in Sect. 5.1, and in partic-
ular, only requires communication from G to E), and G has an additional input
s ∈ ZNζ . Interactive PPT algorithms 〈Gpp,FN,ζ

VOLEc([Γ ], s), Epp,FN,ζ
VOLEc([Γ ])〉 form a

special-purpose Σ-protocol (for KE gadgets) in the VOLEc-hybrid (or in short,
SP Σ-protocol), if after the execution, G outputs nothing and E outputs either
abort or C ∈ Z

∗
Nζ+1 , and the following properties hold.

1. Correctness. A special-purpose Σ-protocol (for KE gadgets) in the VOLEc-
hybrid is correct if

Pr
[
〈Gpp,FN,ζ

VOLEc([Γ ], s), Epp,FN,ζ
VOLEc([Γ ])〉 = τs(N + 1)Γ

]
= 1

2. Statistical soundness. A special-purpose Σ-protocol (for KE gadgets) in
the VOLEc-hybrid is sound if, for any malicious algorithm G∗

Pr
[
LUk(C) �= Γ

∣∣∣ 〈G∗, Epp,FN,ζ
VOLEc([Γ ])〉 = C ∈ Z

∗
Nζ+1

]
< negl(λ)

where negl(·) is some negligible function.
3. Statistical honest verifier zero-knowledge (SHVZK). A special-

purpose Σ-protocol (for KE gadgets) in the VOLEc-hybrid is SHVZK if there
exists a PPT algorithm SE that takes public parameters pp, E’s inputs, and
τs(N + 1)Γ over Z

∗
Nζ+1 as inputs that can output a view satisfying:

SE(pp, key(Γ ),Δ,C)
≈s ViewE

∣∣∣∣∣
C := 〈Gpp,FN,ζ

VOLEc([Γ ], s), Epp,FN,ζ
VOLEc([Γ ])〉,

ViewE = ViewE〈Gpp,FN,ζ
VOLEc([Γ ], s), Epp,FN,ζ

VOLEc([Γ ])〉
15 Functions LU and LUk are purely used for explanation and analysis. Note that the

DCR assumption implies there is no computationally efficient way to calculate them.
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Remark 3 (Coping with multiple correlated instances). In Definition 1, we say G
and E hold an IT-MAC [Γ ]. Formally, this means that G and E agree on some IT-
MAC tuple generated by the operations defined in Sect. 5.1, which only requires
uni-directional communication from G to E in the VOLEc-hybrid. Note that G
and E can hold many other IT-MACs besides [Γ ] while they should not affect
the correctness/security properties. E.g., even though a malicious G∗ can have
many instances of IT-MACs, this should not break the soundness. Informally,
this is because the VOLE correlations G∗ received from FN,ζ

VOLEc are independent
of the global key Δ held by E, as each VOLE correlation is one-time padded by
a uniform sample (i.e., the local key chosen by FN,ζ

VOLEc).

Our SP Σ-protocol shares similarities with the classic discrete logarithm
proof [38], where the differences are (1) there are two bases τ and N + 1, and
(2) we need to bind G’s discrete logarithm on N +1 to [Γ ]. We adjust Schnorr’s
protocol as follows: (1) G needs to provide two answers for the random challenge
from E, one for the base τ and one for the base N + 1, and (2) G also needs to
open the IT-MAC to authenticate its answer with respect to the base N +1. We
formally define the protocol in Fig. 3 and the security claim in Theorem 2. We
remark that since G needs to reply with νs+σ over Z and s must be kept private,
σ has to be sampled from a large enough domain such that νs + σ statistically
hides νs. Note that νs ∈ {0, . . . , (N ζ − 1)2} over Z, and we can select σ from
{0, . . . , Bσ} where Bσ = N2ζλω(1). Essentially, this does not affect the rate.

Theorem 2. Protocol in Fig. 3 is a SP Σ-protocol in the VOLEc-hybrid per Def-
inition 1 with the following efficiency features: O(1) communication in Z

∗
Nζ+1 ,

O(1) computation of exponentiation in Z
∗
Nζ+1 , and 3 rounds.

Parallel SP Σ-Protocol Instances. Our 2PC protocol requires multiple parallel
instances of the SP Σ-protocol. Indeed, this can be done directly with multiple
parallel instances of the protocol defined in Fig. 3 where E issues a new random
challenge ν per instance.16 We observe that ν can be reused across different
parallel instances simply because each check performed by E is done separately.
For completeness, see our full version for the formal definition.
Sufficiency of Binding Only Discrete Logarithm to the Base N + 1. Consider
the event that E outputs C ∈ Z

∗
Nζ+1 and let (CL, CU ) := LU(C).17 Indeed, the

soundness of this protocol only guarantees that (N + 1)Γ = CL and does not
guarantee that τs = CU . This is what we refer to as an almost correct BLLL’s
GC in Sect. 4.2. Looking ahead, this is the only place where a malicious G can
inject errors in BLLL’s GC to specify a leakage predicate. Recall that this does
not weaken the 1-bit leakage privacy as it guarantees that the KE gadget will
operate correctly, as formally defined in Lemma 3.

16 A small subtlety arises here since we also need to argue that Δ is independent of
each ν in the proof, which is trivially true.

17 We note that this does not imply that E can factor C into CL and CU .
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Fig. 3. Special-purpose Σ-protocol in the VOLEc-hybrid

Lemma 3 (Almost Correct KE Gadgets). Given two ciphertexts CT 0,CT 1

∈ Z
∗
Nζ+1 of some KE gadget, which is used to encode the entry (c1, d1) of the

output garbled key pair where c1, d1 ∈ ZNζ . Let (CT 0,L,CT 0,U ) := LU(CT 0)
and (CT 1,L,CT 1,U ) := LU(CT 1). If LUk(CT 0) = c1 and LUk(CT 1) = −c1r + d
where r ∈ ZNζ , assume that E obtains (L0 = w + r, ε) over ZNζ as the garbled
label of this KE gadget input, conditioned on E not aborting. Then E must obtain
c1w + d1 over ZNζ as the garbled label of this KE gadget output, independent of
the concrete values within CT 0,U ,CT 1,U , ε, r.

Challenges for Achieving a Fully Correct KE. Recall that our protocol comple-
ments the lower bound of 1-bit leakage but does not meet the minimal class
leakage predicate. To bridge this gap, it is sufficient to upgrade our almost cor-
rect KE gadget to a fully correct one. See our full version for the challenges
behind upgrading our protocol to achieve this, which we pose as open problems.

5.3 Our 2PC Protocol

We are now ready to present our 2PC protocol for bounded integer computa-
tions instantiated by BLLL’s GC. Due to space limitations, we focus on the key
components and defer additional details to our full version.
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Fig. 4. The authenticated VOLE functionality

Generating the Public Parameters. Our protocol starts with securely generating
the public parameters for establishing the trusted setup (e.g. [17] for securely
generating RSA modulus). We refer readers to [3] for the details on selecting
these parameters. Besides the public parameters for BLLL’s GC, G and E need to
generate the public parameters for the special-purpose Σ-protocol we presented
in Sect. 5.2. Overall, for a given security parameter λ and bound B = B(λ), G
and E jointly sample the following public parameters:

1. A sufficiently large RSA modulus N = pq.
2. A bound Be = Bλω(1); a bound Bmsg = NBeλ

ω(1).
3. A sufficiently large integer ζ such that Nζ > 2Bmsg + 1.
4. A bound Bσ = N2ζλω(1).
5. τ1, . . . , τΨ

$←
{

a2Nζ | a ∈ Z
∗
Nζ+1

}
where Ψ is a constant (e.g., 10).

These public parameters are selected before the circuit C is known. In particular,
they are independent of the circuit size |C| and can be reused across several
instances of (different) B-bounded circuits.

Authenticated VOLE. Similar to the role of oblivious transfer (OT) in Yao’s GC
protocol, G and E use VOLE for E to learn his garbled input labels, even in the
semi-honest case. Recall that in the VOLE functionality (over ZNζ ), G holds
two length-n vectors u0,u1 and E holds an input x, where E learns u0x + u1.
To further force G to use consistent garbled key pairs with the IT-MACs (i.e.,
G and E hold [u0], [u1]), we need a slightly modified version of VOLE. Namely,
G holds two extra length-n vectors w0,w1 and E holds Δ (the global key of
the IT-MACs), where E learns u0Δ + w0 and u1Δ + w1. Note that these two
vectors are exactly the local key vectors of the IT-MACs held by E (i.e., key(u0)
and key(u1)), where E can abort if G cheats by providing wrong garbled key
pairs (which are not authenticated using the IT-MACs). Figure 4 presents this
functionality. In this work, we do not instantiate this functionality but use it
as a hybrid18. We emphasize that our protocol only uses this functionality with
length vectors proportional to the input size, independent of the circuit size.

18 Indeed, FN,ζ
aVOLE can be reduced to two FN,ζ

VOLEc instances in a classic way [7], this
reduction only works in the presence of passive adversaries.
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Sub-procedure: Expand. Our protocol makes function calls to a sub-procedure
Expand. Essentially, this sub-procedure packs the (recursively used) KE gadgets
of BLLL’s GC into a parallel SP Σ-protocol. The sub-procedure implements
three algorithms:

– Expand.Gb: This is a sub-protocol capturing the generation of garbled tables
of each KE gadget. Compared to BLLL’s GC, the difference lies in that G
will also prepare the messages related to the commit phase of the parallel SP
Σ-protocol. The communication is uni-directional from G to E. E will abort
w.h.p. if G tries to cheat in operating IT-MACs.

– Expand.Sigma: This is a sub-protocol capturing the challenge and response
phases of the parallel SP Σ-protocol. Essentially, this happens after all
Expand.Gbs finish. The communication is uni-directional from G to E after
E issues a single uniform challenge. Note that the random challenge can be
replaced by the Fiat-Shamir heuristic [16] assuming random oracle (RO). E
will abort w.h.p. if some garbled table of a KE gadget provided by G (in a
call to Expand.Gb) is not almost correct.

– Expand.Ev: This is a sub-procedure used by E only to (recursively) evaluate
KE gadgets. Compared to BLLL’s GC, the difference lies in that E will abort
if E detects some errors (e.g., overflow or inability to evaluate).

See our full version for the fined-grained descriptions and formalization.

Our protocol Π: primary components. We formalize our protocol algorith-
mically. G and E start with public parameters, a circuit C as a sequence of tuples
under the standard gate-by-gate representation. We only consider single-output
circuits to simplify the presentation, but our protocol can be trivially generalized
to multiple outputs. Our protocol Π is composed of three primary components:

0. G and E generate VOLE correlations. In Step 0 (embedded in the first
primary component in Fig. 5), G and E instantiate the VOLE correlation
functionality over ZNζ to generate enough (pseudo-)random VOLE instances.
These VOLE correlations are used as (pseudo-)random IT-MACs, to set up
a pool of committed randomness that G and E can consume. The overall
number of VOLE correlations required by the parties need is O(|C|). This
step is a circuit-independent pre-processing phase.

1. G garbles an almost correct BLLL’s GC (see Fig. 5). In the first
primary component, G generates a BLLL’s GC in an authenticated manner.
Step 1 is adjusted from the BLLL’s GC garbling procedure – the difference
lies in that each operation insides is replaced by either an IT-MAC operation
or the commit phase of the parallel SP Σ-protocol (captured by sub-protocol
Expand.Gb). Step 1 only requires uni-directional communication from G to
E. Step 2 captures the challenge and response phases of the parallel SP Σ-
protocol (captured by sub-protocol Expand.Sigma), which requires a round-
trip communication. By Fiat-Shamir transform, assuming RO, this can be
achieved with uni-directional communication from G to E. If E aborts in the
first component, the abort is independent of E’s inputs; otherwise, it means
that E holds an almost correct BLLL’s GC.
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2. E obtains the garbled labels of the input (see Fig. 6a). In the second
primary component, E obtains garbled labels of inputs of C. In this compo-
nent, E can abort if G fails to provide correct garbled labels generated from
the committed garbled key pairs. The communication is uni-directional from
G to E in the FN,ζ

aVOLE-hybrid model. If E aborts in the second component, the
abort is independent of E’s inputs.

3. E evaluates the circuit (see Fig. 6b). E evaluates the GC as BLLL’s GC.
The difference lies in E may abort if E catches overflows on garbled labels or
incorrectly evaluates some KE gadget (captured by sub-protocol Expand.Ev).
The communication is uni-directional from E to G. If E aborts in the third
component, the abort depends on E’s inputs.

See our full version for the fined-grained descriptions.
Proof Overview. The security of Π can be shown using the following arguments:
Correct Execution (see Lemma 4). Intuitively, to argue our protocol is secure
against malicious G with 1-bit leakage, we need to argue: if E does not abort and
output res, res w.h.p. must be calculated using the malicious G’s chosen inputs
x̃ and E’s inputs y over the intended computation C. I.e., a malicious G cannot
forge the intended computation task. Informally, this is because if G does not use
an almost correct BLLL’s GC, she will be caught before E starts the evaluation,
i.e., before the third component of Π. Conditioned over the GC is almost correct,
we need to argue that the garbled labels obtained by E are “well-formed”. Namely,
they indeed encode a value generated from committed garbled key pairs. This triv-
ially holds because we require G (1) to prove the correctness of the committed
IT-MAC values related to E’s input garbled key pair (see Step 3); (2) to open IT-
MACs of gabled labels of her inputs (see Step 4).
Well-Defined Leakage Predicate. Note that E’s abort before evaluation (i.e.,
the third component of Π) is independent of E’s inputs. Thus, the leakage pred-
icate is well-defined by the evaluation procedure of BLLL’s GC. In particular,
a malicious G∗ can choose some parameters (i.e., errors in an almost correct
GC). Note that these parameters can be extracted by a simulator because all
the randomness G∗ used is committed under IT-MACs. The simulator, by emu-
lating FN,ζ

VOLEc hybrid for G∗, can extract them trivially as the hiding property of
the IT-MAC no longer holds. See our full version for a formal captured leakage
predicate using a family of wrapper functions.
Simulatable E’s View. To ensure that our protocol preserves security for the
semi-honest E, we need to construct a simulator to sample the entire views of E
from knowing the computation result. This can be easily reduced to the security
of BLLL’s GC and SHVZK property of the parallel SP Σ-protocol. Informally,
the simulator can first use the simulator of BLLL’s GC to generate fake garbled
tables and fake garbled labels, then call the simulator of SHVZK to generate the
fake proofs. By knowing the global key Δ, the simulator can easily open an IT-
MACs commitment to any value and perform wrong multiplication operations.
Formally, the security claims of our protocols are provided in Theorems 3 and
4. The overall efficiency analysis of our protocol is discussed in Sect. 1.2, where
a detailed cost accounting is included in our full version.
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Fig. 5. The first component of our protocol Π. Note that Eqs. (2) to (4) are the same
as add/mult gadgets from the AIK paradigm presented in Fig. 2.
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Fig. 6. The second and third components of our protocol Π
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Lemma 4 (Correct Execution). For every protocol execution between an
adversary G∗ and E, as defined in our full version Figs. 5, 6a and 6b, such
that E outputs res (embedded into ZNζ ), there exists a well defined x̃ that cor-
respond to the committed values in Step 4, and y that denote E’s inputs, such
that res = C(x̃,y) with overwhelming probability.

Theorem 3 (Malicious G). Let pp denote the public parameters for any cir-
cuit C defined over B-bounded integer computations. Then protocol Π specified
in our full version and Figs. 5, 6a and 6b securely computes C (embedded within
ZNζ ) with 1-bit leakage in the presence of malicious G in the {FN,ζ

VOLEc,FN,ζ
aVOLE}-

hybrid model, where the leakage predicate is defined by the wrapper function
Wrappp,C specified in our full version.

Theorem 4 (Semi-honest E). Let pp denote that public parameters, for any
circuit C defined over B-bounded integer computations and assume the DCR
assumption. Then protocol Π specified in our full version Figs. 5, 6a and 6b
securely computes C (embedded within ZNζ ) in the presence of semi-honest E in
the {FN,ζ

VOLEc,FN,ζ
aVOLE}-hybrid model.
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