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Abstract. Traditional private set intersection (PSI) involves a receiver
and a sender holding sets X and Y , respectively, with the receiver learn-
ing only the intersection X ∩ Y . We turn our attention to its fuzzy vari-
ant, where the receiver holds |X| hyperballs of radius δ in a metric space
and the sender has |Y | points. Representing the hyperballs by their cen-
ter, the receiver learns the points x ∈ X for which there exists y ∈ Y
such that dist(x, y) ≤ δ with respect to some distance metric. Previ-
ous approaches either require general-purpose multi-party computation
(MPC) techniques like garbled circuits or fully homomorphic encryption
(FHE), leak details about the sender’s precise inputs, support limited
distance metrics, or scale poorly with the hyperballs’ volume.

This work presents the first black-box construction for fuzzy PSI
(including other variants such as PSI cardinality, labeled PSI, and cir-
cuit PSI), which can handle polynomially large radius and dimension
(i.e., a potentially exponentially large volume) in two interaction mes-
sages, supporting general Lp∈[1,∞] distance, without relying on garbled
circuits or FHE. The protocol excels in both asymptotic and concrete
efficiency compared to existing works. For security, we solely rely on
the assumption that the Decisional Diffie-Hellman (DDH) holds in the
random oracle model.

1 Introduction

Private set intersection (PSI) is a cryptographic primitive that allows two parties
to compute the intersection X ∩ Y of their private datasets X and Y , without
revealing any information about items not in the intersection. The first PSI
protocol is often dated back to Meadows [30] and many modern protocols still
have the same structure using an oblivious pseudorandom function (OPRF) [28,
35,36]. Recent PSI protocols are very practical and can for example compute the
intersection of sets of 220 elements in ≈0.37 s [35]. Many richer PSI functionalities
have also been explored, such as: PSI cardinality [16,18,27], where only the
cardinality of the intersection is revealed; labeled PSI [10,13,14], which allows
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the parties to learn labels associated to the items in the intersection; circuit PSI
[24,34,36], which only reveals secret shares of the intersection and allows the
parties to securely evaluate any function on the intersection.

Recently Garimella et al. [20,21] introduced the concept of structure-aware
PSI, where the receiver’s input set has some publicly known structure. For exam-
ple, the receiver holds N balls of radius δ and dimension d and the sender holds
a set of M points, and the sender learns which of the sender’s points lie within
one of their balls. This special case is often referred to as fuzzy PSI and is
the focus of our work. Using a standard PSI protocol for this task leads to a
rather inefficient solution since the communication and computation complexity
usually scale at least linearly in the cardinality of the input sets, i.e., the total
volume of the balls N · δd. Garimella et al. can overcome this barrier in terms of
communication in the semi-honest [20] as well as in the malicious [21] setting.
However, the receiver’s computation is still proportional to the total volume of
the input balls, which makes their protocols scale poorly with the dimension
d. Moreover, their protocols are limited to the L∞ and L1

1 distance and only
realize a standard PSI functionality, where the receiver learns exactly which of
the sender’s points lie in the intersection. Other works are either limited to the
Hamming distance [37], Hamming and L2 distance [26] or Hamming distance
and one-dimensional L1 distance [8], and often require heavy machinery or yield
non-negligible correctness error.

In this work, we present fuzzy PSI protocols in the semi-honest setting for
general L∞ and Lp distance with p ∈ [1,∞), and present several optimized
variants for low as well as high dimensions. Notably, the communication as well
as computation complexity of our high-dimension protocols scales linearly or
quadratically with the dimension d. We moreover extend our protocols to various
richer fuzzy PSI functionalities including PSI cardinality, labeled PSI, PSI with
sender privacy, and circuit PSI. Our protocols have comparable performance to
[20] in the low-dimensional setting and significantly outperform other approaches
when the dimension increases. Finally, our protocols rely only on the decisional
Diffie-Hellman (DDH) assumption.

1.1 Our Contributions

Fuzzy Matching. The main building block for our fuzzy PSI constructions is
a fuzzy matching protocol, which on input a point w ∈ Z

d from the receiver
and a point q ∈ Z

d from the sender, outputs 1 to the receiver if dist(w,q) ≤ δ
and 0 otherwise. Here dist can either be L∞ distance or Lp distance for p ∈
[1,∞). It results in a two-message protocol for L∞ distance with communication
complexity O(δd), computation complexity O(δd) for the receiver and O(d) for
the sender when dist = L∞; For Lp distance, it has communication complexity
O(δd + δp), computation complexity O(δd) for the receiver, and O(d + δp) for
the sender.

1 The overhead of L1 balls would be 2d

d
times larger than that of L∞ balls in their

protocols.
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Table 1. Asymptotic complexities of fuzzy PSI protocols, where the receiver holds N
hyperballs of radius δ and the sender holds M points in Z

d. ρ ≤ 1/c is a parameter to the
LSH scheme if the receiver’s points are distance > cδ apart. We ignore multiplicative
factors of the computational security parameter λ and statistical parameter κ.

Setting [protocol] Communication Comp. (receiver) Comp. (sender)

L∞ trad. PSI [35] O
(
(2δ)dN + M

)
O

(
(2δ)dN

)
O

(
(2δ)dN + M

)

> 2δ [ours] O
(
δdN + 2dM

)
O

(
δdN + 2dM

)
O

(
2ddM)

)

> 2δ [20] O
(
(4 log δ)dN + M

)
O

(
(2δ)dN

)
O

(
(2 log δ)dM

)

> 4δ [ours] O
(
δ2ddN + M

)
O

(
δ2ddN + M

)
O (dM)

> 4δ [20] O
(
2ddN log δ + M

)
O

(
(2δ)dN

)
O (dM log δ)

> 8δ [21] O (dN log δ + M) O
(
(2δ)dN

)
O (dM log δ)

∃disj. proj. [ours] O
(
(δd)2N + M

)
O

(
(δd)2N + M

)
O

(
d2M

)

∀disj. proj. [20] O (dN log δ + M) O
(
(2δ)dN

)
O (dM log δ)

Lp > 2δ(d1/p+1)[ours] O
(
δ2ddN + δpM

)
O

(
δ2ddN + M

)
O ((d + δp)M)

LSH [ours] O
(
δdN1+ρ+δpMNρlogN

)
O

(
δdN1+ρ+MNρlogN

)
O ((d+δp)MNρlogN)

Fuzzy PSI in Low-Dimensions. Using a fuzzy matching protocol we can
trivially obtain a fuzzy PSI protocol by letting the sender and receiver run the
fuzzy matching protocol for every combination of inputs, but this leads to an
undesirable N · M blowup in communication and computation complexity. To
circumvent this blowup for a low dimension d, we develop a new spatial hashing
technique for disjoint L∞ balls which incurs only a O(2d) factor to the receiver’s
communication and sender’s computational complexity. To support Lp balls, we
extend the “shattering” idea from [20] to generalized Lp setting. The asymptotic
complexities are given in Table 1. It is worth noting that, unlike to [20,21], the
computation complexity of our protocols scale sublinearly to the volume of balls.

Fuzzy PSI in High-Dimensions. Unfortunately, the above spatial hashing
approaches still yield a 2d factor in the communication and computation com-
plexities, which becomes prohibitive for large dimensions d. The earlier work [20]
proposes a protocol that can overcome this factor, for communication costs,
in the L∞ setting under the globally disjoint assumption that the projections
[wk,i − δ, wk,i + δ] of the sender’s balls k ∈ [N ] are disjoint for all dimensions
i ∈ [d], which the authors themselves mention is a somewhat artificial assump-
tion. We present a two-message protocol with comparable communication and
much lower computation complexity under a milder assumption that for each
k ∈ [N ] there exists a dimension i ∈ [d] where the projection is disjoint from
all other k′ ∈ [N ], namely, not necessary to be globally disjoint. We argue that
this is a more realistic assumption since points in high dimensions tend to be
sparser and show that it is satisfied with a high probability if the points wk are
uniformly distributed.

We moreover present a two-message protocol in the Lp setting which can
circumvent this exponential factor in the dimension d, while achieving sub-
quadratic complexity in the number of inputs. The key idea of this protocol
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is to use locality-sensitive hashing (LSH) to perform a coarse mapping such that
points close to each other end up in the same bucket with high probability,
and subsequently use our fuzzy matching protocol for Lp distance to compare
the items in each bucket. See Table 1 for the asymptotic complexities of our
protocols.

Extensions to Broader Functionalities. By default, all our protocols except
for the LSH-based protocol realize the stricter PSI functionality where the
receiver only learns how many of the sender’s points lie close to any of the
receiver’s points, which we call PSI cardinality (PSI-CA). Earlier works [20,21]
realize the functionality where the receiver learns exactly which of the sender’s
points are in the intersection. We refer to this functionality as standard PSI.

For all of our protocols discussed above, except for the LSH-based protocol,
we show that we can extend them to realize the following functionalities: stan-
dard PSI; PSI with sender privacy (PSI-SP), where the receiver only learns which
of the receiver’s balls are in the intersection; labeled PSI, where the receiver only
learns some label associated to the sender’s points in the intersection; circuit
PSI, where the parties only learn secret shares of the intersection and optional
data associated to each input point, which they can use as the input to any
secure follow-up computation. We can realize these extensions without increasing
the asymptotic complexities of the protocols and without needing to introduce
additional computational assumptions. With the only exception that for the cir-
cuit PSI extension we need a generic MPC functionality to compute a secure
comparison circuit at the end of the protocol, which is common for traditional
(non-fuzzy) circuit PSI protocols [34,36].

Performance. Our experimental results demonstrate that it requires only
1.2 GB bandwidth and 432 s in total to complete a standard fuzzy PSI protocol
when parties have thousands of L∞ balls and millions of points in a 5-dimensional
space. As a comparison, prior works need �4300 s (conservative estimate).

1.2 Related Work

Traditional PSI protocols have become very efficient [9,28,35], but are optimized
for the setting where the parties’ input sets have approximately the same size,
and their communication and computation costs scale linearly with the input
size. This leads to an inefficient fuzzy PSI protocol since the receiver’s input
size is N · δd when the receiver holds N hyperballs of dimension d and radius δ.
Asymmetric (or unbalanced) PSI protocols [1,10,11,14] target the setting where
one party’s set is much larger than the other’s and can achieve communication
complexity sublinear in the large set size, but O(

√
N · δd/2) computational com-

plexity, using fully homomorphic encryption [14]. For traditional PSI there exist
many efficient protocols realizing richer functionalities such as PSI cardinality
[16,27], labeled PSI [10,14] and circuit PSI [24,34,36], but all of these suffer from
the same limitations as discussed above when applied to the fuzzy PSI setting.
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There exists another line of works concerning threshold PSI [3,7,22,23], where
the fuzziness is measured by the number of exact matches between items.

Secure fuzzy matching was introduced by Freedman et al. [18] as the problem
of identifying when two tuples have a Hamming distance below a certain thresh-
old. They propose a protocol based on additively homomorphic encryption and
polynomial interpolation, which was later shown to be insecure [12]. Follow-up
works focus on the Hamming distance as well and use similar oblivious polyno-
mial evaluation techniques [12,38]. Indyk and Woodruff [26] construct a fuzzy
PSI protocol for L2 and Hamming distance using garbled circuits. Uzun et al.
[37] give a protocol for fuzzy labeled PSI for Hamming distance using garbled
circuits and fully homomorphic encryption. Chakraborti et al. [8] propose a fuzzy
PSI protocol for Hamming distance based on additively homomorphic encryp-
tion and vector oblivious linear evaluation (VOLE), which has a non-negligible
false positive rate. They moreover present a protocol for one-dimensional L1 dis-
tance, which can be constructed using any O(N) communication PSI protocol
for sets of size N , and has resulting communication complexity O(N log δ) [8].
It is an interesting question whether their techniques can be extended to higher
dimensions. Since the focus of our work is to construct fuzzy PSI protocols for
general Lp and L∞ distances, general dimension d, and with negligible error rate,
it is not possible to make a meaningful comparison with these works.

Garimella et al. [20,21] initiated the study of structure-aware PSI, which
covers fuzzy PSI as a special case. They introduce the definition of weak boolean
function secret sharing (bFSS) for set membership testing and give a general
protocol for structure-aware PSI from bFSS. They develop several new bFSS
techniques, focusing on the case where the input set is the union of N balls of
radius δ with respect to the L∞ norm in d-dimensional space, which results in
a fuzzy PSI protocol as the ones we concern ourselves with in this work. The
techniques used in their protocols are fundamentally different from ours, except
that we use similar spatial hashing techniques to obtain efficient fuzzy matching
protocols in the low-dimensional setting. Moreover, their protocols are limited to
the L∞ and L1 distance setting and only realize the standard PSI functionality
where the receiver learns the exact sender’s points in the intersection. Finally,
the receiver’s computational complexity in their protocols scales as O((2δ)dN),
which makes them unsuitable in the high-dimensional setting. See Table 1 for a
more detailed comparison of communication and computational complexities.

1.3 Applications

Private Proximity Detection. There exist certain contexts where individuals
need to know the proximity of others for varying purposes: In the realm of contact
tracing, where individuals may seek to determine if they are in the vicinity of an
infected person; Within the scope of ride-sharing platforms, users might wish to
identify available vehicles in their surroundings. In both scenarios, the privacy
of all involved parties should preserved and fuzzy PSI protocols provide a direct
solution to this problem.
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Biometric and Password Identification. Fuzzy matching could also be use-
ful in authentication or identification scenarios. Notable applications of this tech-
nique can be observed in the matching of similar passwords to enhance usability
or security. A case in point is Facebook’s authentication protocol, which auto-
corrects the capitalization of the initial character in passwords [31]. Similarly, it
can be useful to check if a user’s password is similar to a leaked password [33].
Furthermore, fuzzy matching can be employed to match biometric data, such as
fingerprint and iris scans, thereby facilitating a blend of convenience and secu-
rity [17]. In general, a fuzzy unbalanced PSI protocol is more useful since the
server usually holds a large database of clients’ passwords (or biometric samples).

Illegal Content Detection. Recently, Bartusek et al. [4] introduced the study
of illegal content detection within the framework of end-to-end secure messaging,
focusing particularly on the detection of child sexual abuse material, encompass-
ing photographs and videos. Central to their protocol is a two-message PSI proto-
col, wherein the initial message is reusable and published once for the receiver’s
database. After this, the computational overhead for both parties is rendered
independent of the database size. The research notably leverages Apple’s PSI
protocol [5], which, while only facilitating exact matches, serves its purpose
effectively. Ideally, matching should be sufficiently fuzzy to ensure that illegal
images remain detectable even following rotation or mild post-processing. Our
fuzzy PSI constructions, encapsulated within two-round protocols and featuring
a reusable initial message, may find potential applicability in such contexts.

2 Technical Overview

Before heading for the details of our fuzzy matching and PSI protocols, let us
start by discussing a standard PSI protocol proposed by Apple [5].

2.1 Recap: Apple’s PSI Protocol

We simplify Apple’s PSI protocol to the basic setting where the receiver holds
a set W := {w1, . . . , wn}, the sender holds an item q, and the receiver wants
to learn q if q ∈ W and nothing otherwise. Their main idea is a novel usage
of random self-reduction of DDH tuples from Naor and Reingold [32] in PSI
contexts. Given a cyclic group G := 〈g〉 of prime order p, the tuple (g, h, h1, h2)
can be re-randomized into (g, h, u, v) such that u, v are uniformly random over
G as long as (g, h, h1, h2) is not a well-formed DDH tuple (i.e., there is no s ∈ Z

∗
p

to satisfy gs = h∧hs
1 = h2). Otherwise, both (g, h, h1, h2) and the re-randomized

tuple (g, h, u, v) are valid DDH tuples. This re-randomization basically utilizes
two random coins a, b ←$Z

∗
p to output

(u := gahb
1, v := hahb

2).
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Now to obtain a PSI protocol, the receiver could sample s ←$Z
∗
p and publish

(g, h := gs,H(w1)s, . . . ,H(wn)s) ,

where H is a hash-to-group function. Then the sender returns pairs

(ui, cti := Encvi
(q))i∈[n] ,

where (ui, vi) is the re-randomization output for each tuple (g, h,H(q),H(wi)s),
and Enc is some symmetric-key encryption scheme (e.g., a one-time pad). The
receiver can try to decrypt each cti using the key us

i to learn q. For the sender’s
privacy, the random self-reduction of DDH tuples guarantees that when q 
= wi,
the secret key vi is uniformly random from the receiver’s view and thus q
is hidden according to the security of this symmetric-key encryption. For the
receiver’s privacy, (H(w1)s, . . . ,H(wn)s) is pseudorandom according to the gen-
eralized DDH assumption when H is modelled as a random oracle.

2.2 Fuzzy Matching for Infinity Distance

Our crucial observation is that the above approach can be naturally applied
in fuzzy matching protocols where the receiver holds a point w ∈ Z

d in a d-
dimensional space, the sender holds a point q ∈ Z

d, and the receiver learns if
dist(w,q) ≤ δ. Here, δ is the maximal allowed distance between w and q. For
the moment, let us focus on the simplest case where the distance is calculated
over L∞, which means, the receiver gets 1 if

∀i ∈ [d] : wi − δ ≤ qi ≤ wi + δ,

and gets 0 otherwise. This problem is equivalent to the following: The receiver
holds d sets {W1, . . . ,Wd} where Wi := {wi − δ, . . . , wi + δ}, the sender holds d
items {q1, . . . , qd}, and they want to run a membership test for each dimension
simultaneously, without leaking the results for individual dimensions. Though
the receiver can publish H(wi + j)s for each i ∈ [d], j ∈ [−δ,+δ] as above, the
sender has to use random self-reduction for each possible match, which yields
too much communication and computation effort for the sender. Namely, the
entire volume of a d-dimensional δ-radius ball O

(
(2δ + 1)d

)
.

Reducing the Complexity. There is a standard trick to significantly reduce
the complexity by using an oblivious key-value store (OKVS). Recall that an
OKVS [19] will encode a key-value list {(keyj , valj)}j∈[n] into a data structure
E, such that decoding with a correct key∗ returns the corresponding val∗, where
the encoding time scales linearly to the list size and decoding a single key takes
only a constant number of operations. So the above protocol can be improved
as follows:

1) The receiver publishes
(
g, h,Ei ← Encode({(wi + j, H(wi + j)s)}j∈[−δ,+δ])

)

for each i ∈ [d];
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2) The sender retrieves hi ← Decode(Ei, qi) for each i ∈ [d] and sends the
rerandomized tuple (u := ga

∏d
i=1 H(qi)b, v := ha

∏d
i=1 hb

i ), where a, b ←$Z
∗
p,

to the receiver;
3) The receiver checks if (g, h, u, v) is a valid DDH tuple.

The protocol is correct when dist(q,w) ≤ δ, according to the correctness of
the underlying OKVS scheme, which says that decoding the structure Ei with
a correct encoding key qi will return the encoded value hi := H(qi)s; When
dist(q,w) > δ, we typically need to rely on the independence property of OKVS,
which says that decoding with a non-encoded key will yield a uniformly ran-
dom result. Therefore, in this case, there exists at least one hi∗ that is uni-
formly random; hence (g, h,H(qi∗), hi∗) is not a DDH tuple except with neg-
ligible probability. The sender’s privacy can be established as before from the
random self-reduction of DDH tuples. To argue the receiver’s privacy, we rely
on the obliviousness property of the OKVS, namely, the encoded keys {wi + j}
are completely hidden as long as the encoded values {H(wi + j)s} are uniformly
random. Since (h,H(wi + j),H(wi + j)s) is pseudorandom by the DDH assump-
tion, then according to the obliviousness of OKVS, the receiver’s message can be
simulated by encoding random key-value pairs.

Note that our real construction shown in Sect. 5.1, is slightly different from
what we described here. We encode the OKVS “over the exponent” to reduce
heavy public-key operations over G because our encoded values are pseudoran-
dom over a structured group G (i.e., the elliptic curves).

So far, we have obtained a two-message fuzzy matching protocol for L∞
distance, with O(dδ) communication and computation complexity.

2.3 Generalized Distance Functions

When the distance function is calculated in Lp, the receiver would get 1 if

distp(w,q) :=

(
d∑

i=1

|wi − qi|p
)1/p

≤ δ,

and 0 otherwise. To make the problem easier, we consider the p-powered Lp

distance, namely, we check if
∑d

i=1 |wi−qi|p ≤ δp. Thanks to the homomorphism
of DDH tuples, the sender can homomorphically evaluate the distance function.
Moreover, since an Lp≥1 ball must be confined in an L∞ ball, namely, |wi−qi| ≤ δ
for any i ∈ [d] if distp(w,q) ≤ δ, the protocol could work as follows:

1) The receiver publishes
(

g, h,Ei ← Encode

({(
wi + j, H(wi + j)s · g|j|p)

}

j∈[−δ:δ]

))

,

for each i ∈ [d];
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2) The sender retrieves hi ← Decode(Ei, qi) for each i ∈ [d], and computes
(

u := ga
d∏

i=1

H(qi)b, v := ha
d∏

i=1

hb
i

)

,

for random a, b ←$Z
∗
p;

3) The sender generates a list list := {gb·j}j∈[0:δp] and outputs (u, v, list);
4) The receiver checks if there is any x ∈ list such that v = us · x.

Denote t := distp(w,q). If ∀i ∈ [d], |wi − qi| ≤ δ, then the correctness holds
naturally since each retrieved hi := H(qi)s · g|wi−qi|p , implying that

v

us
= gb·tp ,

which would be included in list if and only if t ≤ δ2. On the other hand, if there
exists i∗ ∈ [d] such that |wi∗ − qi∗ | > δ, then according to the independence
property of OKVS the decoded hi∗ as well as v would be uniformly random over
G, such that v/us ∈ list with only negligible probability.

Subtle Issues and the Fix. The receiver’s privacy is almost the same as before,
relying on the generalized DDH assumption and the obliviousness of OKVS. It
is a little bit subtle to argue the sender’s privacy: Currently, list would leak
information on the sender’s input. Precisely, given (u, v, list), the receiver could
check, for example, if v

us·gb ∈ list to learn if tp = δp + 1 or not, since gb ∈ list.
Moreover, even in the case that t ≤ δ, the receiver could still deduce the exact
t by checking which index is matched. The latter can be solved by shuffling the
list, so we focus on the former issue. One approach is to hash each list item as
list := {H′(gb·j)}j∈[0:δp]. By modeling H′ : G �→ {0, 1}∗ as a random oracle, the
group structure is erased and the adversary cannot utilize gb·j anymore. However,
the issue still exists since the adversary could check if H′(( v

us )1/α
) ∈ list to learn

if tp ∈ {0, α, 2α, . . . , δpα} for any α. Therefore, we have to apply a random linear
function over tp to make sure that v

us = gb·tp+c where b, c are random scalars.
The details can be found in Sect. 5.2.

Regarding the complexity, the communication and computation are increased
by an additive term O(δp) from the infinity distance setting.

2.4 Fuzzy PSI in Low Dimensions

For the moment, let us consider the fuzzy PSI cardinality problem, where the
receiver holds a union of d-dimensional balls of radius δ represented by their
centers {w1, . . . ,wN}, the sender holds a set of points {q1, . . . ,qM} in the same
space, and the receiver learns the number of sender’s points located inside the
balls. When the dimension d of the space is low, e.g., O(log(λ)), we can exploit

2 Assuming the group order p is large enough that tp < p.
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the geometric structure of the space to efficiently match balls and points to avoid
the quadratic blowup mentioned in the introduction. The high-level idea is to
tile the entire space by d-dimensional hypercubes of side-length 2δ (also called
cells, together a grid), then the receiver can encode a ball (represented by its
center wi) in a way that the sender can efficiently match it with a point qj ,
without enumerating all balls. After that, both parties can run a fuzzy matching
protocol between wi and qj as before.

The idea of Garimella et al. [20] is to “shatter” each receiver’s ball into its
intersected cells, however, to guarantee each cell is intersected with a single ball
(otherwise collisions appear during encoding an OKVS3), the receiver’s balls typ-
ically need to be at least 4δ apart from each other. To tackle the case of disjoint
balls, the authors improved their techniques [21] by observing that each grid cell
can only contain the center of a single receiver’s ball. Thus, the receiver could
encode the identifier of each cell which contains a ball center, and the sender can
try to decode the OKVS by iterating over all neighborhood cells4 surrounding
its point. This approach yields a O(3d) factor for the sender’s computation and
communication costs: Given a point q, the center of any L∞ ball intersected
with q is located in at most 3d cells surrounding the cell containing q.

New Spatial Hashing Ideas. Here we provide a new hashing technique to
reduce this blowup from 3d to 2d. Note that the 3d factor comes from the fact
that the entire neighborhood of the point q is too large (i.e., a hypercube of side-
length 6δ), but we only need to care about the neighbor cells that intersected
with the receiver’s balls already. Specifically, if the grid is set properly, an L∞
ball will intersect exactly 2d cells, which constitute a hypercube of side-length
4δ, denoted as a block. Our crucial observation is that each block is unique for
each disjoint ball, i.e., two disjoint balls must be associated with different blocks,
as detailed in Lemma 6. Given this, the receiver could encode the identifier of
each block, and the sender would decode by iterating all potential blocks. There
are in total 2d possible blocks for each sender’s point due to each block being
comprised of 2d cells and each cell contains at most a single ball’s center.

Compatible with Lp Balls. Though we only considered L∞ balls so far, we
can generalize the “shattering” idea from [20] to Lp balls as well. We still tile
the space with hypercubes, but we show that as long as Lp balls are at least
2δ(d1/p + 1) apart from each other, then each grid cell intersects at most one Lp

ball, as detailed in Lemma 5. Particularly, when p = ∞, 2δ(d1/p +1) degrades to
the original 4δ. Combining it with our fuzzy matching protocols for Lp distance,
we immediately obtain fuzzy PSI for precise Lp distance (i.e., without approxi-
mation or metric embedding). One important step different from the L∞ setting
is to pad the key-value list to size 2dN with random pairs since an Lp ball could
intersect with a various number of cells. Otherwise, the receiver’s privacy would
be compromised.
3 Note that this is not a problem in their setting as they use the function secret sharing

(FSS) to handle each grid cell.
4 The neighborhood is a hypercube of side-length 6δ.
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2.5 Extending to High Dimensions

To overcome the 2d factor in complexities, we first focus our attention on L∞
distances: Ideally, if the receiver’s balls are globally disjoint on every dimension,
namely, the projection of the balls on each dimension never overlaps, then the
“collision” issue mentioned above would disappear. In this way, for each dimen-
sion i ∈ [d], the receiver could encode the OKVS as

Ei ← Encode
({(

wk,i + j, H(wk,i + j)s
)}

j∈[−δ,+δ]

)
,

where wk,i is the projection of the ball center wk on dimension i. The sender
just behaves the same as in Sect. 2.2. This approach results in O(δdN + M)
communication and computation costs. However, as stated in [20], this ideal
setting is somewhat artificial and unrealistic.

Weaker Assumptions by Leveraging Dummy OKVS Instances. After
taking a closer look at this approach, we realized that the global disjointness is
not necessary to be satisfied on every dimension, as we actually could tolerate
some collisions. Specifically, the value hi decoded from Ei for some point q (lying
in one of the receiver’s balls) would constitute a tuple (g, h,H(qi), hi). However,
this tuple does not necessarily need to be a DDH tuple. We only need the final
product (

g, h,

d∏

i=1

H(qi),
d∏

i=1

hi

)

to be a valid DDH tuple for correctness.
Suppose there exists at least one dimension on which the projections of all

balls are disjoint. This gives each ball a unique way to identify it from others.
Our idea is to leverage OKVS instances recursively: For each ball wk, the receiver
encodes an outer OKVS for dimension i by

Ei ← Encode
({(

wk,i + j, valk,i,j

)}

j∈[−δ,+δ]

)
,

where valk,i,j differs in two cases:

– If the current dimension i is the globally separated dimension for all balls,
then valk,i,j is an inner OKVS instance for fuzzy matching with wk, namely,

valk,i,j ← Encode
({(

i′ ‖wk,i′ + j′, hi′,j′ ‖hs
i′,j′

)}

i′∈[d],j′∈[−δ,+δ]

)
,

where hi′,j′ ←$G;
– Otherwise, the valk,i,j := (r ‖ rs) is a dummy instance where r ←$G

m and m
is the size of the inner OKVS instance.
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For each point q, the sender first decodes the outer OKVS to obtain a list
{val1, . . . , vald}, then runs the decoding function on each valj∈[d] to get

(uj ‖ vj) :=
d∏

i=1

Decode(valj , qi).

In the end, the sender re-randomizes the result from the tuple (g, h,
∏d

j=1 uj ,
∏d

j=1 vj).
For correctness, we expect that decoding a dummy instance on any key would

output a valid DDH pair all the time. This can be guaranteed if the inner OKVS
has a linear decoding function. Clearly, in this way, each q would get either an
inner OKVS instance or random garbage from the globally separated dimension.
The latter results in valid DDH tuples with negligible probability, so we focus on
the case that the sender gets an inner OKVS instance in the end. This reduces
the fuzzy PSI problem to the fuzzy matching problem as other dummy instances
won’t affect the correctness. For security, the inner OKVS has to be doubly
oblivious, namely, the encoded structure itself is uniformly random. Regarding
the complexity, the receiver’s communication and computation costs would be
O(dδ) times larger.

Further Weaken the Assumption. The above assumption is weaker and
milder than what was used in prior works, but it is still somewhat artificial.
Here we show that we can even weaken this assumption to the following: For
each ball, there exists at least one dimension on which its projection is separated
from others. Note that the above approach doesn’t work yet in this setting: There
might exist a point whose projection on each dimension is inside the projection
of a non-separated interval from some ball. In other words, the sender would
get a list of dummy instances after decoding the outer OKVS. This results in a
false positive since dummy instances always output a match. To rule out these
false positives, we realize that we could encode additional information into each
valk,i,j .

For simplicity, let’s assume the decoding function of the OKVS is determined
by a binary vector with some fixed hamming weight, that is, given an instance
r ∈ G

m and some key, the decoding function outputs

Decode(r, key) = 〈d, r〉 =
m∏

i=1

rdi
i ,

where d ∈ {0, 1}m is deterministically sampled by the key, and
HammingWeight(d) = t. The receiver samples two random shares ζ⊥, ζ	 such
that ζ⊥ · ζ	 = 1. We denote as Ik the first dimension on which wk projects a
separated interval. Then the receiver could set valk,i,j for each wk in this way:

– If the current dimension i = Ik, then valk,i,j is an inner OKVS instance defined
by

valk,i,j ← Encode
({(

i′ ‖wk,i′ + j′, hi′,j′ ‖hs
i′,j′ · ζ

t·(d−1)
⊥

)}

i′∈[d],j′∈[−δ,+δ]

)
,
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where hi′,j′ ←$G and t is the hamming weight of d;
– Otherwise, the valk,i,j := (r ‖ rs · ζ	) for r ←$G

m.

The security follows as before, whereas the correctness is non-trivial. First, con-
sider the sender’s point q intersecting some receiver’s ball. After decoding the
inner OKVS instance, the sender gets a pair (u∗ ‖us

∗ ·ζtd·(d−1)
⊥ ) for some u∗; After

decoding a dummy instance, the sender gets (r∗ ‖ rs
∗ · ζtd

	 ) for some r∗ instead.
Now, by multiplying them together, the final tuple

(
g, h, v ‖ vs · ζ

td·(d−1)
⊥ · ζ

td·(d−1)
	

)
= (g, h, v ‖ vs)

is a valid DDH tuple for some v ∈ G.
Then consider the case that the sender’s point q is outside of all balls. The

only way to report a match is to get a list of all dummy instances after decod-
ing the outer OKVS instance, otherwise the inner OKVS instance will output a
random garbage result. However, since dummy instances only encode ζ	, the
product of them equals 1 with negligible probability due to ζ	 being randomly
sampled and td2 � p if t = O(κ).

Recall that we assume the decoding vector d to have fixed hamming weight.
This is not ideal since most modern OKVS instantiations (e.g., [6,19,35]) don’t
satisfy this requirement, whereas the only exception is the garbled bloom fil-
ters [15] whose efficiency is not satisfactory. We managed to get rid of this
assumption in our real protocol in the end, please refer to Sect. 7.1 for details.

Locality-Sensitive Hashing. The above approaches are heavily tailored to
the L∞ distance. To support Lp distance in high dimensions, we utilize locality-
sensitive hashing (LSH) to identify matching balls. An LSH family with param-
eters (δ, cδ, p1, p2) guarantees the following:

– If two points w and q are close enough, i.e., distp(w,q) ≤ δ, they would be
hashed into the same bucket with at least p1 probability;

– If they are far apart, i.e., distp(w,q) > cδ, then the probability of hashing
them into the same bucket is at most p2.

In other words, an LSH family bounds the false-positive and false-negative prob-
ability to p2 and 1 − p1, respectively. Usually, false-positive and false-negative
cannot be reduced to negligible simultaneously. However, given the existence of
our fuzzy matching protocols, we can tolerate false positives by running fuzzy
matching on each positive match. Therefore, the high-level strategy is that the
receiver hashes each ball center via LSH to some LSH entry, and the sender
would identify multiple positive LSH entries for each of its points. If we set
the parameters properly, the total number of false positives for each sender’s
point can be upper-bounded by O(Nρ) for some ρ < 1 which gives us just a
sub-quadratic blowup in total communication and computation complexities.

One caveat is that there is a constant gap between the calculation of false
positives and false negatives mentioned above, namely, false positives are cal-
culated when points are cδ-apart, whereas false negatives are calculated when



Fuzzy Private Set Intersection with Large Hyperballs 353

points are δ-close. Fortunately, when the receiver’s balls are disjoint (i.e., centers
are 2δ-part), this gap can be filled by setting c = 2. Another caveat is that this
approach does not support fuzzy PSI cardinality anymore due to the rationale
behind the LSH: To guarantee a negligible false-negative rate, we typically have
to prepare multiple LSH tables where a true positive might appear more than
once.

For the formal details of this construction, we refer to the full version of the
paper [2].

3 Preliminaries

We represent the computational security parameter as λ ∈ N, the statistical secu-
rity parameter as κ ∈ N and the output of the algorithm A on input in using
r ← {0, 1} as its randomness by x ← A(in; r). The randomness is often omitted
and only explicitly mentioned when necessary. Efficient algorithms are consid-
ered to be probabilistic polynomial time (PPT) machines. We use ≈c to denote
computational indistinguishability and ≈s to denote statistical indistinguisha-
bility of probability distributions. The notation [n] signifies a set {1, . . . , n} and
[a : b] the set {a, a + 1, . . . b − 1, b}. We use c[i : j] to represent a vector with a
defined length of [ci, . . . , cj ] and c to indicate a vector of c.

All the protocols presented in this work are two-party protocols. Security
is proven against semi-honest adversaries via the standard simulation-based
paradigm (see e.g., [29]).

3.1 Oblivious Key-Value Store (OKVS)

The concept of an oblivious key-value store (OKVS) was introduced by Garimella
et al. [19] to capture the properties of data structures commonly used in PSI
protocols. Subsequent works proposed OKVS constructions offering favorable
trade-offs between encoding/decoding time and encoding size [6,35].

Definition 1 (Oblivious Key-Value Store). An oblivious key-value store
OKVS is parameterized by a key space K, a value space V, computational and
statistical security parameters λ, κ, respectively, and consists of two algorithms:

– Encode : takes as input a set of key-value pairs L ∈ (K×V)n and randomness
θ ∈ {0, 1}λ, and outputs a vector P ∈ Vm or a failure indicator ⊥.

– Decode : takes as input a vector P ∈ Vm, a key k ∈ K and randomness
θ ∈ {0, 1}λ, and outputs a value v ∈ V.

That satisfies:

– Correctness: For all L ∈ (K × V)n with distinct keys and θ ∈ {0, 1}λ for
which Encode(L; θ) = P 
= ⊥, it holds that ∀(k, v) ∈ L: Decode(P, k; θ) = v.

– Low failure probability: For all L ∈ (K × V)n with distinct keys:
Prθ ←$ {0,1}λ [Encode(L; θ) = ⊥] ≤ 2−κ.
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– Obliviousness: For any {k1, . . . , kn}, {k′
1, . . . , k

′
n} ⊆ K of n distinct keys

and any θ ∈ {0, 1}λ, if Encode does not output ⊥, then for v1, . . . , vn ←$ V:
{P ← Encode({(ki, vi)i∈[n])}; θ)} ≈c {P ′ ← Encode({(k′

i, vi)i∈[n]}; θ)}.
– Double obliviousness: For all sets of n distinct keys {k1, . . . , kn} ⊆ K

and n values {v1, . . . , vn} ←$ V, there is Encode({(ki, vi)i∈[n])}; θ)} statisti-
cally indistinguishable from uniformly random element from Vm.

The efficiency of OKVS is characterized by: (1) the time it takes to encode n
key-value pairs; (2) the time it takes to decode a single key; (3) the ratio n/m
between the number of key-value pairs n and the encoding size m, also called the
rate. Recent OKVS constructions [6,19,35] achieve: (1) encoding time O(nκ); (2)
decoding time O(κ); (3) constant rate.

For this work, we will need OKVS to support the value space V being equal
to a cyclic group G of prime order p. A sufficient condition for this, which is
satisfied by the efficient constructions of [6,19,35] is:

– Fp-Linear: There exists a function dec : K × {0, 1}λ → F
m
p such that for all

P ∈ G
m, k ∈ K and θ ∈ {0, 1}λ it holds that Decode(P, k; θ) := 〈dec(k; θ), P 〉,

where for d ∈ F
m
p and g ∈ G

m we define 〈d,g〉 := gd1
1 · · · gdm

m .

Lemma 1 (Independence). If OKVS satisfies Fp-linearity and negl(κ) fail-
ure probability, and θ is uniformly randomly chosen, then for any L :=
{(ki, vi)i∈[n]} with distinct keys, and any key k /∈ {ki}i∈[n], it holds that
Decode (Encode(L; θ), k) is indistinguishable from random.

3.2 Random Self-reductions of DDH Tuples

The well-known decisional Diffie-Hellman (DDH) assumption for a cyclic group
G = 〈g〉 of prime order p states that the distribution of Diffie-Hellman (DH)
tuples (g, h := gs, h1, h2 := hs

1), where s ←$Zp, h1 ←$G, is computationally
indistinguishable from the distribution of random tuples (g, h := gs, h1, h2),
where s ←$Zp, h1, h2 ←$G. Naor and Reingold [32] show that deciding whether
an arbitrary tuple (g, h, h1, h2) with h, h1, h2 ∈ G is a DH tuple can be reduced
to breaking the DDH assumption. For this work, we consider a special case of
this reduction where h := gs is fixed.

Lemma 2 (Random Self-Reduction [32]). Let G := 〈g〉 be a cyclic group of
order p, let h := gs for s ∈ Zp and h1, h2 ∈ G. If h′

1 := ga · hb
1 and h′

2 := ha · hb
2,

where a, b ←$Zp, then:

– h′
1 is uniformly random in G and h′

2 = (h′
1)

s if h2 = hs
1.

– (h′
1, h

′
2) is a uniformly random pair of group elements otherwise.
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Fig. 1. Ideal Functionality of Fuzzy Matching

4 Definitions and Functionalities

We define the two-message protocol as below, consisting of three algorithms:

– Receiver1(InputR): The algorithm takes the Receiver’s InputR, outputs
the first message msg1 and its secret state st;

– Sender1(InputS ,msg1): The algorithm takes the Sender’s InputS and msg1,
outputs the second message msg2;

– Receiver2(st,msg2): The algorithm takes the state st and the second message
msg2, outputs the final Output.

4.1 Definition of Fuzzy Matching

We define the functionality of fuzzy matching between two points in Fig. 1, with
different distance functions including both infinity (L∞) and Minkowski (Lp)
distance where p ∈ [1,∞).

4.2 Definition of Fuzzy (Circuit) Private Set Intersection

We define the functionality of fuzzy PSI and fuzzy circuit PSI in Figs. 2 and 3,
respectively. Note that for standard fuzzy PSI, we also consider a slightly stronger
functionality (compared to prior works) where the receiver only learns whether
their points are in the intersection, but not the sender’s exact points, which
we call PSI with sender privacy (PSI-SP). We extend the functionality of fuzzy
PSI to many closely related variants including PSI cardinality (PSI-CA), labeled
PSI, and circuit PSI.
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Fig. 2. Ideal Functionality of Fuzzy PSI

Fig. 3. Ideal Functionality of Fuzzy Circuit PSI

5 Fuzzy Matching

We start by presenting a fuzzy matching protocol for two points in hyperspace
with infinity distance (L∞) and hamming distance, then we extend it into a
more general setting with Minkowski distance (Lp∈[1,∞)).

5.1 Fuzzy Matching for Infinity Distance

We provide the protocol for infinity distance in Fig. 4. We also show how to gen-
eralize the above approach to support the conjunction of infinity and hamming
distance in the full version of the paper [2]. The proofs of the following theorems
can be found in the full version of the paper [2].

Theorem 1 (Correctness). The protocol provided in Fig. 4 is correct with
1 − negl(κ) probability if OKVS satisfies perfect correctness defined in Sect. 3.1
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Fig. 4. Fuzzy Matching for L∞ Distance

and independence property from Lemma 1, and Hγ : {0, 1}∗ �→ {0, 1}γ ,Hκ′ :
G �→ {0, 1}κ′

are universal hash functions where γ = κ + log δ and κ′ = κ.

Theorem 2 (Security). The protocol provided in Fig. 4 realizes the function-
ality defined in Fig. 1 for L∞ distance function against semi-honest adversaries
if OKVS is oblivious and the DDH assumption holds.

Theorem 3 (Complexity). The communication complexity is O (2δdλ+
λ + κ) where λ, κ are the security and statistical parameters; The computational
complexity is O(2δd) for the receiver and O(d) for the sender.

5.2 Fuzzy Matching for Minkowski Distance

We provide the protocol for Lp distance where 1 ≤ p < ∞ in Fig. 5. For sim-
plicity, we assume p is an integer for the moment. The proofs of the following
theorems can be found in the full version of the paper [2].

Theorem 4 (Correctness). The protocol provided in Fig. 5 is correct with
1 − negl(κ) probability if OKVS satisfies perfect correctness defined in Sect. 3.1
and independence property from Lemma 1, and Hγ : {0, 1}∗ �→ {0, 1}γ ,Hκ : G �→
{0, 1}κ are universal hash functions where γ = κ + log δ and κ′ = κ + p log δ.
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Fig. 5. Fuzzy Matching for Lp Distance

Theorem 5 (Security). The protocol provided in Fig. 5 realizes the function-
ality defined in Fig. 1 for Lp distance function, against semi-honest adversaries if
OKVS is oblivious, the hash function Hκ′ : G �→ {0, 1}κ′

is modeled as a random
oracle, and the DDH assumption holds.

Theorem 6 (Complexity). The communication complexity is O(2δdλ + 2λ +
δpκ) where λ, κ are the security and statistical parameters; The computational
complexity is O(2δd) for the receiver and O(d + δp) for the sender.

6 Fuzzy PSI in Low-Dimension Space

Clearly, with a fuzzy matching protocol in hand, we could straightforwardly
execute a protocol instance for every pair of points from both the sender and
receiver. Yet, this approach would lead to a quadratic increase in computa-
tional and communicative overheads. In the following sections, we depict some
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methods to circumvent this quadratic overhead, addressing both low-dimensional
(in Sect. 6) and high-dimensional (in Sect. 7) spaces separately. We will deal with
PSI-CA first (i.e., only let the receiver learn the cardinality of the intersection),
then show how to extend PSI-CA to broader functionalities in Sect. 8, including
standard PSI, labeled PSI, and circuit PSI.

6.1 Spatial Hashing Techniques

Consider the case that points are located in a low-dimension space Ud (e.g.,
d = o(log(λ)) where U is the universe for each dimension. We use a similar idea
from [20] to tile the entire space into hypercubes with side length 2δ, but we
consider a more general Lp distance setting. That is, we consider Lp distance over
a space tiled by L∞ hypercubes. We denote each hypercube as a cell. Specifically,
given a point w ∈ Ud, the index idi of each cell C on each dimension i ∈ [d] is
determined by idi = �wi

2δ � and each cell is labeled by id0 ‖ . . . ‖ idd. The proofs of
the following results are given in the full version of the paper [2].

Lemma 3 (Maximal Distance in a Cell). Given two points w,q ∈ Ud

located in the same cell with side length 2δ, then the distance between them is
distp(w,q) < 2δd

1
p where p ∈ [1,∞]. Specifically, if p = ∞, dist∞(w,q) < 2δ.

Lemma 4 (Unique Center). Suppose there are multiple Lp balls (p ∈ [1,∞])
with radius δ lying in a d-dimension space which is tiled by hypercubes (i.e.,
cells) with side length 2δ. If these balls’ centers are at least 2δd

1
p apart, then for

each cell, there is at most one center of the balls lying in this cell. Specifically,
if p = ∞, then the unique center holds for disjoint balls since 2δd

1
p degrades to

2δ in this case.

Lemma 5 (Unique Ball). Suppose there are multiple δ-radius Lp balls (p ∈
[1,∞]) distributed in a d-dimension space which is tiled by hypercubes (cells) of
side length 2δ. If these balls’ centers are at least 2δ(d

1
p +1) apart from each other,

then there exists at most one ball intersecting with the same cell. Specifically, if
p = ∞, this holds for L∞ balls with 4δ-apart centers.

Lemma 6 (Unique Block). Any L∞ ball with radius δ will intersect with
exactly 2d cells with side length 2δ in a d-dimension space. Moreover, if we
denote such 2d cells together as a block (which is a hypercube with side length
4δ), then each block is unique for each disjoint ball. In other words, any two
disjoint balls must be associated with different blocks.

6.2 Fuzzy PSI-CA for Infinity Distance

We provide the detailed protocol in Fig. 6 realizing fuzzy PSI-CA for infinity
distance where the receiver’s points are 2δ apart from each other (i.e., the
receiver’s δ-radius balls are disjoint). In the figure, block4δ returns the label
of the block of side-length 4δ, cell2δ returns the label of the cell of side-length



360 A. van Baarsen and S. Pu

Fig. 6. Fuzzy PSI-CA, infinity distance, receiver’s points are 2δ apart (i.e., disjoint
balls)

2δ, and GetList,GetTuple are provided in Fig. 4. The proofs of the following theo-
rems can be found in the full version of the paper [2], and we also generalize this
approach to the setting where both parties hold a structured set of hyperballs.

Theorem 7 (Correctness). The protocol presented in Fig. 6 is correct with
probability 1 − negl(κ) if OKVS satisfies perfect correctness defined in Sect. 3.1
and the independence property from Lemma 1, Hγ : {0, 1}∗ �→ {0, 1}γ ,Hκ′ :
G �→ {0, 1}κ′

used in GetList,GetTuple are universal hash functions where γ =
κ + log(MNδ), κ′ = κ + d log M , and the receiver’s points are 2δ apart.

Theorem 8 (Security). The protocol presented in Fig. 6 realizes the fuzzy
PSI-CA functionality defined in Fig. 2 for infinity distance against semi-honest
adversaries if OKVS is oblivious, and the DDH assumption holds.

Theorem 9 (Complexity). The protocol provided in Fig. 6 has communica-
tion complexity O(2δdNλ+2dM(λ+κ′)) where λ, κ = κ′−d log M are the security
and statistical parameters; The computational complexity is O(2δdN +2dM) for
the receiver and O(2ddM) for the sender.

6.3 Fuzzy PSI-CA for Minkowski Distance

Assuming that the receiver’s points are spaced 2δ(d
1
p + 1) apart, we can allow

the receiver to iterate through each possible location, as depicted in Fig. 7. The
proofs of the following theorems can be found in the full version of the paper [2]



Fuzzy Private Set Intersection with Large Hyperballs 361

Fig. 7. Fuzzy PSI-CA, Lp distance with p ∈ [1, ∞], receiver’s points are 2δ(d
1
p + 1)

apart

Theorem 10 (Correctness). The protocol presented in Fig. 7 is correct with
probability 1−negl(κ) if OKVS satisfies the perfect correctness defined in Sect. 3.1
and the independence property from Lemma 1, Hγ : {0, 1}∗ �→ {0, 1}γ ,Hκ′ :
G �→ {0, 1}κ′

used in GetList,GetTuple are universal hash functions where γ =
κ+d log(δN)+log M , κ′ = κ+p log(Mδ) if p < ∞ and κ′ = κ+log M if p = ∞,
and the receiver’s points are 2δ(d

1
p + 1) apart for p ∈ [1,∞].

Theorem 11 (Security). The protocol presented in Fig. 7 realizes the fuzzy
PSI-CA functionality defined in Fig. 2 for Lp∈[1,∞] distance against semi-honest
adversaries if OKVS is oblivious and the DDH assumption holds. Additionally,
if p < ∞, the hash function Hκ′ : G �→ {0, 1}κ′

is modeled as a random oracle.

Theorem 12 (Complexity). The protocol provided in Fig. 7 has communi-
cation complexity O(2δd2dNλ + M(λ + κ′)) when Lp = L∞ and O(2δd2dNλ +
M(2λ+ δpκ′)) when p ∈ [1,∞) where λ, κ are the security and statistical param-
eters. Specifically, κ = κ′ − log M if p = ∞ and κ = κ′ − p log(Mδ) otherwise.
The receiver’s computational complexity is O(2δd2dN + M); The sender’s com-
putational complexity is O(dM) if p = ∞, and O(dM + δp) otherwise.

7 Fuzzy PSI in High-Dimension Space

In this section, we construct an efficient fuzzy PSI protocol in a high-dimensional
space, i.e., of a polynomially large dimension. For infinity distance, we pro-
vide a fuzzy PSI-CA protocol in Sect. 7.1 and extend it to richer functionalities
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in Sect. 8; For Minkowski distance, please refer to the full version of the paper [2]
for details.

7.1 Infinity Distance

Suppose we assume the receiver’s set has good distribution in a high-dimensional
space, particularly if each ball has disjoint projections (i.e., separated) from oth-
ers on at least one dimension. In this case, we can get communication and com-
putation complexity both scaling polynomially in the dimension. For instance, if
balls are uniformly distributed, then it satisfies this predicate with overwhelming
probability. The proof of this can be found in the full version of the paper [2].

Definition 2 (Separated Balls). The set of δ-radius balls are separated in
a d-dimension space if and only if the projections are separated on at least one
dimension for each ball. Specifically, for the center wk of each ball in the set,
there exists some dimension i∗ ∈ [d] such that

∀j ∈ [−δ : δ], wk,i∗ + j /∈ {wk′,i∗ + j′}k′ �=k,j′∈[−δ:δ],

where {wk′,i∗ + j′} is the set of projections from other balls.

Lemma 7 (Uniform Distribution). If centers of the balls are uniformly dis-
tributed (W ←$ Ud×N ) where U := Z2u , then it has the property defined in Def-
inition 2 with probability 1 − negl(d).

Given the receiver’s balls are separated as defined in Definition 2, we provide
an efficient protocol in Fig. 8 which gets rid of the 2d term for both communica-
tion and computation. The proofs of the following theorems can be found in the
full version of the paper [2].

Theorem 13 (Correctness). The protocol presented in Fig. 8 is correct with
probability 1 − negl(κ) if OKVS satisfies the perfect correctness, Fp-linearity
defined in Sect. 3.1 and the independence property from Lemma 1, Hγ : {0, 1}∗ �→
{0, 1}γ ,Hκ′ : G �→ {0, 1}κ′

are universal hash functions where γ = κ+log NMδ,
κ′ = κ + log M , and the receiver’s set are separated as defined in Definition 2.
Particularly, we require that the decoding vector satisfies dec(·) ∈ {0, 1}m and
HammingWeight(dec(·)) = O(κ) where m is the size of the OKVS.

Theorem 14 (Security). The protocol presented in Fig. 8 satisfies the fuzzy
PSI-CA functionality defined in Fig. 2 for infinity distance against semi-honest
adversaries if OKVS is doubly oblivious, and the DDH assumption holds.

Theorem 15 (Complexity). The protocol presented in Fig. 8 has communica-
tion complexity O

(
(2δd)2Nλ + M(λ + κ)

)
where λ, κ = κ′−log M are computa-

tional and statistical parameters; The computational complexity is O((2δd)2N +
M) for the receiver and O(2d2M) for the sender.
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Fig. 8. Fuzzy PSI-CA, infinity distance, each ball is separated on at least one dimension

8 Extending to Broader Functionalities

We show above protocols can be extended to a broader class of functionalities,
including standard PSI, PSI with sender privacy, labeled PSI, and circuit PSI,
with small tweaks and therefore preserving the efficiency. We describe exten-
sions for all protocols in this work except for the Lp distance protocol in high
dimensional space since currently, the simulator for a corrupt receiver needs to
know the points of the sender that lie in the intersection, i.e., only works for
the standard PSI functionality. We describe the main idea behind the extensions
and give the formal details for the different protocol settings (including PSI with
sender privacy and circuit PSI) in the full version of the paper [2].
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Labeled PSI. For labeled PSI, the sender has some labels labelk ∈ {0, 1}σ

attached to their input points qk, k ∈ [M ], and the receiver wishes to learn the
labels of the points for which there exists an i ∈ [N ] such that dist(wi,qk) ≤ δ
(see Fig. 2 for the ideal functionality). It can be realized for the protocol in Fig. 6
(and similar for the protocols in Figs. 7 and 8 by ignoring the index j in these
cases) by letting the sender use vk,j as a one-time pad to encrypt labelk together
with a special prefix, e.g., 0κ, indicating that the label belongs to a valid match.
For the protocol in Fig. 7 with p 
= ∞, the sender instead uses the xk,j ∈ Xk as
a one-time pad to encrypt 0κ‖labelk.

Standard PSI. By letting the labels be a description of the sender’s points,
we can realize standard PSI, where the receiver learns the sender’s points qk for
which there exists an i ∈ [N ] such that dist(wi,qk) ≤ δ (see Fig. 2 for the ideal
functionality).

9 Performance Evaluation

In this section, we provide a micro-benchmark for our fuzzy PSI protocols for
Lp∈{1,2,∞} in low-dimension settings.

Implementation. We implement the standard fuzzy PSI variant (i.e., the
receiver learns the sender’s points in the intersection) in three different metrics
(L∞, L1, L2) in a d-dimension space where d = {2, 3, 5, 10}, following the Figs. 6,
and 7. The proof-of-concept implementation5 is written in Rust, with less than
1000 lines of code. We use Risttreto and curve25519-dalek to instantiate the
underlying group G, use FxHash and Blake3 to instantiate the hash function
Hγ ,Hκ′ . We choose the security parameter λ = 128 and statistical parameter
κ = 40 as usual. To instantiate the OKVS, we follow the construction from [6]
but working in Fp and the expansion rate ε = 0.5 to make sure we have 2−κ cor-
rectness error rate. Though it can be optimized to ε = 0.1 ∼ 0.25 to have a more
compact size, the encoding and decoding time would also increase accordingly.

Environment. We run the experiments on an ordinary laptop over a single
thread: Macbook Air (M1 2020) with 8 GB RAM and a 2.1 GHz CPU, without
using SIMD (e.g., AVX, NEON) optimizations. We measure the entire protocol
time in a local network setting (i.e., LAN-like) without considering latency.

9.1 Concrete Performance

Fuzzy PSI. We mainly consider three cases for fuzzy PSI protocols: The
receiver’s points are 2δ-apart (shown in Table 2), and 2δ(d

1
p + 1)-apart (shown

in Table 3). It is worth noting that, any distribution of the receiver’s points can

5 The open-sourced repository: https://github.com/sihangpu/fuzzy PSI.

https://github.com/sihangpu/fuzzy_PSI
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Table 2. Fuzzy PSI when points are >2δ (i.e., disjoint balls)

Metric Radius δ Dimension d Receiver’s N Sender’s M Bandwidth Total Time

L∞ [20] 30 2 211 220 ≈9865b MB �1500a s

L∞ 30 2 211 220 173 MB 257.25 s

L∞ 30 5 213 211 231 MB 177.18 s

L∞ 1000 2 211 211 753 MB 303.59 s
a Estimated by assuming each PRG evaluation is about 4.8 ns and hash evaluation is
about 4.8 ns/byte [25]. Only consider the computational costs at the receiver’s side.
b Estimated by the concrete bFSS size provided in [20].

Table 3. Fuzzy PSI when points are >2δ(d
1
p + 1)

Metric Radius δ Dimension d Receiver’s N Sender’s M Bandwidth Total Time

L∞ [20] 10 5 211 220 - �4300 a s

L∞ [20] 30 10 25 220 ≈1011 b MB �1013 a s

L∞ 30 2 211 220 134 MB 99.28 s

L∞ 10 5 211 220 1240 MB 432.42 s

L∞ 30 10 25 220 1844 MB 1135.63 s

L1 10 2 211 220 107 MB 94.10 s

L1 30 2 211 220 369 MB 111.07 s

L2 10 2 211 220 467 MB 97.37 s

L2 30 2 211 220 3727 MB 121.21 s
a Estimated by assuming each PRG evaluation is about 4.8 ns and hash evaluation is
about 4.8 ns/byte [25]. Only consider the computational costs at the receiver’s side.
b Estimated by the concrete bFSS size provided in [20].

be reduced to the disjoint setting by varying the radius. Specifically, for the L∞
metric, the second case degrades to 4δ-apart points; For the L{1,2} metric, our
protocol only supports the second case. Our protocols can support large volume
balls since our computation and communication cost scaled only sub-linearly to
the total volume. In the full version of the paper [2] we also explore the setting
where both receiver and sender hold a structured set consisting of hyperballs.

For comparison, we estimate the concrete communication cost for [20] based
on their concrete bFSS size table reported in the paper. For the disjoint balls
setting we use the reported share sizes for their spatial hash ◦ sum ◦ tensor ◦ ggm
(0.5, 1)-bFSS, assume bFSS evaluation to cost (2 log δ)d PRG calls, estimate
PRG calls to take 10 machine cycles using AES-NI, and put � = 440. For the
distance > 4δ setting we use the reported share sizes for their spatial hash ◦
concat ◦ tt (1 − 1/2d, d)-bFSS, assume bFSS evaluation to cost 1 machine cycle
and put � = 162 for dimension d = 5, � = 139 for dimension d = 10. In all settings
we estimate the correlation-robust hash calls at the end of the protocol to take
around 10 machine cycles/byte, based on the fastest performance reported in
[25] on 64-byte inputs. We assume a universe size of 32-bit integers for each
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dimension. Note that here we report the most conservative estimates for their
running time and can only be considered as a loose lower bound.

10 Conclusion

In this work, we explored the fuzzy PSI in a more general setting, including higher
dimensional space, comprehensive Lp distance metric, and extended functionality
variants. We also demonstrate the practicality of our protocols by experimental
results. However, there are still many open problems to be solved, such as, our
Lp protocols have an additional O(δp) communication overhead for each sender’s
point which might be expensive when δ or p is too large. Another interesting
problem to think is how to get a more efficient protocol in polynomially large
dimension space for L2 distance, or if we can weaken the separated assump-
tion further for L∞ distance? We leave them as well as the concrete efficiency
optimization to future works. Also, current fuzzy PSI protocols with negligible
correctness error require disjoint balls at least. What if the receiver’s balls are
intersected? Any non-trivial approaches without quadratic overhead would be
interesting to explore.
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